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Abstract: The problem of filling a spherical cavity in a liquid has attracted the attention of many 

authors. The study of bubble behavior in liquid allows to estimate the consequences of cavitation 

processes, which can lead to the intensive destruction of the material surface. Regarding this con-

nection, it becomes necessary to study the influence of impurities, including polymeric additives on 

the strengthening or suppression of cavitation. In this paper, this problem is considered in three 

models of a relaxing fluid. It is shown that for all models, the cavity filling time is finite if the surface 

tension is not equal to zero. This result was previously established for the cases of ideal and viscous 

fluids. However, the relaxation factor can significantly change the flow pattern by slowing down 

the filling process and lowering the level of energy accumulation during the bubble collapse. 
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1. Introduction 

The addition of a small amount of a polymer to water practically does not change the 

viscosity, density, thermal conductivity, and other properties of the solution. However, 

the liquid acquires relaxation properties, which leads to a sharp decrease in resistance 

when the solution moves in the pipe [1]. This publication gave rise to a large number of 

experimental studies of this phenomenon, which are reviewed in [2]. Various aspects of 

the dynamics of aqueous polymer solutions are discussed in a Special Issue of the Pro-

cesses Journal [3]. 

The appearance of bubbles in a liquid, including a polymer solution, is inevitable. In 

particular, this is due to the possible appearance and suppression of bubble cavitation. 

The study of the motion of the aqueous solutions of polymers is important because the 

addition of soluble polymers to the liquid increases the stability threshold of the flow at 

high velocities. In addition, biopolymers also have relaxation properties. It is natural to 

expect that the relaxation properties of polymer solutions manifest themselves most no-

ticeably in essentially nonstationary motions. An example of such a movement is the pro-

cess of filling a spherical cavity in an initially at-rest liquid under the action of external 

pressure. The problem of filling a spherical bubble in an inviscid incompressible fluid was 

considered by Rayleigh [4]. In particular, he obtained that the rate of the cavity surface at 

the end of the filling increases without bound as 
3/ 2 ,a−

 where a  is the radius. This can 

be interpreted as an unlimited energy cumulation in the process of focusing [5]. 

The introduction of viscosity and capillary forces into the game qualitatively changes 

the situation [6–10]. It turned out that there exists a critical Reynolds number Re  (de-

pending on the Weber number), such that at Re Re , the rate in the final stage of the 

focusing process grows as 
3/ 2 ,a−

 similar to the case of an inviscid fluid. If Re Re , then 

at 0a → , the bubble surface rate tends to a finite limit / 2 ,u   = −  where   is the 

liquid density,   is the kinematic viscosity, and   is the surface tension coefficient. It 
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can be stated that when Re Re , the action of viscous forces eliminates the cumulation 

of energy. We note that in all the cases mentioned above, at 0  , the filling of the cavity 

occurs in a finite time. If 0 = , then at Re Re 8.4  , the filling time becomes infinite. 

In more complex fluid models, the problem under discussion was considered in [11–

14]. In [11], the existence of three modes of motion of the cavity boundary in an incom-

pressible viscoelastic Maxwell medium is established. It is shown that the filling process 

can be both monotonous and oscillatory. Bubble dynamics in a compressible viscoelastic 

liquid is studied in [12]. The collapse of a spherical bubble in viscous incompressible fluid 

with nonlinear viscosity is investigated in [13,14]. The addition of polyacrylamide (PAM) 

with the formula (-CH2CHCONH2-) to water affects the moment of occurrence of cavita-

tion, i.e., a decrease in the number of cavitation is observed [14]. It turned out that the 

effect of polymers on single bubble dynamics is very small [15–17]. In the experimental 

work [18], the behavior of a bubble near a solid wall is studied and it is concluded that 

polymer additives do not significantly affect the bubble dynamics. A study on the dynam-

ics of a spherical gas bubble in an incompressible power-law non-Newtonian fluid [19] 

showed that for some certain indices, there is no energy concentration at all. An experi-

mental study [20] has shown that polymeric additives in water affect the cavitation phe-

nomena and reduce the critical cavitation number. For instance, polymeric additives sup-

press the erosion of materials during cavitation developing in a flow [21]. The formation 

and collapse of a vapor bubble in the aqueous solution of PAM is studied experimentally 

in [22]. The experiments did not reveal a noticeable deceleration of bubble collapse. Our 

goal is to consider this problem for the case of a relaxing fluid. 

