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Abstract: In recent years, renewable and clean energy has become increasingly important due to
energy shortage and environmental pollution. Selecting plants as the carbon precursors to replace
costly non-renewable energy sources causing severe pollution is a good choice. In addition, owing
to their diverse microstructure and the rich chemical composition, plant-based carbon materials are
widely used in many fields. However, some of the plant-based carbon materials have the disadvantage
of possessing a large percentage of macroporosity, limiting their functionality. In this paper, we first
introduce two characteristics of plant-derived carbon materials: diverse microstructure and rich
chemical composition. Then, we propose improvement measures to cope with a high proportion of
macropores of plant-derived carbon materials. Emphatically, size regulation methods are summarized
for micropores (KOH activation, foam activation, physical activation, freezing treatment, and fungal
treatment) and mesopores (H3PO4 activation, enzymolysis, molten salt activation, and template
method). Their advantages and disadvantages are also compared and analyzed. Finally, the paper
makes suggestions on the pore structure improvement of plant-derived carbon materials.

Keywords: plant; porous carbon; pore size; microstructure

1. Introduction

Carbon materials can exist in a 0D to 3D structure stably in nature due to their
outstanding chemical stability. The multiple allotropes of carbon make it diverse in structure
and versatile [1]. Novel carbon materials mainly include graphene [2], carbon nanotubes [3],
porous carbon [4] and fullerene [5], derived from resins [6], gels [7], biomass materials [8],
petroleum pitch [9], etc. In past decades, with the development of society, the demand of
people for energy is increasing. Therefore, the exploitation of renewable and clean energy is
particularly significant [10,11]. Biomass-based carbon with good electrical conductivity and
high porosity can be obtained by high-temperature treatment (hydrothermal carbonization,
pyrolysis and gasification) under oxygen-limited conditions [12]. Compared with other
materials, biomass-based carbon materials have abundant precursors, such as animal waste
and its derivatives, plant waste and its derivatives and microorganisms (bacteria) [13,14].
Plant materials are favored by researchers because they are more readily available in nature
and have lower costs than animals and microorganisms. Carbon materials have been
successfully prepared from natural plant materials (such as onion skin [15], rice husk [16],
fruit peel, sawdust [17], lotus stem [18], nut shell [19] and seed [20]) and plant extracts (such
as lignin [21], cellulose [22], sodium alginate [23] and glucose [24]). Some plant materials
can maintain a more complete structure after carbonization and possess strong mechanical
properties, which can be used directly as functional materials to simplify the preparation
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process. Plant-derived carbon materials are characterized by diverse microstructures and
rich chemical compositions, providing the basis for their wide applications (catalysis [25],
electromagnetic wave absorption [26], electrochemical energy storage [27], adsorption [28],
etc.). In addition, the pore size distribution of plant-derived carbon materials is also a
major factor influencing their performance. According to the definition of pores by the
International Union of Pure and Applied Chemistry (IUPAC), pores are classified into
micropores (<2 nm), mesopores (2–50 nm) and macropores (>50 nm) according to their
pore size, with micropores providing more adsorption sites, mesopores facilitating faster
transport and macropores shortening diffusion distances [29,30]. However, many plant
materials suffer from a high proportion of macropores, which limits their applications.
Therefore, in this paper, the advantages of plant-derived carbon materials are briefly
introduced in terms of chemical composition and microstructure. Then, previous studies
are reviewed to address the above-mentioned high proportion of macropores, and methods
are summarized for micro-/mesopore regulation. Finally, this paper makes suggestions on
the application and pore structure improvement of plant-derived carbon materials.

