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Abstract: Three series of polyesters based on monomer combinations of ε-caprolactone (ε-CL), ethy-
lene brassylate (EB), and L-Lactide (LLA) with the alkyl substituted lactone ε-decalactone (ε-DL) were
synthesized at different molar ratios. Copolymers were obtained via ring opening polymerization
(ROP) employing TBD (1,5,7-triazabicyclo-[4.4.0]-dec-5-ene), an organic catalyst which can be handled
under normal conditions, avoiding the use of glove box equipment. The molar monomer composition
of resulting copolymers differed from theoretical values due to lower ε-DL reactivity; their Mn and Mw

values were up to 14 kDa and 22.8 kDa, respectively, and distributions were (
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Abstract: Three series of polyesters based on monomer combinations of ε-caprolactone (ε-CL), eth-
ylene brassylate (EB), and L-Lactide (LLA) with the alkyl substituted lactone ε-decalactone (ε-DL) 
were synthesized at different molar ratios. Copolymers were obtained via ring opening polymeri-
zation (ROP) employing TBD (1,5,7-triazabicyclo-[4.4.0]-dec-5-ene), an organic catalyst which can 
be handled under normal conditions, avoiding the use of glove box equipment. The molar monomer 
composition of resulting copolymers differed from theoretical values due to lower ε-DL reactivity; 
their Mn and Mw values were up to 14 kDa and 22.8 kDa, respectively, and distributions were (Ɖ) ≤ 
2.57. The thermal stability of these materials suffered due to variations in their ε-DL molar content. 
Thermal transitions such as melting (Tm) and crystallization (Tc) showed a decreasing tendency as 
ε-DL molar content increased, while glass transition (Tg) exhibited minor changes. It is worth men-
tioning that changes in monomer composition in these polyesters have a strong impact on their 
thermal performance, as well as in their crystallization degree. Consequently, variations in their 
chemical structure may have an effect on hydrolyic degradation rates. It should be noted that, in 
future research, some of these copolymers will be exposed to hydrolytic degradation experiments, 
including characterizations of their mechanical properties, to determine their adequacy in potential 
use in the development of soft medical devices. 
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1. Introduction 
One of the main research activities in health sciences is the development of biode-

gradable and biocompatible materials for medical applications. At present, surgical stents 
and other prosthetics are made of stainless steel, silver and platinum [1]. The use of metals 
in the construction of implants provides durability and mechanical properties. However, 
these medical devices suffer from limited control of their degradation rates, resulting in 
undesirable modifications, compromising functionality and causing adverse systemic re-
actions in the host [2]. To tackle the limitations of metals in the medical field, the intro-
duction of polymers has brought solutions in terms of biocompatibility and biodegrada-
bility issues. Among such materials, aliphatic polyesters have been in the spotlight in re-
cent years [3–5]. 

Citation: Robles-González, F.; 

Rodríguez-Hernández, T.;  

Ledezma-Pérez, A.S.; Díaz de León, 

R.; De Jesús-Téllez, M.A.; López-

González, H.R. Development of  

Biodegradable Polyesters: Study of  

Variations in Their Morphological 

and Thermal Properties through 

Changes in Composition of  

Alkyl-Substituted (ε-DL) and  

Non-Substituted (ε-CL, EB, L-LA) 

Monomers. Polymers 2022, 14, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor: Edina Rusen 

Received: 16 September 2022 

Accepted: 7 October 2022 

Published: 12 October 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

) ≤ 2.57. The thermal
stability of these materials suffered due to variations in their ε-DL molar content. Thermal transitions
such as melting (Tm) and crystallization (Tc) showed a decreasing tendency as ε-DL molar content
increased, while glass transition (Tg) exhibited minor changes. It is worth mentioning that changes
in monomer composition in these polyesters have a strong impact on their thermal performance, as
well as in their crystallization degree. Consequently, variations in their chemical structure may have
an effect on hydrolyic degradation rates. It should be noted that, in future research, some of these
copolymers will be exposed to hydrolytic degradation experiments, including characterizations of
their mechanical properties, to determine their adequacy in potential use in the development of soft
medical devices.

Keywords: ROP; biodegradable polyesters; TBD; organic catalyst

1. Introduction

One of the main research activities in health sciences is the development of biodegrad-
able and biocompatible materials for medical applications. At present, surgical stents and
other prosthetics are made of stainless steel, silver and platinum [1]. The use of metals
in the construction of implants provides durability and mechanical properties. However,
these medical devices suffer from limited control of their degradation rates, resulting in
undesirable modifications, compromising functionality and causing adverse systemic reac-
tions in the host [2]. To tackle the limitations of metals in the medical field, the introduction
of polymers has brought solutions in terms of biocompatibility and biodegradability issues.
Among such materials, aliphatic polyesters have been in the spotlight in recent years [3–5].