2. Mathematical Models in the Dynamics of Polymer Solution 

The viscous fluid model cannot always be applied to describe the motion of real flu-

ids. Therefore, there is a need to complicate the model. There is no single point of view on 

how to complicate the classical viscous fluid models for studying the flow with small pol-

ymer additives. 

Further, the fluid is assumed to be incompressible, and its density  , viscosity  , 

and surface tension coefficient   are assumed to be constant. 

A model for the motion of polymer solutions, considering their relaxation properties, 

was proposed by Voitkunskii, Amfilokhiev, and Pavlovskii [23]. The authors used the 

ideas of the hereditary theory of viscoelasticity [24,25]. In their model, the relationship 

between the shear stress tensor P  and strain rate tensor D  has the form 

0

2 2 exp .

t
z t dD

P pI D dz
dz




 

− 
= − + +  

 
  (1) 

here, p  is the pressure, I  is the unit tensor,   is the shear stress relaxation time, and 

  is the normalized relaxation viscosity [26]. The symbol / /d dt t=   + v , where v  

is the velocity vector, means the operator of total differentiation with respect to time t . 

The parameters   and   are also considered constant. The value   has the dimension 

cm2. The relaxation time of an aqueous solution of PAM with a concentration of 210−  per-

cent is of the order of 410−  s. In the case of the relaxation viscosity coefficient, the authors 

of the model did not provide its characteristic values, though one can assume that they 

are sufficiently small. In [26], we discussed the possibility of the experimental determina-

tion of this parameter. 

The alternative model is the Oldroyd-B model [27]. This model was used in [22] for 

a theoretical study of the growth and collapse of relatively small bubbles. It has been 

shown that polymeric additives, in principle, can reduce the cavitation erosion of material. 

The system of equations of motion of an incompressible continuous medium has the 

form 
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Div , div 0.
d

P
dt

 = =
v

v   

The first equation is the momentum equation for a continuous medium obeying the 

Cauchy stress principle, and the second one is the continuity equation for an incompress-

ible continuous medium. The divergence of a tensor is a vector whose components are the 

divergences of the row vectors that form the given tensor. 

Substituting expression P  (1), here, we obtain: 

0

1
exp , div 0.

t
d z t d

p dz
dt dz




  

−  
= −  +  + = 

 


v v
v v  (2) 

Using the smallness of the parameter,  , Pavlovskii [28] simplified Equation (2), re-

stricting himself to the main term of the integral expression at 0 → , 

2 2 = − + +
dD

P pI D
dt

. (3) 

As a result, a system of equations is written as follows: 

1d d
p

dt dt
 




= −  +  +

v v
v , div 0.=v  (4) 

In [26], an exact reduction of integro-differential Equation (2) to a system of differen-

tial equations was found, 

1
,


   

 

   
+ = − −  + +  +

  

d d p d
p

t dt dt t t dt

v v v v
v  div 0,=v  (5) 

and some exact solutions of this system are found. 

One more possible modification of the model of motion of dilute aqueous polymer 

solutions is the introduction of an objective time derivative of the tensor D  [29,30], 

( ) .


= +  + −


dD D
D DW WD

dt t
v   

here, W  is the antisymmetric part of the tensor v . In this case, instead of system (4), 

we obtain a system of second-grade fluid equations [31,32]: 

1
2 Div 



 
= −  +  +  

 

d dD
p

dt dt

v
v , div 0.=v  (6) 

The replacement of the total derivative of the tensor D  with respect to time by its 

objective derivative is caused by the necessity to provide the rheological relation connect-

ing the tensors P  and D  tensor-invariant form [29], 

2 2 . = − + +
dD

P pI D
dt

 (7) 

The medium behavior law given by relation (7) does not change after transfer from 

the original coordinate system to another system rotating relative to it with an arbitrary 

angular velocity [30]. The relation (3) does not have this property. This allows us to con-

sider system (6) to be more preferable for modeling the motion of aqueous polymer solu-

tions than system (4). The mathematical theory of second-grade fluid was developed in 

[33,34] (see also the literature cited there). 

