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Abstract: Perovskite solar cells (PSCs) based on the 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-
9,9′-spirobifluorene (spiro-OMeTAD) hole transport layer have exhibited leading device performance.
However, the instability caused by this organic function layer is a very important limiting factor
to the further development of PSCs. In this work, the spiro-OMeTAD is doped with polymethyl
methacrylate (PMMA), which is further used as the hole transport layer to improve the device
stability. It is shown that the PMMA can effectively improve the moisture and oxygen resistance of
spiro-OMeTAD, which leads to improved device stability by separating the perovskite layer from
moisture and oxygen. The device efficiency can maintain 77% of the original value for PSCs with the
PMMA-doped spiro-OMeTAD hole transport layer, under a natural air environment (RH = 40%) for
more than 80 days. The results show that the moisture- and oxygen-resistant PMMA:spiro-OMeTAD
hole transport layer is effective at improving the device performance.

Keywords: perovskite solar cells; hole transport layer; spiro-OMeTAD; PMMA; stability

1. Introduction

With the improvement in power conversion efficiency (PCE) from 3.8% to over 25%
in only a few years, perovskite solar cells (PSCs) are rapidly emerging as a new type of
photovoltaic device in the photovoltaic society [1]. The dramatically increased performance
is mainly attributed to the unique perovskite material properties, such as the unusual
carrier diffusion length, strong light harvesting capability, and ambipolar charge transport
properties [2].

In general, PSCs can be divided into the regular structure with the NIP framework,
and the inverted structure with the PIN framework. Both structures have helped PSCs to
achieve great progress, with PCEs exceeding 20% in the past few years. However, up to now,
most of the record efficiencies have been obtained based on the regular structure, because
this structure has better energy level matching, and more efficient charge transport and
extraction [3,4]. In the regular structure, MAPbI3 is a traditional perovskite light absorption
material. At the same time, TiO2 and 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-
spirobifluorene (spiro-OMeTAD) are usually used as electron and hole transport materials
(ETM and HTM), respectively. Based on the structure of TiO2/MAPbI3/spiro-OMeTAD,
PSCs have acquired satisfactory device efficiency. However, PSCs still suffer from the
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device stability issue. To overcome device degradation, many efforts have been put into
improving the stabilities of both the material and structure. The intrinsic instability of
MAPbI3 is one important factor influencing the long-term storage of PSCs, and is caused
by its soft nature and low lattice formation energy. To acquire better chemical stability, Cs+,
FA+, Br−, and other ions are added into the perovskite framework to replace MA+ and
I− [5,6], which has efficiently improved the intrinsic stability of perovskite film. However,
external stressors, such as heat, oxygen, light, and especially moisture, are also impor-
tant factors that damage PSCs [7–9]. The electron and hole transport layers (ETL and
HTL) not only transport carriers, but also protect the perovskite film by isolating it from
external stressors.

Although there are many HTL materials, such as CuI [10], CuSCN [11], poly(3,4-
ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) [12], poly 3-hexylthiophene)
(P3HT) [13], polytriarylamine (PTAA) [14], and 2,2′,7,7′-tetrakis (N,N-di-p-methoxyphenylamine)-
9,9′-spirobifluorene (spiro-OMeTAD), spiro-OMeTAD has been adopted the most. Spiro-
OMeTAD is an ideal hole transport material (HTM), which possesses optimum conductivity
with the addition of lithium bis (tri-fluoromethane) sulfonimide (LiTFSI), tris(2-(1H-pyrazol-
1-yl)-4-tert-butylpyridine)-cobalt(III)-tris(bis(trifluoromethylsulfonyl)imide)) FK 209 Co(III),
TFSI salt, 4-tert-butylpyridine (t-BP), and air exposure [10]. Many reports have shown
that PSCs based on the spiro-OMeTAD HTL have realized high PCEs over 21% [15,16].
However, spiro-OMeTAD cannot effectively separate the perovskite layer from external
moisture and oxygen, which would degrade the device. Therefore, the spiro-OMeTAD
HTL should be further optimized to improve the corresponding device stability.