Aliphatic polyesters are characterized by their saturated linear structure and the
presence of ester groups in their backbone. They are an interesting alternative in biomedical
applications due to their renewable nature, physicochemical, thermal and morphological
properties, ease of synthesis, processability and customizable degradation rates [6]. Current
medical applications of polyesters include, but are not limited, tissue scaffolding, drug
delivery systems and bone regeneration. Poly(glycolic acid) (PGA), poly(L-lactide) PLLA
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and poly(ε-caprolactone) (PCL) are examples of commonly synthesized aliphatic polyesters
with adequate chemical, thermal and mechanical properties for the manufacturing of
medical devices [5,7]. In tissue engineering, PLLA and PCL are frequently applied in bone,
nerve, vascular and skin implants [8], while polyesters with high biodegradability, such as
PGA and poly(ε-decalactone) (PDL), have been employed as encapsulations for proteins
and antibiotics in drug delivery systems [9].

In ester copolymerization, materials with tailored features can be obtained by com-
bining monomers with specific properties. For instance, inclusion of branched lactones
comonomers as ε-decalactone into PLLA which possesses features as brittleness and
low thermal stability, result in copolymers with improved mechanical properties, and
higher degradation temperatures in comparison with PLLA homopolymer. These prop-
erties enhancements are mainly supported in the morphological changes induced by
n-butyl side groups presented in PDL segments [10]. Regarding copolymers based on L-
lactide/ε-caprolactone and ethylene brassylate/δ-valerolactone, variations in molar ratios
of monomer were studied in order to establish a correlation between chemical composition,
thermal properties and morphology. Copolymers based on L-lactide/ε-caprolactone exhibit
enhanced thermal stability using PCL at 50–60 %mol, but their amorphous arrangement
disrupts crystal formation [11]. Jin et al. [12] established a Tm eutectic point in ethylene
brassylate/δ-valerolactone random copolymers, wherein formulation with δ-valerolactone
at 80 %mol induced co-crystallization and isodimorphism. Another example of biodegrad-
able polyesters (Mw up to 285 kDa) includes the use of biobased monomers, such as
ethylene brassylate-b-δ-hexalactone, wherein a branched comonomer favors an amorphous
arrangement, which has an impact on the mechanical properties, giving rise to possible
applications in cell culture scaffolds [13]. On the other hand, triblock copolymers consist-
ing of ethylene oxide-b-ε-caprolactone-b-γ-butyrolactone and ε-caprolactone-b-ethylene
adipate-b-ε-caprolactone have also been reported; these synthesized copolyesters with Mn
up to 12.3 and 23.2 kDa, respectively, offer drug delivery system capabilities with specific
drug-release profiles [14,15].

There are two main synthesis routes to obtain polyesters: polycondensation (step-
growth polymerization) and ring-opening polymerization (ROP). In the first one, the
polymerization reaction involves the esterification of diacids and diols, linking both types
of molecules through the formation of ester groups. Although this type of polymerization
can be performed under moderate conditions, and the required precursors are widely
available, one of its most notorious disadvantages is the generation of byproducts, which
promote reversible polymer–monomer reactions if they are not eliminated from the reaction
media, leading to polymers with low molecular weights and wide dispersity [16]. Taking
into consideration the limitations of polycondensation, ROP emerges as an alternative
methodology to synthesize aliphatic polyesters which is based in the opening of cyclic
monomers (lactones) by usage of catalysts, initiators or specific reaction conditions to obtain
linear macromolecules. In contrast to step-growth polymerization, byproducts are not
generated through ROP, allowing the synthesis of polymers with high molecular weights
and narrow dispersity [17]. For instance, successful ROP of ε-caprolactone, ε-decalactone
and pentadecalactone employing a zinc complex with phenoxy-imine ligand as a catalyst
has been reported, achieving molecular weights at 21–73 kDa and dispersities of 1.8–2.3 [18].
In addition, some researchers have reported the implementation of stannous octoate and
bismuth salts as catalyst in the synthesis of PLLA, PDL and L-lactide/ε-decalactone copoly-
mers with block and random architectures via ROP methodologies, in which molar masses
reached 58.7 kDa for PLLA, 86.6 kDa for PDL and 54.1 kDa for L-lactide/ε-decalactone
copolymers with dispersity values of 1.2–2.2, although reaction times were higher than
48 h and temperatures were up to 130 ◦C [10,19].

