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Abstract: New non-crystallizable low-dispersity star-shaped polydimethylsiloxanes (PDMS) con-
taining stereoregular cis-tetra(organo)(dimethylsiloxy)cyclotetrasiloxanes containing methyl-, tolyl-
and phenyl-substituents at silicon atoms and the mixture of four stereoisomers of tetra[phenyl
(dimethylsiloxy)]cyclotetrasiloxane as the cores were synthesized. Their thermal and viscous proper-
ties were studied. All synthesized compounds were characterized by a complex of physicochemical
analysis methods: nuclear magnetic resonance (NMR), FT-IR spectroscopy, gel permeation chromatog-
raphy (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), viscometry
in solution, rheometry, and Langmuir trough study.

Keywords: star-shaped polymer; polydimethylsiloxane; organocyclotetrasilsesquioxane

1. Introduction

Creation of polymers with new macromolecular architecture is one of the principal
driving forces in the development of polymer science. The structure–properties relation-
ship, which is the cornerstone of polymeric chemistry guarantees that polymer of unusual
architecture would possess an unusual complex of properties [1,2]. Among a vast variety
of macromolecular structures, a big class of branched high-molecular compounds is distin-
guished. Bright representatives of this class are the star-shaped polymers (SSP). These are
branched macromolecules in which the arms (linear polymers) ‘grow’ from one branching
center (core). So, an atom, a molecule or a macromolecule can act as the branching center.
At the same time, it is supposed that the length of arms is identical [3]. An important
parameter for such polymers is the number of arms, their functionality and molecular
weight. The main feature of SSPs distinguishing them from linear analogs of identical
molecular masses is their compact structure (smaller hydrodynamic volume, and, therefore,
less viscosity) and possible wider functionality [4–6].

At present, there are various approaches to SSP synthesis. They can be divided into
three main types: “core-first”, “arm-first”, and “grafting-onto” [6]. Each of these approaches
has a certain number of advantages and disadvantages.
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Our interest in synthesis and research of siloxane SSP properties is determined by
their valuable properties, such as stability at high and low temperatures, water repellency,
biocompatibility, high gas permeability, UF radio-resistance, and a number of other unique
characteristics [7–10]. So far, the majority of the available publications on SSP synthesis
describe polymers where only one component has siloxane nature—it is either arms [11–20],
or a core [21–37]. The synthesis and study of properties of totally siloxane star-shaped
systems [38–42] are described in only some of publications.

We chose the grafting-onto method for the formation of star-shaped siloxane poly-
mers. This approach allows high-molecular compounds with the highest level of structural
control to be obtained, since SSP core and arms can be synthesized and characterized
separately, even before obtaining a target product. By using this method, we synthesized
a series of low dispersity polydimethylsiloxane SSPs. Their molecules contain flexible
stereoregular phenylcyclosilsesquioxanes [PhSi(O)OSiMe2H]n of various sizes, structures,
and functionality (n = 4, 5, 6, 8, 12), such as the branching center (core), as well as the cage
octahedral silsesquioxane playing the role of rigid point center [43,44]. It should be noted
that only two of six obtained polymers had three-dimensional spatial structures, traditional
for SSP, in which the arms spread in all directions from the branching center. These poly-
mers contain tris-cis-tris-trans-dodeca[phenyl(dimethylsiloxy)]cyclododecasiloxane and
octakis[(dimethylsiloxy)]octasilsesquioxane as the branching center. Other four polymers
with the molecules containing cis-configuration cycles as the core had absolutely different
spatial geometry, where all polydimethylsiloxane arms were arranged on one side of the
branching center plane. Similar star-shaped structures were not known before. In our
previous publication, we assessed the influence of size, branching cyclosiloxane center and
arms number on the properties of SSPs on their basis. In this paper, we were interested
in the influence of the frame in cyclosiloxane core, and also the stereoregularity of arms
arrangement relative to the cycle plane. For objective comparison, we obtained the mixture
of four stereoisomers of tetra[phenyl(dimethylsiloxy)]cyclotetrasiloxane, and stereoregular
cyclotetrasilsesquioxanes, containing methyl-, tolyl-, and phenyl-substituents at silicon
atom. The synthesized cyclotetrasilsesquioxanes were used as cores for SSP synthesis.