2. Advantages of Plant-Derived Carbon Materials
2.1. Various Chemical Compositions

Containing rich heteroatoms is one of the natural advantages of plants as a class
of carbon precursors. In other words, besides C, there are many other elements, such
as O, N, S, P and Si, which can boost the development of more advanced materials and
functional materials. The existing forms of O in plant-derived carbon materials are mainly
-OH, -COOH, C=O and C-O-C, and these functional groups can be retained in the carbon
network even at high temperatures, which can enhance the wettability of the surface
of carbon material and provide the pseudocapacitance for supercapacitors and lithium
batteries to improve the electric capacity [31]. N atoms exist in carbon materials mainly
in the form of pyridine nitrogen, pyrrole nitrogen and graphite nitrogen. In addition
to enhancing the hydrophilicity of the carbon materials, they are also able to increase
electron mobility [32] and form a large number of electrocatalytic active centers in the bulk
structure of electrocatalysts [33]. With larger radii, smaller electronegativity and multiple
covalent bonds, S atoms play unique roles in different applications. Compared to N-doped
porous carbon, the S-doped counterpart has more outstanding electrical conductivity,
and N-containing functional groups can help dissociate oxygen molecules in the field
of electrocatalysis, while S can facilitate proton transfer [1]. Owing to the presence of
P-containing functional groups, researchers can develop plant-derived carbon materials
with high carboxylation, dehydration, aromatization and oligomerization activities, which
are promising catalyst candidates to raise the yields of some compounds. Unlike other
elements, Si is mainly present in plant materials as SiO2, which can act as a templating
agent to create new pores after its removal by acidic reagents and thereby regulate the pore
structure of plant-derived carbon materials [34]. So far, some plants have been found rich
in heteroatoms, which can be directly pyrolyzed in the absence of any chemical reagent to
obtain heteroatom-rich carbon materials. Gopalakrishnan et al. [14] employed onion skin as
a carbon precursor to synthesize heteroatom (N, P, S) co-doped porous carbon nanosheets
via a carbonization and activation strategy. Xia et al. [35] prepared a sulfur self-doped
carbon material with Camellia japonica containing natural sulfur as a raw material and used
it as an electrode material to achieve a specific capacitance of 125.42 F/g at a current density
of 2 A/g. Gong et al. [36] obtained porous carbon materials by using nitrogen-containing
duckweed as a raw material with KOH activation. The results showed that the self-doped
nitrogen provided abundant active sites for oxygen reduction and significantly improved
the oxygen reduction kinetics. In addition, many other plants have also been served as raw
materials or templates to prepare self-doped and self-template carbon materials, which are
summarized in Figure 1.
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Figure 1. Plants rich in heteroatoms: Elm Flower [37], Datura stramonium seed pods [20], bamboo [38],
Pinecone [39], Durian peel [40], Rice husk [41], Peanut meal [42], Typha orientalis leaves [43], Lettuce
slice [44], Soybean pods [45], Onion skin [14], Camellia japonica flowers [35], Duckweed [36], Hollyhock
leaves [46], Cottonseed meal [47], Pomelo peel [48], Cherry flowers [49].

2.2. Diverse Structures

Plants show diversity in both macroscopic and microscopic structures. From the per-
spective of microstructure, they can be made into carbon materials with various morpholo-
gies, such as zero-dimensional (0D, sphere), one-dimensional (1D, tube), two-dimensional
(2D, sheet) and three-dimensional (3D, skeleton) [50].

2.2.1. Zero-Dimensional (0D) Carbon Materials

Carbon microspheres (0D) possess a unique hollow structure, which can provide a
high specific surface area and a short diffusion distance. Using pomelo peel as a raw
material, Zhuang et al. [51] synthesized carbon quantum dots (CQD) by the hydrothermal
method. Jagannathan et al. [52] employed corn cob as a raw material to synthesize CQD
and fabricated white light-emitting sheets (Figure 2), which displayed uniform brightness
and had good color reproducibility and high stability under various UV light. Yan et al. [53]
obtained carbon microspheres from oatmeal and employed them as the anode material of
sodium ion batteries. The electrochemical results showed that the capacity remained at
104 mA/h·g−1 after cycles without significant decay.



Polymers 2022, 14, 4261 4 of 22

Figure 2. Preparation process of corn cob-derived CQD [52].

2.2.2. One-Dimensional (1D) Carbon Materials

Carbon nanotubes, carbon fibers and carbon microtubes are common 1D carbon
materials. They can be obtained by self-assembly, hydrothermal, electrostatic spinning and
the solvothermal method [54]. Wu et al. [55] prepared ZnO/porous carbon microtubes
(ZnO/PCMT) by dip coating and thermal etching on sycamore microtubes, which had
a high specific surface area (1076 m2/g) and excellent electromagnetic wave absorption
capability. Long et al. [56] synthesized carbon microtubes through the high-temperature
pyrolysis of kapok fibers (Figure 3a–d). As can be seen from Figure 3b’,c’, the surface
microstructure of the carbonized kapok fibers was rougher than that of the uncarbonized,
and performed excellently in microwave absorption with an optimized effective absorption
bandwidth of 7.12 GHz (10.64–17.76 GHz, 2.3 mm). High-performance carbon fibers are
mostly generated from petroleum-based materials. However, the preparation methods are
expensive and can cause environmental degradation. As a result, low-cost and eco-friendly
plant materials are utilized in the production of carbon fiber materials. Guo et al. [57]
prepared carbon fibers by hydrothermal carbonization using C. Sinensis branch waste as
the raw material. Jiang et al. [58] used an alkaline solution to extract natural cellulose from
bamboo chopsticks to create carbon fibers. Osman et al. [59] employed potato peel waste
as a raw material to develop carbon materials, which were mixed with nitrogen-based
material melamine and iron (III) oxalate hexahydrate, for preparing multi-walled carbon
nanotubes with strong hydrophilicity (contact angle θ = 14.97◦).