PMMA is a widely used material in PSCs; for example, PMMA is used as an encap-
sulation material to protect the perovskite layer against oxygen and moisture [17–19].
In Li’s report, a thin PMMA layer was added between the electrode and TiO2 ETL,
and the corresponding PSC acquired apparent stability enhancement. In Snaith’s work,
P3HT/SWNTs/PMMA was used to replace spiro-OMeTAD, which exhibited better water
and heat stability [20]. However, it should be noted that the device efficiency in their work
was not high enough. It is supposed that the electrical conductivity of PMMA is poor,
which may negatively affect carrier transport when the complete PMMA layer is inserted
into the PSC. Additionally, the PMMA solvent may be harmful to organic HTMs, such as
spiro-OMeTAD and PTAA. Inorganic HTMs can combine with PMMA to act as a protective
layer. However, inorganic HTMs often need a high annealing temperature, which may not
be suitable to form a protective layer on perovskite materials. Therefore, it is important
that we pay much attention to the stability of PSCs.

In this work, PMMA is dissolved into the spiro-OMeTAD solvent with different con-
centrations. It is shown that the stability of the PSCs increases with the PMMA content.
When the content of PMMA exceeds the upper limit, the PCE of the device sharply de-
creases. An optimal content of PMMA exists in the spiro-OMeTAD solvent to keep the
balance between long-term stability and high PCE. Finally, we realize a high PCE, over
21%, with improved device stability. The device efficiency can maintain 77% of the original
value for PSCs with a PMMA-doped spiro-OMeTAD hole transport layer, under a natural
air environment (RH = 40%) for more than 80 days.

2. Materials and Methods

Materials: Isopropanol (99.99%), N,N-dimethylformamide (DMF) (99.99%), 4-tert-
butylpyridine (99.9%), chloro-benzene (99.9%), and acetonitrile (99.9%) were purchased
from Sigma-Aldrich (Shanghai, China) and used as received. Other materials were pur-
chased included MAI (99.9%, Dyesol, Australia), FAI (99.9%, Dyesol, Australia), lead (II)
iodide (PbI2, 99.999%, Alfa, Haverhill, MA, USA), lead (II) chloride (PbCl2, 99.999%, Alfa,
USA), and Tin oxide (SnO2, 15% in H2O colloidal dispersion liquid, Alfa, Haverhill, MA,
USA). PMMA (Xi’an Polymer Light Technology Corp, Xi’an, China) and spiro-OMeTAD
(Xi’an Polymer Light Technology Corp, Xi’an, China) were also used as received without
further purification. The purity of the silver used for the top contact electrode was 99.99%.
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SnO2 ETL preparation: The ITO substrate was ultrasonically cleaned with deter-
gent solution, acetone, deionized water, and alcohol in sequence. The substrate was first
UV−ozone-treated for 15 min. The SnO2 solution was diluted with twice the volume of
water and spin-coated at 3000 rpm for 30 s. Then the SnO2-covered sample was annealed
at 150 ◦C for 30 min in air.

Spiro-OMeTAD solution preparation: 90 mg spiro-OMeTAD powder, 7.65 mg lithium
salt, 4.5 mg cobalt salt powder and 10 µL TBP were dissolved in chlorobenzene solvent
and then stirred for 12 h. PMMA was added into the spiro-OMeTAD solvent to form the
PMMA:spiro-OMeTAD solution.

Solar cell fabrication: PbI2 (1.36 m) and PbCl2 (0.24 m) were dissolved in DMF solvent
and stirred for 2 h at 75 ◦C. MAI (70 mg) and FAI (30 mg) were dissolved in IPA solvent
with 0.9 vol% DMF. Around 75 µL PbX2 precursor, preheated to 75 ◦C, was transferred
via pipettes onto the SnO2-covered ITO substrate. Then, MAI and FAI mixed solution
was spin-coated on top of the dried PbX2 layer at 3000 rpm for 45 s. All of the films were
thermally annealed on a hot plate at 100 ◦C for 10 min. Either the spiro-OMeTAD (80 µL)
or PMMA:spiro-OMeTAD solution was spin-coated on the surface of the perovskite film at
3000 rpm for 45 s. Lastly, a 100 nm silver layer was deposited through shadow masks via
thermal evaporation under a high vacuum. The active area was 0.07 cm2.