It is important to note that the second-grade fluid equations allow an “a priori” esti-

mate for the initial boundary value problem solution. This makes it possible to prove ex-

istence and uniqueness theorems for the solution of this problem without restrictions on 

the time interval and the norm of the initial data. For the Pavlovskii model, this fact does 

not hold. 

Note that in the case of potential flows, where 0W = , systems (4) and (6) coincide. 

This particular situation is considered in the present work. 
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3. Problem Formulation and Similarity Criteria 

Let us assume that the motion is spherically symmetric and denote by ( , )u r t  the 

radial component of the fluid velocity, where r  is the spherical radius. The origin of co-

ordinates of the spherical system ( , , )r    is chosen at the center of the bubble which is 

at rest. The continuity equation (the second equation of system (2)) in spherical coordi-

nates takes the form 

2
0.

u u

r r


+ =


 (8) 

In order to satisfy the continuity Equation (8), the velocity component u is given as 

2

( )
( , ) ,

f t
u r t

r
=  (9) 

where r(t) is the bubble radius at time t. The motion described by the velocity field of the 

form (9) is potential. Therefore, 0, =v  and in the momentum equation (the first equation 

of system (2)), the last two terms in the right part vanish. The projection of the momentum 

equation onto the spherical coordinate axis r  has the form 

1
.

u u p
u

t r r

  
+ = −

  
 (10) 

Integrating Equation (10) with the condition 0p p→  at r →  gives 

2

0

4

'
,

2

p p f f

r r

−
= −  (11) 

where prime denotes differentiation with respect to t. We see that the ordinary and relax-

ation viscosities do not enter into the momentum equation. However, both of these factors 

manifest themselves in the dynamic condition at the free boundary, to the derivation of 

which we turn. The expressions for non-zero elements of the tensor /dD dz  in formula 

(1) read 

2 2

3 6 3 6

2 ( ) 6 ( ) ( ) 3 ( )
, .rr

dDdDdD f z f z f z f z

dz dz dzr r r r

 
= − + = = −  (12) 

However, only the term /rrdD dt  contributes to the normal stress on a sphere of ra-

dius r. From Equality (1), we obtain the formula for the normal stress: 

2

3 6 3

0

4 2 6 ( ) 2 ( )
4 exp .

t

nn

f z t f z f z
p p dz

r r r




 

 − 
= − − + −  

  
  (13) 

At the free boundary, the dynamic condition is written as follows 

2
nnp

s


=  at ,r s=  (14) 

where ( )s t  is the cavity radius. Assuming r s=  in (11)-(14) and excluding nnp  from 

Equalities (13), (14), we obtain 

2 2
0

4 3 6 3

0

2 2 6 ( ) 2 ( )
4 exp .

2

t
p f f f z t f z f z

dz
s s s s s s

 


   

  − 
= − − + − + −  

  
  (15) 

Equation (15) can be reduced to a differential equation. It follows from the kinematic 

boundary condition at the free boundary 

( , ),
ds

u s t
dt

=  (16) 

that 2( ) ( ) ( ).f t s t s t=  First, we substitute the last expression into Equation (15), 
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2 2
0

2

0

3 2 4 ( ) ( )
4 exp 0.

2 ( ) ( )

t
p s s z t s z s z

ss dz
s s s z s z

 


   

    − 
+ + + + + − =  

  
  (17) 

Then, we differentiate Equality (17) and multiply the result by   

2 2 2

2 2 2 2

0

4 4 2 4 4 4 ( ) ( )
( ) exp 0.

( ) ( )

t
s s s s z t s z s z

ss ss s dz
s s s zs s s s z

    
 

 

        − 
  + + − − + − + − =    

    
   

From here and (17), we get 

3 2 2 2 2 2022 4
2 4 ( ) 4 2 ( 4 ) (3 8 ) 8 0.

p
s s s ss s s s s s s s s ss s s

 
     

  

 
       + + − − + + + − + + + = 

 
 (18) 

Assuming that 0 →  in Equation (18), we obtain the equation for s  in the second-

grade fluid and the Pavlovskii models, 

2 2 2 2024
2 ( 4 ) (3 8 ) 8 0.

p
s s s s s ss s s


  

 
  + + − + + + =  (19)  