2.2.3. Two-Dimensional (2D) Carbon Materials

Graphene, as a 2D carbon material, has high electrical conductivity and strong stability.
Chemical vapor deposition (CVD) and graphite stripping are two common methods to
prepare graphene. However, the high cost of CVD and the non-renewability of graphite
exfoliation are not conducive to sustainable development [60,61]. Therefore, the preparation
of graphene materials using plants as raw materials has been explored. Laser induction is
used to prepare graphene because of its simple operation. Ye et al. [62] investigated the
effect of CO2 laser power on the quality of the generated graphene when using pine wood
as the raw material (Figure 4a), the pattern of pine etched by the CO2 laser was displayed
in Figure 4b. And the SEM (Figure 4c,d) and TEM (Figure 4e,f) of P-LIG-70 showed that the
CO2 laser-treated wood produced layered porous graphene structures. Mahmood et al. [63]
directly synthesized lignin-derived graphene at different laser powers. This graphene
material had the smallest impedance at the laser power of 80%, and better electrochemical
performance (90% capacitance retention after cycles) was obtained by assembling it into
flexible supercapacitors.
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Figure 3. Synthesis process (a–d) and microscopic morphology of kapok fiber microtubes: uncar-
bonized (b’) and carbonized (c’) [56].

Figure 4. Schematic illustration of laser-induced graphene synthesis (a); The pattern of pine etched
by the CO2 laser (b); The SEM (c,d) and TEM (e,f) of P-LIG-70 [62].
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2.2.4. Three-Dimensional (3D) Carbon Materials

Hierarchical porous carbon materials have a 3D carbon skeleton structure and usually
contain two or three kinds of pores of different sizes, i.e., micropore–mesopore, micropore–
macropore, mesopore–macropore and micropore–mesopore–macropore. Because of more
active sites, a short diffusion distance and a higher transport rate, hierarchically porous
carbon materials are favored in the field of electrochemical energy storage. Chen et al. [64]
obtained 3D hierarchically porous carbon (3DHC) through high-temperature pyrolysis and
compounded it with NiCo2S4 nanowires by the hydrothermal method. When used as an
electrode material, the NiCo2S4/3DHC possessed specific capacitance as high as 765.8 F/g
at a current density of 1 A/g. Subramanian et al. [20] used Datura stramonium seed pods
as a raw material to develop a novel carbon material with the help of high-temperature
carbonization, which had a 3D interconnected network structure and a specific surface area
up to 1390 m2/g. Wei et al. [65] obtained 3D wood-derived carbon materials from waste
wood by direct pyrolysis and assembled them with polyaniline-modified 3D wood-derived
carbon electrode materials to form a desalination device (Figure 5). In summary, carbon
materials of different dimensions have different characteristics; therefore, the combination
of different dimensions of carbon materials to diversify their functions is a major current
research trend.

Figure 5. Schematic illustration of 3D-wood electrode synthesis [62].

3. Pore Size Regulation Methods
3.1. Micropore Regulation Methods
3.1.1. Alkali Activation

Generally, alkali activation improves the pore distribution. KOH and NaOH are
common alkaline activators. Differently, the K atom dissociated from KOH can embed
into all materials, while the Na atom sourced from NaOH is only for the very disordered
materials [66]. The activation mechanism of KOH is shown in Equations (1)–(6): KOH
first reacts with C to produce K, H2 and CO2; when the temperature up to about 400 ◦C,
K2CO3 is generated. At about 600 ◦C, KOH is completely consumed; when the temperature
reaches 700 ◦C, K2CO3 is decomposed to produce K2O and CO2, and K2CO3 and K2O
are reduced by C to produce metal K. When the temperature reaches 800 ◦C, K2CO3 is
completely decomposed. In the process of the above reaction, the carbon material is etched
by the resulting gas to produce more pore structures. Moreover, the metal K is embedded
in the carbon lattice, which expands to form pores [67,68].

KOH + C→ 2K + H2 + CO2 (1)

2KOH + CO2 → K2CO3 + H2O (2)

K2CO3 → CO2 + K2O (3)

CO2 + C→ 2CO (4)

K2CO3 + 2C→ 2K + 3CO (5)

C + K2O→ 2K + CO (6)

Researchers investigated the impact of KOH on the pore structure of various plant
materials and found that KOH can effectively prepare materials dominated by micropores.
Some studies of activating plant-based carbon materials with KOH are listed in Table 1.
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Table 1. Preparation of plant-derived carbon materials by KOH activation.

Material Method Temperature (◦C) Ratio SBET (m2/g) V total (cm3/g) Vmic/V total (%) Reference

Tea saponin KOH activation 750 1:1 1550 0.91 62 [69]
Orange peel KOH activation 800 1:1 2004 1.24 70 [70]
Rice husks KOH activation 750 1:2 741 0.45 67 [71]

Grapefruit peel KOH activation 800 1:4.5 3497 1.59 99 [72]
Peanut shells KOH activation 800 1:4 1272 0.65 52 [73]
Castor shells KOH activation 800 1:1 891 0.43 85 [74]

Bagasse KOH activation 800 1:2 1381 0.58 81 [75]
Pine sawdust + sludge KOH activation 800 1:2 2482 0.89 71 [76]