Device characterization: The morphological measurement of the perovskite layers was
taken using scanning electron microscopy (SEM) (JSM-7800F). An X-ray diffraction (XRD)
test was conducted on the Bruker D8 Advance XRD. The transmittance and absorption
spectra of different samples were recorded with a UV–visible spectrophotometer (Perkin-
Elmer Lambda 950). Photovoltaic performances were measured using a Keithley 2400
source meter under simulated sunlight from an XES-70S1 solar simulator, matching the
AM 1.5G standard with an intensity of 100 mW/cm2. The system was calibrated by an
NREL certified silicon reference solar cell. Incident photo-to-current conversion efficiencies
(IPCEs) of the PSCs were measured using a solar cell quantum efficiency measurement
system (SCS10-X150, Zolix instrument. Co., Ltd., Beijing, China).

3. Results

It is considered that PMMA-doped spiro-OMeTAD can effectively improve device
storage stability, while an overdose of PMMA may adversely decrease the device perfor-
mance. Thus, there is an optimal concentration of PMMA in the spiro-OMeTAD HTL. In
this work, we changed the concentration of PMMA in spiro-OMeTAD from 0 mg/mL to
5 mg/mL. The light absorption degradations of perovskite films with different PMMA:spiro-
OMeTAD in the air environment are shown in Figure 1a. It is apparent that the perovskite
film protected by the pure spiro-OMeTAD degraded faster than that with the PMMA-
doped spiro-OMeTAD. When the storage time was extended to 60 days, the perovskite
layer protected by the pure spiro-OMeTAD exhibited a comparatively low light absorption
ability. The perovskite films with the PMMA-doped spiro-OMeTAD HTL demonstrated
better long-term stability. The greater the concentration of PMMA in spiro-OMeTAD, the
weaker the degradation of the perovskite layer. This supports the protective function
of PMMA-doped spiro-OMeTAD. A similar phenomenon was also observed in the XRD
measurement results in Figure 1b. The perovskite layers all showed intense peaks at 14.2
and 28.5◦, indicating the formation of the perovskite crystal structure. For the device with
pure spiro-OMeTAD, the perovskite crystal peak exhibited obvious fading, concomitant
with the emergence of a well-defined PbI2 diffraction peak at 12.6◦, which indicates the
degradation of the perovskite film. On the contrary, the XRD curves of the perovskite
films covered with PMMA:spiro-OMeTAD showed nearly no changes. In addition, no PbI2
peaks were detected for all the perovskite XRD curves with devices stored under the same
conditions. It can be concluded that the long-term storage stability is enhanced with the
increasing content of PMMA in spiro-OMeTAD, as demonstrated in Figure 1.
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Figure 1. Degradation of perovskite layers with different PMMA (0 mg/mL, 1 mg/mL, 2 mg/mL,
and 5 mg/mL): spiro-OMeTAD HTLs. (a) Light absorption and (b) X-ray diffraction degradation of
the perovskite layers over 60 days. The devices were stored in an air environment (RH = 40%), and
had a cell structure of ITO/SnO2/perovskite/PMMA:spiro-OMeTAD.

In previous reports, the spiro-OMeTAD layer was hard to isolate from water due
to its inherent amorphous nature and hygroscopic additives, such as Li-salt [21,22]. As
presented in Figure 1a,b, with the addition of PMMA, the long-term storage stability of
perovskite is improved. To investigate the protective effect of PMMA:spiro-OMeTAD HTL,
the waterproof test was developed, as shown in Figure 2a–d, with DI-water being directly
dropped onto the perovskite/PMMA:spiro-OMeTAD samples. The sample without PMMA
quickly exhibited visible decomposition due to water droplet erosion. In about 1 min, the
perovskite layer changed to a yellow color, indicating perovskite film decomposition to
PbI2. When the doping content of PMMA was increased to 1 mg/mL and 2 mg/mL, the
decomposition time of the perovskite layer was delayed by1.5 min and 3 min, respectively,
due to the inhibition of water droplet diffusion. In Figure 2d, the perovskite layer almost
remained unchanged with time. Therefore, the combined HTL exhibited a better watertight
nature with PMMA-doped spiro-OMeTAD. Moreover, The water-resistant properties of
PMMA:spiro-OMeTAD-based samples were significantly improved with increased PMMA
concentration. The corresponding perovskite layer showed much slower visible degrada-
tion and a stronger inhibition of water droplet diffusion. Thus, this result proves that the
waterproof characteristics of a PMMA:spiro-OMeTAD combined layer should improve the
long-term storage of solar cells.