2. Experimental Part
2.1. Materials

Solvents were prepared according to earlier described technique [45].
n-BuLi (1.6 M solution in hexane), vinyldimethylchlorosilane—commercial products

(Acros). Hexamethylcyclotrisiloxane (D3); Karsted’s catalyst (solution of platinum complex
(0) with 1,3-divinyl-1,1,3,3-tetramethyldisiloxane in a xylene, Pt~2%mass.)—commercial
products (Sigma-Aldrich, St. Louis, MI, USA); sulfocationite (Amberlyst 15)—a commercial
product (abcr, Karlsruhe, Germany).

Functional stereoregular organocyclosilsesquioxanes were synthesized according to
earlier described technique [46–50].

2.2. Methods

NMR spectra were registered on Bruker Avance™ 600 spectrometer (Bruker, Berlin,
Germany) operating at 600.22, 150.93 and 119.26 MHz for 1H, 13C, and 29Si cores, respec-
tively, and Bruker Avance II 300 (Bruker). 1H and 13C chemical shifts were measured
relative to residual signals of corresponding solvents and calculated to tetramethylsilane.
29Si chemical shifts were measured relative to external standard - tetramethylsilane.

IR-spectra were registered with the use of FT-IR spectrometer Bruker Tensor 37 (Bruker,
Berlin, Germany). Samples were prepared by pressing KBr pellets.

High-resolution mass spectra (HRMS) were measured using Bruker micrOTOF II
instrument with electrospray ionization (ESI) (Bruker, Berlin, Germany).

The analysis by gel permeation chromatography (GPC) method was carried out on
chromatographs “Shimadzu” (Kyoto, Japan), detector—RID refractometer-20 A, column—
PSS SDV analytical 100 000 A (size (300 × 8 mm)); eluent—toluene; “Shimadzu” (Kyoto,
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Japan), detectors—RID refractometer-20 A and photodiode detector SPD-M20A, column—
Phenogel 500 A (the size (300 × 7,8 mm)); eluent—tetrahydrofuran.

The study by DSC method was conducted on DSC-822e device (Mettler-Toledo,
Greifensee, Switzerland) at 10 ◦C/min heating and cooling rates.

The study by TGA method was conducted on Derivatograph-C device, (MOM,
Mateszalka, Hungary) in air and in argon at 10 ◦C/min heating rate.

Rheological studies were conducted on Anton Paar MCR 302 rheometer (Graz, Aus-
tria), in the mode of constant shear rate, plane–plane measuring mode, plane diameter
25 mm.

The reduced viscosity of diluted solutions of obtained polymers was measured with an
Ubbelohde suspended level capillary viscometer in the concentrations range of 0.25–1 dl/g
at 25 ± 0.05 ◦C.

Formation and study of Langmuir layer properties was carried out on Minitrough
Extended (KSV, Espoo, Finland) with maximum area of the interphase surface equal to
558 cm2. Compression and expansion speed was 15 cm2 min−1. As a subphase, purified and
demineralized water with a specific resistance of 18.2 MOhm cm (at 25 ◦C) thermostatically
maintained at 20 ◦C with the use of Milli-Q (Millipore, Burlington, MA, USA) integrated
water purification system was utilized. The studied star-shaped copolymers were dissolved
in chloroform. Surface pressure was measured by Wilhelmy’s method with the use of a
rough platinum plate with 0.1 mN m−1 accuracy. Surface potential was measured by
method of vibrating electrode (KSV, Espoo, Finland) with 1 mV accuracy. The Langmuir
layers morphology directly on water surface was visualized by Brewster angle microscope
BAM-300 (KSV, Espoo, Finland). The images obtained, corresponding to 200 × 200 µm2

interface surface, were geometrically corrected taking into account Brewster angle of water
(53.1◦). Confidence intervals for the values obtained from surface pressure and surface
potential isotherms are 0.1 mN m−1 for surface pressure, 30 Å2 for the area per a molecule,
0.3 Å2 for the area per unit of a dimethylsiloxane and 5 mV for surface potential.