Rubber seed shells KOH activation 700 1:3 712 0.36 28 [77]
Biomass waste KOH activation 850 1:3 2612 1.20 70 [78]

Okonkwo et al. [74] employed castor shells to prepare a novel carbon material with a
microporosity of 85% through KOH activation at 800 ◦C. The research groups of Shen and
Souza explored the effects of temperature and the char/alkali mass ratio on microporosity.
Shen et al. [70] obtained porous carbon by mixing orange peel with KOH at a mass ratio of
1:1. The microporosity of the material increased to 70% when the temperature rose from 600
to 800 ◦C and decreased to 45% as the temperature reached 900 ◦C (Figure 6a–c). Moreover,
the specific surface area and pore volume reached the maximum at 800 ◦C, which indicated
that 800 ◦C was the optimal activation temperature. Souza et al. [78] selected biomass
waste as a raw material for the sustainable production of nanoporous carbon and explored
the influence of KOH content on the activation effect. As the alkali content increased, the
specific surface area and pore volume became higher, while the microporosity decreased
(Figure 6d–f), which was ascribed to excessive alkali making micropores merge to form
mesopores. The above studies demonstrate that KOH activation is an effective means
of regulating the microporosity of plant-derived carbon materials and that high specific
surface areas can be obtained.

Figure 6. (a–c) Impact of temperature on KOH activation effect [70]; (d–f) Impact of char/alkali mass
ratio on KOH activation effect [78].
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3.1.2. Foam Activation

NaHCO3 and KHCO3 are commonly used foam activators that reduce environmental
pollution. KHCO3 is able to serve as a substitute for KOH due to being less corrosive [79,80].
In the case of NaHCO3, the activation mechanism is shown in Equations (7)–(11) [81]:

2NaHCO3 → Na2CO3 + H2O + CO2 (7)

Na2CO3 → Na2O + CO2 (8)

Na2CO3 +2C→ 2Na + 3CO (9)

Na2O + C→ 2Na + CO (10)

CO2 + C→ 2CO (11)

Liu et al. [82] synthesized sponge-like carbon materials by a one-step method using
Spirulina platensis as raw material and NaHCO3 as the activator; the impact of temper-
ature on the activation effect has been investigated. The results showed that the carbon
materials prepared at different temperatures were dominated by micropores, and at the
pyrolysis temperature of 800 ◦C, the specific surface area and pore volume was increased
to 1511 m2/g and 0.93 cm3/g, respectively. Liang et al. [83] also explored the temperature
influence on the activation effect; the microporosity of carbon material grew from 85%
to 87%, and the specific surface area increased by 2.2 times when the temperature was
raised from 550 to 750 ◦C. Yang et al. [84] prepared a porous carbon material by mixing
corn straw with NaHCO3 and heating treatment. It can be seen from Figure 7a–c, the
as-prepared carbon material possessed a large specific surface area (1891.9 m2/g) and high
microporosity (82.3%) at 800 ◦C, which is 169 and 12.8 times that of untreated corn straw,
respectively. Xiao et al. [85] developed hollow-tubular porous carbon by using biomass
Cycas fluff (CF) through carbonization and NaHCO3 activation at different temperatures.
As shown in the Figure 7d-f, under the pyrolysis temperature of 700 ◦C, porous carbon had
a specific surface area of 397.92 m2/g and the microporosity of 73.91% at the mass ratio of
1:2 (CF:NaHCO3). Although the foam activation mechanism of NaHCO3 and KHCO3 is
similar to that of KOH, the effect is more mild, which is beneficial to maintain microporous
structures at high activation temperatures.

Figure 7. (a–c) Impact of temperature on NaHCO3 activation effect [84]; (d–f) Impact of char/alkali
mass ratio on NaHCO3 activation effect [85].
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3.1.3. Physical Activation

CO2 and H2O(g) are commonly utilized for single-step or multi-step physical activa-
tion. Single-step activation means that the material is carbonized in a nitrogen atmosphere
and then directly passed into the H2O(g) or CO2 atmosphere for activation. Multi-step
activation means that the secondarily carbonization in the H2O(g) or CO2 environment.
Compared with multi-step activation, single-step activation has the advantages of low
energy consumption and time saving [86]. The essence of this strategy is the redox reaction
between the C element in the carbon material and the other elements in the oxidizing
gases [87]. Table 2 shows the application of the physical activation method in plant-based
carbon materials.

Table 2. Preparation of plant-derived carbon materials by physical activation.