To further investigate the protective function of PMMA, we carried out a surface
topography test of different HTLs. As shown in Figure 2e, the pure spiro-OMeTAD HTL
without PMMA is one green, smooth plane. With the addition of PMMA, the surface of
spiro-OMeTAD appears uneven and gradually connects into another plane at the content
of 5 mg/mL. It is estimated that the unevenness is due to PMMA, which causes the
hydrophobic characteristic of spiro-OMeTAD HTL, and further protects perovskite films.
It is shown that the surface morphology of the HTLs was greatly changed. An AFM test
showed that with the addition of PMMA, the roughness of the PMMA:spiro-OMeTAD
surface was improved, which may affect the metal electrode deposition. In addition, PMMA
addition may produce a negative influence on the conductivity of HTLs. Both these factors
can cause a decrease in the final PCE.
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Figure 2. (a–d) The surface photographs of samples used in the waterproof test with the PMMA
(0 mg/mL, 1 mg/mL, 2 mg/mL, and 5 mg/mL)-doped spiro-OMeTAD HTL observed at regular time
intervals from 0 min to 3 min. (e) The surface topography and (f) hole mobility tests of spiro-OMeTAD
HTLs doped with different PMMA concentrations (0 mg/mL, 1 mg/mL, 2 mg/mL, and 5 mg/mL).

To investigate the effect of PMMA on hole mobility, we carried out measurements using
the space-charge-limited-current (SCLC) method, with a structure of ITO/PEDOT:PSS/spiro-
OMeTAD/MoO3/Au [23–28], as shown in Figure 2f. The current density is expressed by
the Mott–Gurney Law, as follows:

J =
9
8

µεε0
V2

L3 (1)

where µ is the free carrier mobility, ε and ε0 are relative and vacuum dielectric constants,
respectively, V is the applied voltage, and L is the distance between the ITO and Ag
electrodes. Both sides of this equation can be square rooted to give the following:

√
J =

√
9µεε0

8L3 V (2)

The change in J1/2 with V is linear. From this, the hole mobility µ can be obtained. A hole
mobility of 4.66 × 10−4 cm2 V−1 s−1 was calculated for the pure spiro-OMeTAD film. Mean-
while, comparable hole mobilities of 1.67 × 10−4 cm2 V−1 s−1 and 1.02× 10−4 cm2 V−1 s−1

were achieved for the PMMA-doped spiro-OMeTAD HTLs, with doping concentrations of
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1 mg/mL and 2 mg/mL, respectively. When the concentration reached 5 mg/mL, the hole
mobility decreased by an order of magnitude to 1.8 × 10−5 cm2 V−1 s−1, indicating poor
hole transport ability. The hole mobilities calculated from the SCLC model are similar to
previously reported values, indicating the accuracy of these results. It can be inferred that
the low-dose PMMA (1 and 2 mg/mL) has nearly no negative effect on the hole mobility of
spiro-OMeTAD. However, an overdose of PMMA in spiro-OMeTAD will greatly degrade
the hole mobility.