It is worth mentioning that ROP via organometallic-catalysis represents a feasible tech-
nique for aliphatic polyester synthesis of, e.g., PCL and PLA with high values of conversions
and molar mass, as well as narrow dispersion [20]; however, some of the major drawbacks
are the purity conditions for handling the organometallic inititator and monomers, and the
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absence of oxygen and environmental humidity in the reaction media to ensure high reac-
tion performance [10,21]. Furthermore, ineffective and expensive purification procedures
of the synthesized polymers are required for the removal of metal complex residues coming
from catalysts like stannous octoate (Sn(Oct)2), bismuth salts and neodymium isopropoxide.
For instance, FDA regulations state that the presence of Sn(Oct)2 cannot exceeded 20 ppm,
and so usage of this kind of reagent may be result hazardous in medical, pharmaceutical
and food packaging applications [22]. Other drawbacks to consider are depolymerization
and oxidation reactions, which increase the toxicity, lower the biocompatibility, and influ-
ence the chemical, thermal and mechanical properties [23]. To overcome the consequences
of organometallic initiators, polyester synthesis via metal-free ROP is a green and low-cost
alternative, featuring milder reaction conditions and undemanding purification techniques
of raw materials and products. In this regard, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD)
and 1,8-diaza[5.4.0]bicycloundec-7-ene (DBU) have emerged as organo-catalytic options
providing versatility in terms of the monomer/catalyst and initiator/catalyst ratios, control
over molecular weight and dispersity, ease of storage, handling without requirements of
inert atmosphere conditions and consistent biocompatibility due to their easy removal [24].
Therefore, TBD and DBU catalysts are interesting candidates for the synthesis of PLA, PCL,
PDL and PEB; previous works have employed these reaction systems for the synthesis of
these polyesters, reaching molecular weight values from 2.4 to 85 kDa and dispersities of
1.05–1.90 in periods shorter than 24 h [10,13,25].

In this work, series of polyesters based on combinations of L-lactide/ε-decalactone,
ethylene brassylate/ε-decalactone and ε-caprolactone/ε-decalactone at different molar
ratios were achieved through the ROP methodology using TBD as a catalyst. It is worth
mentioning that there are no previous works reporting the systematic study of the chem-
ical, thermal and morphological properties of this type of copolymer and the influence
of ε-decalactone on such properties. Therefore, these aliphatic polyesters may exhibit
biodegradable features through variations in their chemical structures, possibly resulting
in an interesting alternative for the development of soft medical devices.

2. Materials and Methods
2.1. Reagents

The monomers ε-caprolactone (ε-CL), ε-decalactone (ε-DL) and ethylene brassylate
(EB) (Sigma-Aldrich) were purified via a distillation system which included Na0 as a drier
reagent, a vacuum pressure at 15 mm Hg and a temperature of 160 ◦C to achieve complete
removal of humidity and oxygen. L-Lactide (L-LA) (Sigma-Aldrich, St. Louis, MO, USA),
was purified through a crystallization process into ethyl acetate (J. T. Baker, Radnor, PA,
USA) solution (33.33% weight). Other reagents such as TBD (TCI chemicals, Portland, OR,
USA), benzyl alcohol and trioxane (Sigma-Aldrich, St. Louis, MO, USA) were used as
received. Toluene and methanol were provided by J. T. Baker. Toluene was washed with
H2SO4, dried in CaCl2, stirred under reflux conditions with LiAlH4 and distilled using a
sodium/benzophenone complex, while methanol was used as received.

2.2. Characterization and Equipment

The chemical composition was determined by proton nuclear magnetic resonance (1H
NMR) at room temperature using a Bruker (Billerica, MA, USA) Advance III 400 MHz
spectrometer and deuterated chloroform (CDCl3) as a solvent. Additionally, characteristic
functional groups in copolymers were confirmed through Fourier transform infrared spec-
troscopy (FTIR)–attenuated total reflectance (ATR) mode, recorded from 4000 to 400 cm−1