Material Method Temperature
(◦C) Time (h) Gas Flow Rate

(mL/min) SBET (m2/g) Vtotal (cm3/g) Vmic/Vtotal
(%) Reference

Olive stone H2O(g) activation 900 0.5 0.15 1191 0.69 75.3 [88]
Bamboo CO2 activation 900 2 - 907 0.44 88.4 [89]
Bamboo CO2 activation 800 4 - 1496 0.64 95.3 [90]

Pine nut shell H2O(g) activation 850 1 18 956 0.62 62.9 [91]

Coconut shell H2O(g) + CO2
activation 900 6 - 1194 0.53 87.8 [92]

Barley straw CO2 activation 800 1 2500 789 0.35 93.5 [93]
Corn cob H2O(g) activation 800 1 - 566 0.32 89.0 [94]

Apricot shell CO2 activation 500 5 10 1690 0.93 52.6 [87]
Wood CO2 activation 1000 10 10 1145 0.47 50.3 [95]

Chen et al. [95] reported a CO2 and H2O(g) self-activation method to prepare wood-
derived carbon material under the pyrolysis temperature of 1000 ◦C and the gas flow rate
of 10 mL/min. As shown in Figure 8a, the specific surface area and microporosity were up
to 1145 m2/g and 50.3%, respectively. Ding et al. [87] investigated the effect of different
preparation processes on the properties of the materials and found that the material sub-
jected to multi-step activation displayed higher specific surface area (1690 m2/g) and pore
volume (0.93 cm3/g), while one-step activation yielded a relatively high microporosity
(72.0%), which is about 1700, 162, and 72 times larger than that of the unactivated materials,
respectively. Phothong [89] and Khuong [90] investigated the effect of CO2 activation
temperature and activation time on the pore structure of bamboo-derived carbon materials,
respectively. The results showed (Figure 8b–d) that the carbon material had the maximum
microporosity when the activation temperature was 850 ◦C. When the temperature was
increased to 950 ◦C, the microporosity decreased to 87.8%, but the specific surface area
increased to 810 m2/g, which was attributed to the collapse of the partial pore structures
and the merging of the micropores to mesopores. Furthermore, as shown in Figure 8e–g,
at the pyrolysis temperature of 800 ◦C, a significant effect of activation time on specific
surface area and pore volume can be observed; when the activation time was 4 h, the
specific surface area (1496 m2/g) and pore volume (0.64 cm3/g) reached the maximum,
while the change in microporosity is smaller. Compared with KOH activation and foam
activation, physical activation can take the advantage of the water contained in the material
as the activator, providing a simple and eco-friendly way to regulate microporosity. How-
ever, this activation method still suffers from a relatively long activation time and large
energy consumption. The effect of the gas flow rate on the experimental results needs to be
considered also.
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Figure 8. (a) Schematic diagram of preparing wood-derived carbon materials by self-activation [95];
(b–d) Impact of temperature on physical activation effect [89]; (e–g) Impact of char/alkali mass ratio
on NaHCO3 activation effect [90].

3.1.4. Freezing Treatment

For plant materials, freezing treatment is mainly divided into the freeze–thaw method
and the freeze-drying method. Freeze–thaw treatment places a material containing liquid
in an environment at a temperature below the freezing point of the liquid and leverage
the expansion stress generated by the formation of ice from the liquid to destroy the
microstructure of the material to form a new pore structure. Freeze drying refers to a
frozen material being placed in a vacuum freeze-dryer, and the ice in the material is directly
vaporized to form pores. Compared with freeze–thaw treatment, freeze drying is in favor
of better maintaining the morphology of materials. Freeze–thaw treatment can adjust the
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porosity of a material by changing the freezing time, the number of freeze–thaw cycles and
the freezing temperature [96].

Hou et al. [97] carbonized freeze-dried lotus as a carbon precursor to prepare multi-
porous biochar with outstanding microporosity (76.0%). In addition, Wang et al. [98]
further explored the influence of the number of freezing times on the freezing treatment
effect (Figure 9). It is found that the freezing pretreatment for three times possessed larger
specific surface area, microporosity and pore volume, namely that the increase in the
number of freeze–thaw cycles was beneficial to form more pores. Compared with KOH
activation, foam activation and CO2 and H2O(g) activation, freezing pretreatment can
effectively improve the microporosity of materials, but the specific surface areas of the
resulting samples are relatively small, which is normally combined with other methods to
further improve the pore structure of materials so that their performance can be improved
in various fields. However, this method is less utilized in the pore size regulation of
plant-derived carbon materials. Furthermore, the impacts of the freeze–thaw temperature,
frequency and time on pore size regulation remain to be further investigated.

Figure 9. (a–c) Impact of number of freezing treatments on freeze treatment effect [98].

3.1.5. Fungal Treatment

Plant cells are mainly composed of cellulose, hemicellulose, and lignin. Fungi are
capable of regulating the pore sizes of plant materials mainly through degrading their
cell structures with exoenzymes to produce new pores. Moreover, hyphae formed in the
growth process of fungi can penetrate cell walls to fabricate new pores and cross-link with
each other to construct a network structure, thus reducing macroporosity and increasing
microporosity and mesoporosity. The process of regulating the pore structure of biomass
materials by fungi is shown in Figure 10a [99].