As shown in Figure 3a, when the concentration of PMMA is in the range of 0 mg/mL
to 2 mg/mL, the JSC parameters exhibit a slight downward trend. The VOC and FF show dif-
ferent changing trends, and these values increase with the increasing PMMA concentration.
Finally, solar cells reached the highest PCE at 2 mg/mL PMMA concentration. It is shown
that moderate PMMA improves the device PCE. When the concentration rises to 5mg/mL,
JSC, FF, and PCE start to decrease rapidly. The decreases in JSC and FF are mainly caused
by the transport carriers being blocked by the high concentration of PMMA. The highest
PCE of solar cells based on the pure spiro-OMeTAD HTL was 20.6%, accompanied by
JSC = 24.3 mA/cm2, VOC = 1.11 V, and FF = 77. The best performance of the PSCs was only
slightly affected by the low PMMA doping. Moreover, the highest PCE of the devices based
on 1 mg/mL (2 mg/mL) PMMA-doped spiro-OMeTAD HTL was 20.9% (21.2%), with the
JSC = 24.0 mA/cm2, VOC = 1.12 V, and FF = 78 (JSC = 23.9 mA/cm2, VOC = 1.13 V, and
FF = 78). When the PMMA concentration reaches 5 mg/mL, the device performance is seri-
ously degraded. Addiotnally, the highest PSC dropped to 9.6%, with the
JSC = 19.5 mA/cm2, VOC = 1.11 V, and FF = 45. Owing to the lack of π-conjugation, PMMA
inhibits transport carriers, and usually acts as an insulator for its self-connecting plane.
Consequently, the devices with 5 mg/mL PMMA exhibited low performance. The IPCE
curves of the best devices and corresponding integrated current densities are displayed in
Figure 3c. The devices with 0 mg/mL, 1 mg/mL, and 2 mg/mL PMMA exhibited a very
similar absorption in the visible light wavelength (300–800 nm), indicating that PMMA
had nearly no effect on light absorption. Moreover, the corresponding integrated current
densities were 23.8 mA/cm2, 23.6 mA/cm2, and 23.5 mA/cm2, respectively, which proves
the accuracy of the above JV curves. The stabilized power output at working state is one
important parameter to measure the PSCs’ performance. Figure 3d shows the stabilized
current density outputs of solar cells with 0 and 2 mg/mL PMMA at the MPP. The PSC
exhibited stabilized high performance, with efficiencies of 21.1% with PMMA addition. The
device without PMMA also displayed a steady-state output PCE of 20.4%. It was found
that 2 mg/mL PMMA is the optimal concentration.

Based on the above work, PMMA-doped spiro-OMeTAD exhibits a better protective
function than pure spiro-OMeTAD on the perovskite layer. To quantify the protective
effect, degradation parameters of the best cells with and without PMMA addition were
measured, and are exhibited in Table 1. The JV curves of these devices were measured and
the corresponding PCEs are shown in Figure S1.

Table 1. Parameters of PSCs with and without PMMA-doped spiro-OMeTAD in the air environment.

PSC-Day JSC (mA/cm2) VOC (V) FF (%) PCE (%)

Without PMMA-0 24.3 1.11 76 20.6
Without PMMA-20 23.7 1.10 71 18.7
Without PMMA-40 20.5 1.10 63 14.2
Without PMMA-80 15.3 1.08 55 9.0

With PMMA-0 23.9 1.13 78 21.2
With PMMA-20 23.6 1.13 74 19.8
With PMMA-40 22.7 1.12 70 17.6
With PMMA-80 21.4 1.12 67 16.3

As shown in Figure S1 and Table 1, the devices without PMMA addition were stored
and tested after storage for 0, 20, 40, and 80 days in the air environment. It should be
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noted that the stability test followed the ISOS-D1 test as a reference [29]. Compared
with the obvious decrease in efficiency from 20.6% to 9.0%, the VOC of the solar cells
exhibited a weaker drop. At the very beginning, the VOC of the device was 1.11 V, and
as the storage time extended to 20, 40, and 80 days, the VOC fell to 1.10 V, 1.10 V, and
1.08 V, respectively. Another parameter, JSC, also showed an apparent decrease over time,
with values decreasing from the initial 24.3 mA/cm2 to 23.7 mA/cm2, 20.5 mA/cm2, and
15.3 mA/cm2 after the storage times of 20, 40, and 80 days. As we have proved with the
above results, the perovskite crystal breaks down in the storage process when the PbI2 and
PbCl2 exist in the light absorption layer. The destroyed perovskite crystal vacancy and
PbI2 (PbCl2) can cause the recombination of carriers, accumulation of space charges, and a
further decrease in current density, with the introduction of more defects. In addition to
the drop in JSC, the FF also exhibited a distinct decrease from the original 0.76 to 0.71, 0.63,
and, finally, 0.55.
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stored and tested after storage for 0, 20, 40, and 80 days in the air environment. It should 
be noted that the stability test followed the ISOS-D1 test as a reference [29]. Compared 
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hibited a weaker drop. At the very beginning, the VOC of the device was 1.11 V, and as 