in a FTIR spectrometer model Nicolet iS5 from Thermo-Scientific, (Madison, WI, USA).
Gel permeation chromatography (GPC) was used in the determination of molar mass
(Mn and Mw) and distribution (
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) in copolymers employing an Agilent ( Santa Clara, CA,
USA) series 1100 calibrated with polystyrene standards, CHCl3 (HPLC grade) as eluent, a
refraction index detector, a set of three columns PL-gel 5 µm, one column 106 Å and two
column Mixed-C. Thermal stability was recorded in a thermogravimetric analyzer Q500
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model from TA Instruments (New Castle, DE, USA); the heating rate was 10 ◦C min−1 from
30 to 600 ◦C under N2 atmosphere. Thermal transitions (Tg, Tc and Tm) were obtained with
a differential scanning calorimeter (DSC–2500 from TA Instruments) at heating and cooling
rates of 10 ◦C min−1 from −70 to 100 ◦C under a N2 atmosphere. X-ray diffraction (XRD)
provides information about the crystalline arrangements in copolymers; XRD analyses
were performed using a Bruker D8 Advance ECO. The radiation frequency selected was
the kα1 line from Cu (1.5406 Å). A power supply of 40 kV and 25 mA and an angle from 3
to 110◦ with an increment rate of 0.02◦ at 0.5 s were used.

2.3. Polyester Copolymers Synthesis

Polyesters were synthesized via ROP using cyclic esters monomers with alkyl side
groups (ε-DL) and non-substituted (ε-CL, EB, L-LA). In Series I, the combination of
monomers was L-LA and ε-DL. Meanwhile, Series II was done by EB and ε-DL and Series
III by ε-CL and ε-DL (see Scheme 1). It should be noted that the chemical arrangement in
these copolymers was block architecture, taking into consideration the sequential addition
of monomers. In more detail, the first step corresponded to the addition of ε-DL. The
non-substituted monomer was added afterwards, following the periods of time mentioned
in the Supplementary Information section (Tables S1–S3). Polymerization reactions were
done in a 50 mL Schlenk flask, wherein ε-DL, catalyst (TBD), NMR reference (trioxane)
and solvent (toluene) were added at the corresponding molar ratios (Tables S1–S3). Each
reaction mixture was degassed through three vacuum/N2 cycles to eliminate oxygen and
humidity traces. Thereafter, the reaction system was exposed to heating (100 ◦C) and
stirring (400 rpm) and the initiator (benzyl alcohol, BzOH) was added dropwise. It is
worth mentioning that the second monomer (L-LA, EB, ε-CL) was added, taking into
consideration the ε-DL percentage loaded in each formulation. The established time for all
reactions was fixed at 24 h. Finally, the purification process consisted of the evaporation of
toluene, washing the product twice in cold methanol (~0 ◦C) to eliminate raw materials,
filtration and drying in a vacuum oven at 40 ◦C in a period of 24 h. The reaction conditions
implemented in this work come from previous studies, although parameters such as the
catalyst, reaction time, and molar ratios were modified [26].
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3. Results
3.1. Polyester Copolymers Synthesis