The initial conditions are determined from the assumption of the emergence of mo-

tion from a state of rest under the action of a pressure impulse. At the initial moment, the 

bubble radius is given and equal to 0r , and the initial velocity is equal to zero. For Equa-

tion (19), these conditions are 

0(0) , '(0) 0.= =s r s  (20) 

The set of initial conditions for Equation (18) is as follows 

0
0 2

0 0

2
(0) , (0) 0, (0) .

p
s r s s

r r



 
 = = = − −  (21) 

Equation (18) include four parameters , , ,     characterizing the medium. Two 

more dimensional parameters of the problem are the initial radius of the bubble 
0r  and 

the pressure far from it, which is associated with atmospheric pressure, 
0р . From these 

parameters, four dimensionless combinations can be made, which are the similarity crite-

ria in our problem 

0 0 0 0

2

0

Re , , , .
 

  
   

= = = =
r p p p

p
  

For a given 0 101325p =  Pa, the quantities ,   and   are determined only by the 

properties of the solution. At a temperature of 293 K for water 0.998 =  g/cm3, 0.01 =  

cm2/s, 72.8 =  dyn/cm, then 22.89 = . When calculating the parameter  , considering 

the order of the relaxation time of an aqueous solution of PAM with a concentration of 

approximately 210− %, specified in [23], 410− s is taken, which gives 310 = . As for the 

parameter ,  it is more difficult to indicate its characteristic values since there are no 

direct experiments from which the value of the quantity   is found. However, even at 
410 −=  cm2, the values of this parameter will be very large, 510 = . The last of the four 

similarity criteria is the Reynolds number. This parameter is at our disposal. However, 

there are physical limitations from above on the value of Re , which are related to the fact 

that regarding large bubble diameters, it is difficult to ensure the sphericity of its shape. 

Assuming 0 0.2r =  cm, we find Re 6372= , and for 0 0.01r =  cm, we get Re 318.63= . 

The problem in a dimensionless form is formulated by choosing the following values 

for normalization: 0 / /p    for the radius of the bubble, and 0 /( )p   for time. The re-

lations (18)–(21) in dimensionless variables are written as (the same letters are used to 

denote non-dimensional variables) 



Polymers 2022, 14, 4259 6 of 17 
 

 

( )3 2 2 2 2 22 4 ( 1) 4 2 2 ( 4 ) (3 8 ) 8 4 2 0.s s s ss s s s s s s s s ss s s           + + − − + + + − + + + =  (22) 

2

1 2
(0) Re, (0) 0, (0)

Re Re
s s s


 = = = − − . (23) 

2 2 2 22 ( 4 ) (3 8 ) 8 4 2 0.s s s s s ss s s    + + − + + + =  (24) 

(0) Re, (0) 0.s s= =  (25) 

The differential Equations (22) and (24) are the ordinary differential equations. For 

numerical implementation, the equations are written as a system of first-order ordinary 

differential equations. The initial-value problems (22), (23) and (24), (25) are solved using 

the fourth-order Runge-Kutta method. The presence of a large parameter   in front of 

the highest derivative does not complicate but simplifies calculations. In the following, 

the results of the numerical solution are given in a dimensionless form. 

4. Hereditary Model 

The bubble dynamics in the hereditary model is described in terms of the solution of 

the Cauchy problem (22), (23). This problem contains four dimensionless parameters: 

, , , Re.    Let us first consider the case of large values of the parameter   at fixed values 

of the other parameters. 

Let us divide both parts of the equation 

by   and pass to the limit  → . The resulting equation 

3 2''' 4 ( ' 1) '' 4 ' 2 ' 0s s s ss s s s+ + − − =
  

after dividing by 2s  allows integration, 

2 23 / 2 4 2 0,  + + + − =s s ss s qs  (26) 

where q  is the constant of integration, which will be chosen below. The transition in 

Equation (26) to the independent variable s , and the new desired function ( ) ( )b s s t= , 

gives 

2

2

4 (3 / 2) 2
.

+ − +
= −

db b sb qs

ds s b
 (27) 

Equation (27) has a single singular point, 0, / 2s b = = − . Passing in (27) to the new 

desired function, / 2c b = + , we arrive at the equation 

2 2

2

8 3 6 2 (3 /8 )
.