Figure 3. (a) Comparison of PSCs’ performance parameters, as follows: short-circuit current density
(JSC), open-circuit voltage (VOC), fill factor (FF), and power convention efficiency (PCE). All results
are based on 15 devices under the same working conditions. (b) The JV curves of the best devices
with different PMMA doping concentrations from 0 mg/mL to 5 mg/mL, and (c) incident photon-to-
electron conversion efficiency (IPCE) curves of the best devices and corresponding integrated current
densities, (d) the stabilized current density outputs of solar cells with 0 mg/mL and 2 mg/mL PMMA
at the maximum power point (MPP).

The JV curves of the devices with PMMA (2 mg/mL): spiro-OMeTAD displayed
a relatively negligible change when stored under the same conditions. The VOC barely
changed, ranging from 1.13 to 1.13, 1.12, and, ultimately, 1.12 V, after the storage times
of 0, 20, 40, and 80 days. The values for JSC were estimated to be 23.9, 23.6, 22.7, and
21.4 mA/cm2. The FF also exhibited relatively small changes, with values of 0.78, 0.74, 0.70,
and 0.67. The PCE of the solar cells with the addition of PMMA fell from 21.2% to 16.3%,
maintaining 77% of its original value after being stored in a natural air environment for
80 days. The long-term stability enhancement of the PMMA:spiro-OMeTAD-based devices
is mainly attributed to the protective effect of water diffusion into the light absorption layer.
The function of PMMA-doped spiro-OMeTAD was also confirmed by the results from a
recent study [30].
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To further demonstrate the accuracy of our results, the change in the parameter
statistics based on 15 devices are presented in Figure 4a–d. The PSCs without PMMA
exhibited an average decrease in PCE, maintaining 47% of the initial value after 80 days.
On the contrary, the PMMA-treated cells exhibited better efficiency stability, maintaining
78% of the initial value under the same conditions.
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Figure 4. The statistical device stabilities of (a) PCE, (b) JSC, (c) VOC, and (d) FF of spiro-OMeTAD
and PMMA (2 mg/mL): spiro-OMeTAD-based cells. These devices were kept in the air environment
with RH = 40% for 80 days.

To eliminate the effect of spiro-OMeTAD and Ag electrode degradations on device
performance under long-term storage conditions, we renovated the devices that had been
stored for 80 days by replacing the damaged spiro-OMeTAD with fresh spiro-OMeTAD,
and investigated the JV characteristics of the renovated devices. The renovating process
is shown in Figure S2, with the original Ag electrode removed by the 3M tape and the
damaged spiro-OMeTAD removed by CB washing. Then, the fresh spiro-OMeTAD was
spin-coated on the perovskite film, followed by the deposition of a new Ag electrode.
Finally, the JV characteristics of the original, long-term storage and renewed devices
are presented in Figure 5. The performance of the renewed devices showed an obvious
improvement compared to the long-term storage (80 days) devices, although it is well
below the performance of the original devices. These results indicate that the degradation
of spiro-OMeTAD itself is not the main factor causing instability. Silver migration and
water erosion induce the decomposition of perovskite film, which cannot be recovered by
the replacement of spiro-OMeTAD and Ag film. Additionally, the increase in PCE might
be due to the restoration of spiro-OMeTAD, and the contact between spiro-OMeTAD and
perovskite film. Based on the above results, it can be confirmed that PMMA doping is
helpful to improve the long-term storage stability of photovoltaic devices by protecting the
perovskite film.
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4. Conclusions

In conclusion, PSCs show long storage stability improvement with the addition of
PMMA in spiro-OMeTAD. The devices based on the PMMA:spiro-OMeTAD HTL exhibited
a high PCE of 21.2%, similar to the devices without PMMA, which indicates that PMMA
has no negative effect on PCE. The PMMA:spiro-OMeTAD-based devices show excellent
long-term stability, maintaining 77% of their original PCEs after being stored for 80 days in
the air environment. We provide evidence that PMMA plays a positive role in improving
the moisture- and oxygen-resistant ability of PSCs.
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