Figure 10. (a) Mechanism of pore structure regulation of plant materials by fungi [99]; (b–e) AFM
images of lotus leaves after fungal treatment [100].
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Zhang et al. [100] took lotus leaves as the carbon precursor to prepare activated carbon
and investigated the effects of different components (lignin, cellulose and hemicellulose)
on the pore structure. The results indicated that the cellulose of lotus leaves was degraded
by Trichoderma viride (T. viride), the specific surface area, pore volume and microporosity
were 2290 m2/g, 1.13 cm3/g and 56.6%, respectively. It is suggested that the cellulose had a
significant impact on microporosity. In addition, the AFM results (Figure 10b–e) show that
the pretreated samples possess more regular needle-like protrusions and favor the forma-
tion of micropores. Wang et al. [101] reported a carbon material made from fungus-treated
basswood by pyrolysis at 1000 ◦C. Compared with the pristine basswood (716.9 m2/g),
fungus-degraded basswood had a larger specific surface area (1041.6 m2/g). Some re-
searchers further investigated the contribution of fungal treatment to the microporosity of
plant-derived carbon materials. Cheng et al. [102] combined the rice husks modified by
T. viride with KOH to improve pore structure. The rice husks witnessed increased specific
surface area (3714 m2/g), pore volume (2.07 cm3/g) and microporosity (50.7%) after 20 days
of T. viride pretreatment. Moreover, the crystallinity of rice husks was enhanced after the
microbial pretreatment, which is advantageous to the carbon yield. Evidently, the fungal
treatment can effectively improve the microporosity of materials, with its regulation effect
influenced by fungal treatment time. For wood/bamboo materials, a process of fungal
treatment that is too long will lead to a loose structure that is easy to break; thus, it is not
conducive to the overall utilization of the materials. However, at present, the research on
utilizing fungal to regulate pore size is not common; more influence factors need to be
further explored.

3.2. Mesopore Regulation Methods
3.2.1. H3PO4 Activation

Phosphoric acid (H3PO4) has a moderate acid strength, possessing the advantages
of less pollution and low energy consumption and is milder than many other chemical
activators. It can accelerate dehydration and depolymerization, promote the hydrolysis
of cellulose and hemicellulose and change the structure of lignin. In addition, H3PO4
cross-linking reactions between H3PO4 and precursors are conducive to the production of
hierarchically porous carbon and hydrophilicity improvement of materials. The preparation
of plant-derived carbon materials by H3PO4 activation, usually mixing carbon precursors
or pre-carbonized materials with H3PO4 and then performing pyrolysis at high temper-
atures [103–106]. The application of H3PO4 activation to regulate plant-based carbon
materials is shown in Table 3.

Table 3. Preparation of plant-derived carbon materials by H3PO4 activation.

Material Method Temperature (◦C) Ratio SBET (m2/g) V total (cm3/g) Vmes/V total (%) Reference

Bitter orange peel H3PO4 activation 550 1:1 611 0.57 92.4 [107]
Poplar catkins H3PO4 activation 600 1:3 2001 1.22 91.7 [105]

Spent mushroom
substrate H3PO4 activation 900 1:2 1215 0.83 87.4 [108]

Argan nut shell H3PO4 activation 500 1:3 1880 1.36 50.7 [109]
Chinar fruit fluff H3PO4 activation 600 - 1759 1.68 97.4 [110]
Lacquer wood H3PO4 activation 400 - 1609 1.46 97.6 [111]

Phoenix dactylifera rachis H3PO4 activation 500 1:3 1283 1.72 83.5 [112]
Ziziphus jujuba stones H3PO4 activation 500 1:3 1896 1.26 95.2 [112]

Kenaf H3PO4 activation 500 1:1 1510 1.26 57.0 [113]

Daoud et al. [112] mixed Ziziphus jujuba stones with H3PO4 as an activator at a
ratio of 1:3 and carbonized them at 500 ◦C to develop carbon materials, which had an
outstanding specific surface area (1896 m2/g) and extremely high mesoporosity (95.2%).
Chatir et al. [109] investigated the impact of the impregnation ratio of H3PO4 to argan
nut shell-derived hydrochar on the activation effect under the pyrolysis temperature of
800 ◦C. The obtained carbon material showed a specific surface area, a pore volume and
mesoporosity up to 1880 m2/g, 1.36 cm3/g and 50.7%, respectively, when the impregnation
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ratio was 3. Hu et al. [111] further explored the influences of activation temperature
and procedure on the activation effect. In the case of one-step activation, the specific
surface area and mesoporosity of lacquer wood-derived activated carbon were superior at
500 ◦C (Figure 11a–b). However, the material possessed a higher specific surface area and
mesoporosity at 800 ◦C after two-step activation (Figure 11c–d). To sum up, the activation
effect of H3PO4 is closely related to activation procedure and temperature, and using
one-step activation at a suitable temperature is more likely to afford carbon materials with
the higher specific surface area and mesoporosity. Furthermore, the H3PO4 activation
method is mild with a simple and efficient process, which has a good prospect in the
regulation of mesoporosity.