Monomer conversion and the chemical structure in the copolymer series were studied
by 1H NMR in order to corroborate the expected signals and chemical shifts (δ), as well
as the percentages of monomers in the synthesized copolymers. The success of the ROP
reactions catalyzed by TBD was monitored by changes in δ of representative protons in
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polymers and monomers, specifically, proton signals in methylene and methine groups,
located in the α position of O-C=O (carboxylic groups). Moreover, calculated conversions
for the homopolymerization of the four studied monomers were >90% after 24 h, which
indicated the high catalytic efficiency of TBD in these polymerizations due to its ability
to act as a H-bond donor and acceptor, granted by the secondary and tertiary nitrogen
atoms in its structure, thereby favoring the ring-opening mechanism of cyclic esters [27].
Such conversions in the given duration represent an improvement over the reaction time
established by Ramos-Durán et al., who employed a neodymium isopropoxide-catalyzed
system for the polymerization of ε-CL and ε-DL, among other lactones [28]. Figure 1
shows 1H NMR spectra of copolymers A-3, B-3 and C3. Likewise, the 1H NMR spectra
of monomers, as well as those of the rest of the copolymers in Series I–III, are displayed
in the Supplementary Materials (Figures S1–S4). In the Series I spectra, the target PLA
proton CH α O-CO was fixed at 5.18 ppm. Regarding PDL segments in the copolymers
of series I–III, the characteristic proton in the methine group was located at 4.86 ppm,
resulting in δ matching the expected values for the proton CH α O-CO in both the PLA
and PDL segments. It is worth to mention that ROP in L-LA with TBD as a catalyst and
the applied reaction conditions favor the obtention of atactic PLA, which could develop an
amorphous arrangement (see Section 3.2). Additionally, the 1H NMR spectra in Series I
(Figure S2) reveal multiple signals from 5.27 to 5.14 ppm, suggesting the presence of several
stereoregular arrangements. These studies were mentioned by Moins et al., who achieved
the synthesis of isotactic PLA via ROP using a TBD catalyst under cryogenic conditions
(−72 ◦C), while non-stereoregular PLA was obtained at 23 ◦C [29].
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CH2 α O-CO of PEB segments in Series II and PCL segments in Series III showed the
expected δ of 4.28 ppm and 4.06 ppm, respectively, for these polyesters. A composition
analysis was performed, taking as reference the integration values of the signals previously
mentioned. The calculation methodology employed was previously described by Ramos-
Durán and co-workers [28]. The results are displayed in Figure 2 and Tables 1–3. Notably,
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attributed to the minor reactivity ratio in comparison to the non-substituted lactones (ε-CL,
L-LA and EB) [30].
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The spectra of polyesters A3, B3 and C3 are shown in Figure 3. A complete FTIR
characterization of Series I–III is presented in the Supplementary Materials (Figures S5–S7).
The characteristic stretching absorption bands for C-H were observed at ~2940 cm−1 (CH3),
~2860 cm−1 (CH2), while the carbonyl group was located at ~1730 cm−1 (C=O) and C-O
absorption bands exhibited a wide range of wave number, i.e., from 1244 to 1093 cm−1. We
draw your attention to the A3 spectrum, in which two absorption bands were observed
in the C=O region. Firstly, the signal which corresponded to C=O in PLA was fixed at
1750 cm−1, while the C=O groups related with PDL segments were observed at 1730 cm−1.
The overlap in the absorption bands was related to differences in the chemical environment
of PLA and PDL, wherein carbonyl groups in PLA underwent a bathochromic effect due to
vicinal interactions between polar groups (O-C=O), in contrast with PDL, in which there
were longer distances between these groups [31].

Molar mass analysis and the distributions of the obtained polyesters are shown in
Tables 1–3. In Series I–III, the theoretical average molecular weight (Mn) was calculated,
ranging from 28.5 to 42.5 kDa (Tables S1–S3), while the experimental values of Mn and

 
 

 

 
Polymers 2022, 14, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/polymers 

Article 

Development of Biodegradable Polyesters: Study of Variations 
in Their Morphological and Thermal Properties through 
Changes in Composition of Alkyl-Substituted (ε-DL) and non-
Substituted (ε-CL, EB, L-LA) Monomers 
Felipe Robles-González, Teresa Rodríguez-Hernández, Antonio S. Ledezma-Pérez, Ramón Díaz de León,  
Marco A. De Jesús-Téllez * and Héctor Ricardo López-González * 

Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna Hermosillo140,  
Saltillo 25294, Coahuila, Mexico; felipe.robles.m20@ciqa.edu.mx (F.R.-G.);  
teresa.rodriguez@ciqa.edu.mx (T.R.-H.); antonio.ledezma@ciqa.edu.mx (A.S.L.-P.);  
ramon.diazdeleon@ciqa.edu.mx (R.D.d.L.) 
* Correspondence: marco.tellez@ciqa.edu.mx (M.A.D.J.-T.); ricardo.lopez@ciqa.edu.mx (H.R.L.-G.) 

Abstract: Three series of polyesters based on monomer combinations of ε-caprolactone (ε-CL), eth-
ylene brassylate (EB), and L-Lactide (LLA) with the alkyl substituted lactone ε-decalactone (ε-DL) 
were synthesized at different molar ratios. Copolymers were obtained via ring opening polymeri-
zation (ROP) employing TBD (1,5,7-triazabicyclo-[4.4.0]-dec-5-ene), an organic catalyst which can 
be handled under normal conditions, avoiding the use of glove box equipment. The molar monomer 
composition of resulting copolymers differed from theoretical values due to lower ε-DL reactivity; 
their Mn and Mw values were up to 14 kDa and 22.8 kDa, respectively, and distributions were (Ɖ) ≤ 
2.57. The thermal stability of these materials suffered due to variations in their ε-DL molar content. 
Thermal transitions such as melting (Tm) and crystallization (Tc) showed a decreasing tendency as 
ε-DL molar content increased, while glass transition (Tg) exhibited minor changes. It is worth men-
tioning that changes in monomer composition in these polyesters have a strong impact on their 
thermal performance, as well as in their crystallization degree. Consequently, variations in their 
chemical structure may have an effect on hydrolyic degradation rates. It should be noted that, in 
future research, some of these copolymers will be exposed to hydrolytic degradation experiments, 
including characterizations of their mechanical properties, to determine their adequacy in potential 
use in the development of soft medical devices. 
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1. Introduction 
One of the main research activities in health sciences is the development of biode-