( / 2 )

 



+ − + −
=

−

dc c sc sc s q

ds s c
  

The singular point here is the origin of coordinates on the plane s , c . Taking 
28 3=q , we transform the last equation to the following form: 

2

2

8 6 2 3
.

 
= − + +

dc c c c dc c

ds s ds ss
  

This equation, in turn, can be reduced to the integral equation 

2
6 6

0

2 ( ) ( ) 3 ( )
( ) exp( 8 / ) exp( 8 / ) ,

s
c z dc z c z

c s Ks s s s dz
dz z

 
 

− −  
= − + − + 

 
  (28) 

( )3 2 2 2 2 2''' 4 ( ' 1) '' 4 ' 2 ' (4 ) ( 4 3 / 2) ' 2(2 ) 0s s s ss s s s s s s s s s s s     + + − − + + + − + + + + =   
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where .=K const  Equation (28) has the unique solution ( ),c s  which is continuous and 

has the continuous derivative on segment [0, ]  if 0   is sufficiently small. This solu-

tion can be obtained in the limit of an iteration process. For small ,s  the asymptotics of 

the solution of Equation (28) is given by the relation 
6 exp( 8/ )[1 (1)].−= − +c Ks s o  From 

here, we find: 

6( ) / 2 exp( 8/ )[1 (1)] −  = − + − +s b s Ks s o .  

Positive solutions of this equation extremely quickly reach the asymptotics 

/ 2s A t= − , 0A const=  .  

The lifetime of the solution of Equation (26) is close to 2 /T A = . The limiting value 

of the bubble boundary rate at t T→  is / 2− . The dimensional value of this velocity is 

given by the formula / 2V   = − . It is remarkable that the same value was obtained by 

Galperin (see [10], pp. 121–124) in the problem of bubble flow in an ordinary viscous liq-

uid if the Reynolds number is less than the critical value Re Re ( ) = . A similar behavior 

is demonstrated by the solution of problem (22), (23) at moderate values of the parameter 
 . 

The results of the numerical solution of the problem (22), (23) are presented in Figure 

1 for 3 522.89, 10 , 10 ,  = = =  and various values of the Reynolds number Re . 

 

Figure 1. Cavity radius versus time for 3 522.89, 10 , 10 ,  = = =  and various values of the Reyn-

olds number Re . 

Recall that 
2

0 /p  = . Assuming 1.48 =  cm2/s, 1.26 =  g/cm3, which corre-

sponds to glycerol at a temperature of 293 K and 410 −=  cm2, we find 3.67 = . By 

choosing the relaxation time 310 −=  s, we get 54.34 = . For such values of the chosen 

parameters and 0.0048 = , Re 4= , we ensure the finiteness of the bubble boundary ve-

locity at the moment of focusing. Figure 2 demonstrates the result of numerical solution 

of problem (22), (23) at Re 4, 0.0048, 3.67, = = =  and 54.43 = . 
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Figure 2. Cavity radius versus time for Re 4, 0.0048, 3.67 = = = , and 54.43 = . 

Figure 3 shows the results of the numerical solution of problem (22), (23) at 

Re 5, 0.0048, 5, = = =  and various values of the parameter  . 

 

Figure 3. Cavity radius versus time for Re 5, 0.0048, 5, = = =  and various values of the parame-

ter  . 

The calculations show that as the parameter   (proportional to the surface tension 

coefficient) decreases, the bubble filling time increases. Figures 4 and 5 demonstrate solu-

tions s(t) of problem (22), (23) for 
3 510 , 10 , = = and various values of the Reynolds num-

ber and the parameter  . One can see that the bubble filling time decreases when the 

surface tension   increases. 
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Figure 4. Cavity radius versus time for 3 5Re 318.63, 10 , 10 , = = =  and various values of the pa-

rameter . . 

 

Figure 5. Cavity radius versus time at 3 5Re 500, 10 , 10 , = = =  and various values of the parame-

ter . . 

Consider the limiting case 0 = , we rewrite Equation (22) as 

( )2 2 2 28 2 8( )( ) 2 ( 4 ) 2 3 0.ss s ss s s ss s s ss s         + + + − + + + − =  (29) 

According to (23), the initial conditions for Equation (29) at 0 =  have the form 

1
(0) Re, (0) 0, (0) .