Figure 11. The impacts of one-step activation temperature on specific surface area (a) and meso-
porosity (b); The impacts of two-step activation temperature on specific surface area (c) and
mesoporosity (d) [111].

3.2.2. Enzymolysis

Enzymolysis and fungal treatment have similar mechanisms, both of which realize
pore size regulation by degrading the composition of plant materials. In comparison to
fungal treatment, enzymolysis spends less time on pore size regulation. Researchers have
employed enzymolysis to improve the plant-derived carbon material, providing more
possibilities for its application in multiple fields. Enzymolysis time and enzyme dosage are
critical factors influencing the regulation effect.

Wang et al. [114] used a treatment of wood using cellulase that resulted in a wood-
based derived carbon material that was mesoporous dominated; the specific surface area
is largest when the treatment temperature and treatment time were 100 ◦C and 48 h,
respectively. Li et al. [115] investigated the effects of enzymolysis temperature and enzyme
dosage on the pore size regulation effect (Figure 12). When 100 mg enzyme participated in
the reaction at 50 ◦C, the sample was dominated by mesopores (10–20 nm) with a specific
surface area of 1418 m2/g, which is 2.6 times that of pristine wood (542 m2/g). In short,
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enzymolysis can effectively improve the pore structure of plant materials, which is capable
of producing materials dominated by mesopores under certain conditions. This method
provides more possibilities for the pore size regulation of plant-derived carbon materials
and opens up new paths for green synthesis.

Figure 12. The schematic diagram of enzymatic mechanism [115].

3.2.3. Molten Salt Activation

In the molten salt activation method, the commonly used molten salts include KCl,
LiCl, NaCl, FeCl3 and ZnCl2. They can be divided by properties into inert salts (KCl, LiCl
and NaCl) and active salts (FeCl3 and ZnCl2). Inert salts own good heat storage and transfer
capabilities, which can provide a uniform inert reaction medium for activation. The active
salts are able to hinder the agglomeration of particles, thereby further improving the poros-
ity of carbon materials. Particularly, ZnCl2 is endowed with the abilities to promote the
aromatization of materials during activation and improve the carbon yield [116–118]. The
preparation of plant-based carbon materials by molten salt activation is shown in Table 4.

Table 4. Preparation of plant-derived carbon materials by molten salt activation.

Material Method Temperature (◦C) Ratio SBET (m2/g) V total (cm3/g) Vmes/V total (%) Reference

Willow leaves ZnCl2 800 1:3 809 0.98 95.5 [119]
Pinecone ZnCl2 600 1:4 1703 1.86 90.1 [120]

Banana leaves ZnCl2 800 - 860 0.89 66.6 [121]
Rice husks NaCl/KCl 800 - 977 0.45 65.2 [16]
Tree bark ZnCl2 900 1:1 1114 0.78 47.4 [122]
Cornstalk NaCl/KCl 800 1:1 864 1.01 72.8 [123]
Cornstalk LiCl/ZnCl2 800 1:1 1276 0.80 78.9 [124]

Bitter orange peel ZnCl2 450 1:1 1450 0.78 87.3 [107]
Butnea monosperma pollens ZnCl2 800 1:2 1422 0.76 57.3 [125]

Xue et al. [16] mixed rice husks with NaCl/KCl and carried out carbonization of the
dried samples at 800 ◦C. The developed carbon materials presented a large specific surface
area of 977 m2/g, a pore volume of 0.45 cm3/g and mesoporosity of 65.2%. Zuo et al. [125]
utilized Butnea monosperma pollens for carbon material development and explored the
impact of ZnCl2 on the pore size. The results indicated that ZnCl2 activation successfully
prepared carbon materials dominated by mesopores. Lu et al. [120] investigated the impacts
of the mass ratio of raw material to ZnCl2 on the pore size regulation effect (Figure 13a–c).
The results showed that when the mass ratio of pinecone to ZnCl2 was 1:4 under the
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pyrolysis temperature of 600 ◦C, the specific surface area, pore volume and mesoporosity
were up to 1703 m2/g, 1.86 cm3/g and 90.1%, which enhanced 2.58, 6.91 and 3.66 times
compared with that not treated with activation, respectively. Taer et al. [121] studied
the pyrolysis temperature impact on the activation effect of banana leaves. According to
Figure 13d–f, it could found that banana leaves-derived carbon had a more superior pore
structure at the pyrolysis temperature of 800 ◦C (66.6%) and 900 ◦C (67.4%). It exhibited
a higher specific surface area at 800 ◦C (860 m2/g) compared with 900 ◦C (626 m2/g),
which was probably due to the collapse of the pore structure at 900 ◦C. For the molten
salt activation method, activators such as NaCl can be removed directly by hot water
immersion. In addition, residual ZnCl2 needs dilute acid to remove. Compared with other
molten salts, ZnCl2 is more commonly used in pore size adjustment. Furthermore, the
activation effects of blending two different molten salts still need to be further explored.