gradable and biocompatible materials for medical applications. At present, surgical stents 
and other prosthetics are made of stainless steel, silver and platinum [1]. The use of metals 
in the construction of implants provides durability and mechanical properties. However, 
these medical devices suffer from limited control of their degradation rates, resulting in 
undesirable modifications, compromising functionality and causing adverse systemic re-
actions in the host [2]. To tackle the limitations of metals in the medical field, the intro-
duction of polymers has brought solutions in terms of biocompatibility and biodegrada-
bility issues. Among such materials, aliphatic polyesters have been in the spotlight in re-
cent years [3–5]. 
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recorded by GPC gave Mn ranging 4.0 to 14.0 kDa, as shown in Figure 4, denoting that
the target molar masses were not achieved through the performed ROP organocatalytic
reactions. Taking into consideration the temperature (100 ◦C) and time established for all
reactions (24 h), the low molecular weights were attributed to secondary transesterification
reactions which took place during the polymerization of monomers that showed higher
reactivity than ε-DL, especially L-LA and ε-CL, leading to the generation of polymeric chains
with reduced lengths and high dispersities [32]. Therefore, in Series I and III, a narrowing
tendency in the dispersities was observed as the ε-DL content increased. It should be
mentioned that these results are approximative, given that the measurements were carried
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out using polystyrene standard references, which possess a different chemical nature
than polyester-based systems. Likewise, chromatograms obtained from GPC allowed us
to observe that the molar mass distributions had acceptable monomodal performance
(
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≥ 1.63) in all ROP reactions (Figure 5) [33]. In contrast, PLA homopolymer (A-1) showed
the formation of an oligomer, observed as a bimodal distribution. This was attributed to
the reaction conditions, wherein loss of control in the propagation step was induced, or by
the presence of intermolecular transesterification reactions [34] due to long reaction periods
(24 h). The sequential addition of the second monomer (L-LA, EB, ε-CL) at specific times, as
shown in Tables S1–S3, led us to expect a block arrangement in the copolymers. Through the
analysis of the resulting chromatograms, monomodal curves suggested that this sequential
addition did not result in the formation of oligomers or low molar mass species.
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3.2. Thermal and Morphological Analysis

Thermal stability in Series I–III was measured to determine the degradation profiles
(Supplementary Materials, Figures S8–S10) of these compounds. Data are reported in
Tables 1–3, taking a 5% weight loss as a reference. The copolymers in Series I exhibited the
lowest stability, in a range from 203 to 237 ◦C, in comparison to Series II and III (294–324 ◦C).
It should be mentioned that Series I contained PLA blocks, wherein carboxylic groups are
closer to each other in comparison to PEB, PCL and PDL blocks. As such, higher quantity
of O=C-O groups favored chains scission and the formation of CO2 as a byproduct at lower
temperatures [10]. Likewise, thermal stability is important for setting heating–cooling
temperatures in DSC analyses, making it possible to perform tests without compromising
the chemical structure of the polyesters.

Regarding DSC, analyses were recorded from −70 to 170 ◦C in Series I and −70 to
100 ◦C in Series II and III. Some differences in thermal transitions values were observed
during the heating and cooling processes, as shown in Figure 6 and Tables 1–3. For
instance, A1-A5 only exhibited second order transitions (Tg), possibly due to the amorphous
arrangement in the PLA and PDL blocks (Figure 6A,B). It should be noted that the polyesters
in Series I were synthesized at 100 ◦C, which would have a detrimental effect on the
crystallinity of PLA. This fact is supported by the reports mentioned in Section 3.1, where,
for example, the PLA obtained using TBD as catalyst at a temperature of 23 ◦C developed
an atactic arrangement [29]. In addition, some works related to block copolymers based on
L-LA and ε-DL observed a similar thermal performance, as well as loss of crystalline order
caused by microphase separation and perturbation of chain interactions due to side butyl
groups in PDL segments [21,30].