2.2.1. Reaction of Cis-Tetra[phenyl(dimethylsiloxy)cyclotetrasiloxane Isomerization

Briefly, 0.3 g (0.4 mmol) of cis-tetra[phenyl(dimethylsiloxy)]cyclotetrasiloxane and
0.015 g (5 masses. %) of sulfocationic resin were loaded into a two-neck flask. The reaction
in the ultrasonic bath continued for 4 h at 70 ◦C. To remove the sulfocationite, the reaction
mass was dissolved in hexane and filtered through the paper filter. The yield: 0.27 g (90%)
after solvent removing

1H NMR (600 MHz, CDCl3, ppm): δ 7.87–7.19 (m, Ph), 4.98–4.61 (m, SiH), 0.37–0.02
(m, Si(CH3)2), 7.21–7.23.

13C NMR (150 MHz, CDCl3, ppm): δ 0.15, 0.23, 0.35, 0.44, 0.54, 0.63, 127.56, 127.60,
127.63, 127.67, 127.70, 127.74, 130.0, 130.05, 130.10, 130.15, 130.22, 130.26, 132.47, 132.51,
132.68, 132.71, 132.90, 132.98, 134.0, 134.06, 134.09, 134.15, 134.18, 134.22.

29Si NMR (119 MHz, CDCl3, ppm): δ-78.46,-78.35,-78.33,-3.91,-3.83,-3.79,-3.75,-3.68,-3.66.
IR (ν/cm−1): 3095, 3073, 3053, 3016, 3007, 2961, 2902, 2134, 1430, 1253, 1135, 1066, 900,

836, 771, 697, 594, 485.
Mass spectrometry (ESI) of m/z is calculated for: C32H52NO8Si8, [(M + NH4)+]:

802.18, found 802.1842.
Elemental analysis found, %: C, 49.18; H, 6.15; Si, 28.35. Calculated for C32H48O8Si8,

%: C, 48.94; H, 6.16; Si, 28.61.

2.2.2. Synthesis of PDMS-15

Briefly, 132 mL of hexane, 45.06 g (202.5 mmol) of D 3 and 18.1 mL of n-BuLi (28.9 mmol,
1.6 M solution in hexane) were loaded into a one-neck flask supplied with a magnetic stirrer.
In 12 h, 75 mL of tetramethylene oxide (THF) was mixed into the system. In 6 h after adding
THF, 7 g (57.9 mmol) of vinyldimethylchlorosilane was added dropwise. The reaction mass
was filtered off from LiCl through the paper filter and solvents were removed to constant
weight. The yield: 42.85 g (95%) of a viscous transparent liquid.
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1H NMR (600 MHz, CDCl3, ppm): 6.25–5.75 (m, SiVin); 1.41–1.32 (m, SiBu); 0.96–0.92
(m, SiBu); 0.62–0.57 (m, SiBu); 0.21–0.10 (m, Si (CH3)2).

IR (ν/cm−1): 3052, 2963, 2905, 2875, 2860, 2799, 1944, 1596, 1445, 1410, 1260, 1191,
1092, 1022, 958, 862, 798, 702, 687, 669, 517.

GPC: Mn = 2.4 kDa, PDI = 1.13.

2.2.3. Synthesis of Star-Shaped Siloxane Polymers
General Synthesis Technique

Toluene, organocyclotetrasilsesquioxane, PDMS-15 and Karsted’s catalyst were loaded
into a one-neck flask supplied with a magnetic stirrer. Stirring continued for 2 days. Then
toluene solution was filtered through silica gel to remove Pt and concentrated. All polymers
were purified by method of preparative chromatography.