Re
s s s = = = −  (30) 

The asymptotics of the solution of the problem (29), (30) at t →  is looked for in 

the form 

1

exp( / 4).n

n

s s nt


=

= −   
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If the value 1s  is known, the remaining constants ( 2,3,...)ns n =  are determined se-

quentially from recurrence relations. In particular, 3
2 3 10, (5 2) / 64( 2).s s s  = = + + −  The 

results of the calculations performed at Re 10, 10, 100 = = =  are presented in Figure 6. 

Thus, at 0 = , the cavity is filled in infinite time. 

 

Figure 6. Cavity radius versus time at Re 10, 10, 100, = = =  and 0. = . 

5. Pavlovskii Model 

The process of filling a spherical cavity in Pavlovskii [28] and second-grade fluid [31] 

models is described in terms of solving the Cauchy problem (24), (25). Due to conditions 

(25), (0) 0.s   Therefore, on some interval (0, )l , the inequality ( ) 0s t   will be ful-

filled. Let us show that this inequality holds over the whole interval [0, ]T  of existence 

of the solution of problem (24), (25). In fact, if it is not so, there is a value t , such that 

( ) 0s t = , and the point t  is a minimum point of the function ( ),s t  such that ( ) 0.s t   

If in this case ( ) 0s t  , then we come to a contradiction with Equation (24). However, the 

possibility that the relations ( ) 0, ( ) 0s t s t = =  can be executed simultaneously is not ex-

cluded. This is the situation in our problem. To confirm this, it is necessary to study the 

behavior of small solutions of Equation (24). 

Passing in Equation (24) to a new independent variable s  and a new desired func-

tion ( ) / ,a s ds dt=  we obtain the equation on the phase plane ,s a : 

2 2 2

2

(8 3 ) 8 4 2
.

(8 2 )

da s a sa s s

ds s sa

 



− − − −
=

+
 (31) 

Equation (31) has a single singular point 0, 0s a= = . To study the behavior of its 

solutions near a singular point, let us substitute in Equation (31) 

1/2( / ) .a s b = −  (32) 

The function ( )b s  satisfies the equation 

2 1/2 2 2

2

2 ( 1) 4( / ) / 2
.

(4 )

db b s b s s b

ds s sb

    



− + − −
=

+
 (33) 

The singular point 0, 1s b= =  of Equation (33) corresponds to the singular point 

0s a= =  of Equation (31). The asymptotics of the solution of this equation at 0s →  has 

the form 
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1/2 1/2( / ) [1 2( / ) ( log )], 0.a s s О s s s  = − − + →  (34) 

Relations (32), (34) allow us to find the main term of the asymptotics of the function 

( )s t  at :t T→  

2 2( ) / 4 ( ) .s T t o T t = − + −  (35) 

Here, there is a qualitative difference between the final stages of the bubble collapse 

process in the hereditary model and in the Pavlovskii and the second-grade fluid models. 

If, in the first case, the rate of the free boundary at the moment of collapse is finite, then in 

the second case, this rate tends to zero at .t T→  

Figure 7 shows the solutions s(t) of problem (24), (25) at 22.89 = , 
510 = , and var-

ious Reynolds numbers Re. 

 

Figure 7. Cavity radius versus time for 522.89, 10 , = =  and various values of the Reynolds num-

ber Re. 

Figure 8 illustrates the solutions s(t) of problem (24), (25) at Re 318.63, 22.89,= =  

and various values of the parameter .  
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Figure 8. Cavity radius versus time for Re 318.63, 22.89,= =  and various values of the parameter 

. . 

Figures 9 and 10 demonstrate solutions s(t) of problem (24), (25) for 
510 = , and var-

ious values of the Reynolds numbers Re  and the parameter  . 

 

Figure 9. Cavity radius versus time for 5Re 318.63, 10 ,= = and various values of the parameter .  
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Figure 10. Cavity radius versus time for 5Re 500, 10 ,= =  and various values of the parameter .  