In Series II, B1 exhibited endotherms at 57, 62 and 68.8 ◦C (Figure 6C) that may be
related to semicrystalline arrangements. Additionally, the multiplicity in transitions could
be associated with differences in the lamellar thickness [35]. This thermal performance
could be supported in the structural features of EB, taking in consideration its 11 methylene
units between carboxylic groups, and so, the macromolecules can acquire several arrange-
ments that are function of carboxylic interaction and stability in the backbone conformation
Likewise, B2–B4 exhibited endotherms in a wide temperature range, while B3 and B4
developed melt recrystallization events, in which the presence of a branched comonomer
(ε-DL) had an impact on the crystallization decrease due to decoupled intermolecular
interactions. B5 (PDL homopolymer) only displayed Tg (−55.1 ◦C), which is associated
with amorphous domains.

In series III, C1–C3 exhibited endothermic transitions composed of two broad peaks
that may have been related to different crystalline arrangements (Figure 6E). These transi-
tions could have a correlation with ordered lamellar domains in the PCL blocks (higher
temperature peak) in coexistence with backbone segments that suffer from reduced crys-
tallinity due to their reduced interactions and chain folding [36]. It is worth mentioning
that the percentage of ε-DL ≥ 30% mol was sufficient to achieve a transition from semi-
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crystalline to amorphous arrangement, as shown in C4. These morphological changes are
of interest for biodegradable applications, where control over degradation rates is required.
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Table 1. Comonomer molar percentage, Mn, Mw, Ɖ, thermal properties and Xc in Series I. 

Series I 
L-LA 

(% mol) 
ε-DL 

(% mol) 
Mn  

(kDa) 
Mw  

(kDa) 
Ɖ Tm 

(°C) 
Tc 

(°C) 
Tg 

(°C) 
TGA 

(5%w) 
c Xc 

A-1 100 0 9.2 20.8 2.26 - - 43.1 203 - 

A-2 91.6 8.4 9.7 15.9 1.64 - - 
a −51.5, b 

45 247 - 

A-3 76.2 23.8 5.6 13.6 2.42 - - −51.7, 30 217 - 

A-4 54.4 46.6 8.5 14.8 1.74 - - −53.2 237 - 

A-5 0 100 12.9 21.7 1.68 - - −55.1 316 - 
a Tg in PDL; b Tg in PLA; c Xc obtained via integration peaks from XRD diffractograms (Figure 7). 
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Regarding the morphological features in Series I–III, XRD patterns were collected to
elucidate the structural organization. For instance, diffractograms in Series I exhibited
broad undefined peaks in region 2θ = 10–30◦, characteristic of non-ordered domains. This
amorphous arrangement was predicted in formulations based on L-LA:ε-DL (Figure 7A).
In the case of Series II and III, polyesters with low percentages of ε-DL developed a
semicrystalline arrangement with similar diffractograms and 2θ values (Figure 7A,B).
Herein, they exhibited a main sharp peak at 2θ = 21.45◦, corresponding to reflection (110),
and a shorter signal at 2θ = 23.8◦, corresponding to reflection (200) [37,38]. Additionally,
an increase of ε-DL in formulations led to an intensity reduction in the diffraction peaks,
denoting a loss of crystalline domains in the polyesters.
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Tm
(◦C)

Tc
(◦C)

Tg
(◦C)

TGA
(5%w)

cXc

A-1 100 0 9.2 20.8 2.26 - - 43.1 203 -
A-2 91.6 8.4 9.7 15.9 1.64 - - a −51.5, b 45 247 -
A-3 76.2 23.8 5.6 13.6 2.42 - - −51.7, 30 217 -
A-4 54.4 46.6 8.5 14.8 1.74 - - −53.2 237 -
A-5 0 100 12.9 21.7 1.68 - - −55.1 316 -

a Tg in PDL; b Tg in PLA; c Xc obtained via integration peaks from XRD diffractograms (Figure 7).

Table 2. Comonomer molar percentage, Mn, Mw,
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Tm
(◦C)

Tc
(◦C)

Tg
(◦C)

TGA
(5%w) Xc

B-1 100 0 5.4 12.6 2.34 68.8 52.7 - 294 1.0
B-2 93.0 7.0 4.5 9.9 2.2 71.8 38.5 - 321 0.90
B-3 77.0 23.0 4.2 8.9 2.12 52.6 27.5 −56.8 316 0.45
B-4 67.6 32.4 7.3 17.8 2.44 23.5 −16.1 −56.3 318 -
B-5 0 100 12.9 21.7 1.68 - - −55.1 3.16 -

Table 3. Comonomer molar percentage, Mn, Mw,
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bility issues. Among such materials, aliphatic polyesters have been in the spotlight in re-
cent years [3–5]. 
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Tm
(◦C)