Figure 13. (a–c) Impact of the mass ratio of ZnCl2 and char on ZnCl2 activation effect [120];
(d–f) Impact of the activation temperature on ZnCl2 effect [121].

3.2.4. Template Method

The template method can be divided into a soft template method and hard template
method according to template characteristics. The soft template method mainly uses
micelles for decomposition at high temperatures to create pores in materials. For the hard
template method, commonly used templates are MgO, SiO2, ZnO, MnO, etc. The carbon
precursor/pre-carbonized material is usually mixed with a prepared templating agent or
a chemical reagent (such inorganic salt solution, KMnO4 solution, etc.), which can in situ
generate the template agent at high temperatures, and the acid reagent is used to remove
the template to obtain the porous carbon material [126]. Table 5 shows the application of
the hard template method in the regulation of mesopores.

Table 5. Preparation of plant-derived carbon materials by hard template method.

Material Method Temperature
(◦C) SBET (m2/g) V total

(cm3/g)
Vmes/V total

(%) Reference

Plane tree bark ZnO 900 1587 2.33 82.8 [127]
Apricot shells CaO 700 931 1.48 73.6 [128]

Rice straw CaO 800 742 0.70 77.1 [129]
Corn stalk MgO 600 218 146.00 34.0 [125]

Carrot SiO2 700 1265 2.10 90.4 [130]
Cork MnO 800 1199 0.98 60.0 [131]

Rice straw MgO 500 158 0.16 42.0 [132]

Du et al. [130] carbonized Na2SiO3 with carrot at a ratio of 0.2:1 to produce layered
carbon material with a high specific surface area (1265 m2/g) and mesoporosity (90.5%) at
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the pyrolysis temperature of 700 ◦C. Shi et al. [129] investigated the effect of CaCO3 on the
pore structure of straw-based carbon materials at different pre-carbonization temperatures,
activation temperatures and dosages. The results (Figure 14) showed that the specific
surface area, pore volume and mesoporosity were maximum when the rice straw was
mixed with CaCO3 at a ratio of 1:2, which is carbonized at 400 ◦C and activated at 800 ◦C.
Qiu et al. [132] employed cork as the carbon precursor and KMnO4 as the raw material of
the MnO template to prepare hierarchically porous carbon and investigated the impact of
MnO on the pore structure of the carbon material at different pyrolysis temperatures. It was
found that at the pyrolysis temperature of 800 ◦C, prepared carbon material was dominated
by mesopores (60%) and specific surface area up to 1119 m2/g. Compared to other methods,
the template method is able to regulate the pore size distribution directionally by changing
the activator type. Some plants exist with natural templates, such as SiO2 in raw husks,
which can direct high-temperature pyrolysis and utilize acid to remove SiO2, obtaining
porous carbon materials dominated by mesopores [41]. CaCO3 in apricot shells not only
acts as a template in the form of CaO but also can produce CO2 at high temperatures to
create pores [128]. Such templates are conducive to achieving the high-value utilization of
plant materials. However, templates need to be removed by acid, causing the experimental
process to be relatively complicated, which restricts the application of the method in
practical production.

Figure 14. (a–c) Impact of the carbonization temperature on CaCO3 activation effect; (d–f) Impact of
the activation temperature on CaCO3 activation effect; (g–i) Impact of the mass ratio of CaCO3/straw
on CaCO3 activation effect [129].

4. Conclusions and Prospects

Plant-based carbon materials are widely used in the fields of electrochemical energy
storage, adsorption and catalysis due to their rich chemical composition, more complete
carbon skeleton and potential to be transformed into other carbon materials. Among
the micropore regulation methods, foam activation, KOH activation and CO2/H2O(g)
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activation are more frequently used, while freezing treatment and fungal treatment are
less reported. The physical activation method requires a higher temperature and longer
time, and the operation is relatively complicated. The KOH activation method and foam
activation method are simple and valid methods for enhancing microporosity. Compared to
the KOH activation method, foam activation is more environmentally friendly, possessing
brilliant application prospects. Regarding mesopore regulation, the H3PO4 activation and
ZnCl2 activation are provided to promote aromatization and increase the carbon yield while
improving mesoporosity. In comparison, the H3PO4 activation method requires a lower
temperature, which can shorten activation time and effectively improve activation efficiency.
The template method is able to regulate the pore size distribution directionally by changing
the templating agent but needs a complicated operation. Moreover, according to the existing
experimental data, enzymolysis is capable of effectively improving mesoporosity under
certain conditions, and the experimental process is relatively simple and non-polluting.
Thus, enzymolysis has a good prospect on the pore size regulation of plant-based carbon
materials. Based on the above aperture adjustment method, we propose the following
perspectives as the focus of future research on the pore regulation of plant-based carbon
materials: (1) According to the characteristics of plant materials, develop more green
and efficient pore size regulation methods; (2) When adjusting the pore size, consider
the influence of the pore regulation method on the pore morphology; and (3) Explore
plant-based activators to realize resource recycling and sustainable development.
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