6. Pressure 

Pressure distribution and the normal stress in the Pavlovskii and the second-grade 

fluid models in dimensionless variables are given by the formulae 
2

2

4

( ) ( )
( , ) 1 , ( ) ( ) '( )

2

f t f t
p r t f t s t s t

r r


= + − =  (36) 

and 

2

3 6 3

4 ( ) 3 ( ) ( )
4nn

f t f t f t
p p

r r r

 

= − − + − 
 

, (37) 

respectively. Figures 11–13 illustrate the distributions of pressure in the liquid surround-

ing the bubble in the Pavlovskii and the second-grade fluid models at the time moment, 

when the bubble radius is less than the initial one by approximately 10 times for 

Re 318.63, 22.89= =  and the various values of the parameter  . 

 

Figure 11. Pressure distribution in the fluid surrounding the bubble for 
5Re 318.63, 22.89, 10 , = = =  and at the time 1247.t =  
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Figure 12. Pressure distribution in the fluid surrounding the bubble for 
3Re 318.63, 22.89, 10 , = = = and at the time 293.t =  

 

Figure 13. Pressure distribution in the fluid surrounding the bubble for 

Re 318.63, 22.89, 100, = = =  and at the time 273.t =  

Note that as the parameter   increases, the maximum pressure increases and then 

begins to decrease. From Figure 14, it can be seen that the plot for an ordinary liquid gives 

close values of the maximum pressure to those indicated in [35], where the problem for 

an ideal liquid was considered. 
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Figure 14. Pressure distribution in the fluid surrounding the bubble for Re 318.63, 22.89, 0, = = =

and at the time 271.t =  

The more important characteristic is the normal stress. Figure 15 shows the normal 

stress in the fluid surrounding the bubble for Re 318.63, 22.89= = , and the various val-

ues of the parameter   and at different points in time. Here, we observe a non-monotonic 

character in the distribution of normal stresses depending on the parameter   propor-

tional to the relaxation viscosity coefficient. 

 

Figure 15. Normal stress in the fluid surrounding the bubble for Re 318.63, 22.89,= =  and various 

t  and .  

7. Discussion 

1. In solving the problem of filling a spherical cavity in the hereditary model, the 

velocity of its boundary is bounded at 0,s →  where s  is the radius of the cavity. This 

property does not depend on the Reynolds number. As for the Pavlovskii and the second-
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grade fluid models, here, the velocity of a cavity boundary tends to zero as 0.s →  At the 

same time, in a Newtonian fluid, this asymptotic behavior is of the order of 3/ 2s−  if the 

Reynolds number exceeds the critical value. Thus, the phenomenon of energy accumula-

tion in a relaxing liquid in the process of a cavity filling does not take place. 

2. Regarding the cavity collapse time in solving problem (24), (25) increases with the 

Reynolds number. We have 
2(0) 0, (0) (Re 2 ) /(Re 4 )  = = − + +s s  and 

1(0) (Re )s O − =  at 

Re .→ Thus, an increase in the Reynolds number leads to a deceleration in the motion 

of the cavity boundary at the initial moment of time. Calculations show that this trend 

persists over time. In the case of a Newtonian fluid, 
2(0) (Re 2 ) / Re . = − +s  Here, the 

process of wicking the cavity slows down with increasing Re  too, but the deceleration 

occurs faster, since there is no term 4  in the denominator of the last formula, and in 

typical situations, the value   is of the order 510 . 

3. In the problem of cavity filling both in the hereditary model and in the Pavlovskii 

and second-grade fluid models, for some values of relaxation viscosity and shear stress 

relaxation time, there is no energy cumulation. The velocity of the bubble boundary re-

mains finite as its radius tends to be zero. This regime is similar to that which occurs for a 

Newtonian fluid at subcritical Reynolds numbers. 

4. It is of interest to see the pressure behavior. In the literature available to us, there 

are no plots of pressure and normal stress during the collapse of a cavity in a relaxing 

liquid. The exception is the work [12], but in it, the filling of the cavity occurs under the 

action of high pressures, which leads to the need to consider the compressibility of the 

liquid. The maximum pressure that occurs at a moment of time, close to the moment of 

collapse, reaches a value of the order of 210 . The maximum impulse pressure obtained in 

[12] is of the order of 310 . Note the dual role of relaxation. On the one hand, relaxation 

slows down the process of bubble collapse, and on the other hand, the pressure increases 

near the moment of collapse. 
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