Tc
(◦C)

Tg
(◦C)

TGA
(5%w) Xc

C-1 100 0 5.9 15.2 2.57 55.8 29.8 - 324 1.0
C-2 93.5 6.5 4.0 8.2 2.04 50.8 18.6 - 317 1.01
C-3 83.4 16.6 4.4 7.8 1.78 44.1 12.1 −61.7 317 0.25
C-4 69.9 30.1 14 22.8 1.63 21.5 - −62.1 319 -
C-5 0 100 12.9 21.7 1.68 - - −55.1 316 -
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Series 
III 

ε-CL  
(% mol) 

ε-DL  
(% mol) 

Mn  
(kDa) 

Mw  
(kDa) 

Ɖ Tm 
(°C) 

Tc 

(°C) 
Tg 

(°C) 
TGA 

(5%w) 
Xc 

C-1 100 0 5.9 15.2 2.57 55.8 29.8 - 324 1.0 

C-2 93.5 6.5 4.0 8.2 2.04 50.8 18.6 - 317 1.01 

C-3 83.4 16.6 4.4 7.8 1.78 44.1 12.1 −61.7 317 0.25 

C-4 69.9 30.1 14 22.8 1.63 21.5 - −62.1 319 - 

C-5 0 100 12.9 21.7 1.68 - - −55.1 316 - 

Regarding the morphological features in Series I–III, XRD patterns were collected to 
elucidate the structural organization. For instance, diffractograms in Series I exhibited 
broad undefined peaks in region 2θ = 10–30°, characteristic of non-ordered domains. This 
amorphous arrangement was predicted in formulations based on L-LA:ε-DL (Figure 7A). 
In the case of Series II and III, polyesters with low percentages of ε-DL developed a sem-
icrystalline arrangement with similar diffractograms and 2θ values (Figure 7A,B). Herein, 
they exhibited a main sharp peak at 2θ = 21.45°, corresponding to reflection (110), and a 
shorter signal at 2θ = 23.8°, corresponding to reflection (200) [37,38]. Additionally, an in-
crease of ε-DL in formulations led to an intensity reduction in the diffraction peaks, de-
noting a loss of crystalline domains in the polyesters. 
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4. Conclusions

In this work, the synthesis of three series of polyesters using a combination of an alkyl
substituted monomer (ε-DL) with other non-susbstituted monomers (L-LA, EB, ε-CL) was
achieved. The architecture of the copolymers was induced block-type, taking into consid-
eration the sequential addition of monomers. TBD, an organic catalyst, was successfully
implemented in ROP reactions without usage of anhydrous handling conditions. Therefore,
this methodology may be implemented with other monomers, avoiding the requirement of
glove box equipment.

In these copolymers, a reduction of crystallinity was observed as result of an increase
in the molar content of ε-DL. In particular, at molar concentrations ≥30%, the remains of
crystalline domains were embedded into the amorphous domains. The ROP of L-LA under
the established reaction conditions resulted in an amorphous polyester, despite the usage
of a reagent with specific stereoregularity.

Generally speaking, the crystallization features of these copolymers can be modified
with branched comonomer inclusion in the backbone of the polyesters. Therefore, it is
suggested that the degradation rates of this class of materials can be modified by changes in
the chemical arrangement of their backbone. In addition, some of the studied polyesters are
currently being analyzed under hydrolytic degradation conditions, and encouraging results
are being obtained. Likewise, our copolymers are of potential value for the development of
soft medical devices with biodegradability and biocompatibility features, as their synthesis
does not involve the use of organometallic reagents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14204278/s1, Table S1. Nomenclature and molar ratios
in synthesis of Series I; Table S2. Nomenclature and molar ratios in synthesis of Series II; Table S3.
Nomenclature and molar ratios in synthesis of Series III; Figure S1. 1H NMR spectra of monomers;
Figure S2. 1H NMR spectra in polyesters of Series I; Figure S3. 1H NMR spectra in polyesters of
Series II; Figure S4. 1H NMR spectra in polyesters of Series III; Figure S5. FTIR-ATR spectra in
polyesters of Series I; Figure S6. FTIR-ATR spectra in polyesters of Series II; Figure S7. FTIR-ATR
spectra in polyesters of Series III; Figure S8. TGA thermograms in polyesters of Series I; Figure S9.
TGA thermograms in polyesters of Series II; Figure S10. TGA thermograms in polyesters of Series III.
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