2.2.4. Synthesis of Me4-15 Star-Shaped Polymer

Toluene (22 mL), cis-tetra[methyl(dimethylsiloxy)]cyclotetrasiloxane (0.2 g, 0.38 mmol),
PDMS-15 (2 g, 1.6 mmol) and Karsted’s catalyst (4 µL). The yield: 1.99 g (91%) of a viscous
transparent liquid.

1H NMR (600 MHz, CDCl3, ppm): δ 1.36–1.31 (m, SiBu); 0.92–0.89 (m, SiBu); 0.57–0.54
(m, SiBu); 0.49–0.44 (m, SiCH2 CH2); 0.16–0.06 (m, Si(CH3)2, SiCH3).

IR (ν/cm−1): 2963, 2911, 2801, 2054, 1946, 1732, 1602, 1447, 1408, 1261, 1090, 1028,
799, 695.

GPC: Mn = 6.6 kDa, PDI = 1.08.

2.2.5. Synthesis of Ph4-15 Star-Shaped Polymer

Toluene (23 mL), cis-tetra[phenyl(dimethylsiloxy)]cyclotetrasiloxane (0.3 g, 0.38 mmol),
PDMS-15 (2 g, 1.6 mmol) and Karsted’s catalyst (4 µL). The yield: 2.11 g (96%) of a viscous
transparent liquid.

1H NMR (600 MHz, CDCl3, ppm): δ 7.30–7.24 (m, SiPh); 7.09–7.06 (m, SiPh); 1.37–1.30
(m, SiBu); 0.92–0.89 (m, SiBu); 0.57–0.54 (m, SiBu); 0.50–0.39 (m, SiCH2CH2); 0.21–0.02 (m,
Si(CH3)2).

IR (ν/cm−1): 2962, 2910, 1409, 1260, 1091, 1027, 801, 740, 697.
GPC: Mn = 6.7 kDa, PDI = 1.14.

2.2.6. Synthesis of Phr
4-15 Star-Shaped Polymer

Toluene (23 mL), mixture of tetra[phenyl(dimethylsiloxy)]cyclotetrasiloxane (0.32 g,
0.41 mmol) isomers, PDMS-15 (2 g, 1.6 mmol) and Karsted’s catalyst (4 µL). The yield: 2 g
(91%) of a viscous transparent liquid.

1H NMR (600 MHz, CDCl3, ppm): δ 7.77–7.04 (m, SiPh); 1.34–1.24 (m, SiBu); 0.88–0.85
(m, SiBu); 0.54–0.50 (m, SiBu); 0.42–0.25 (m, SiCH2CH2); 0.21–0.21 (m, Si(CH3)2).

IR (ν/cm−1): 3062, 2962, 2910, 2800, 1409, 1260, 1088, 1027, 800, 739, 697.
GPC: Mn = 6 kDa, PDI = 1.11.

2.2.7. Synthesis of Tol4-15 Star-Shaped Polymer

Toluene (42 mL), cis-tetra[tolyl(dimethylsiloxy)]cyclotetrasiloxane (0.58 g, 0.7 mmol),
PDMS-15 (3.84 g, 3.1 mmol) and Karsted’s catalyst (6 mcl). The: 3.95 g (98%) of a viscous
transparent liquid.

1H NMR (600 MHz, CDCl3, ppm): δ 7.21–7.18 (m, SiTol); 6.69–6.89 (m, SiTol); 6.69–6.89
(m, SiTol); 1.36–1.30 (m, SiBu); 0.91–0.89 (m, SiBu); 0.57–0.54 (m, SiBu); 0.47–0.37 (m,
SiCH2CH2); 0.19–0.02 (m, Si(CH3)2).

IR (ν/cm−1): 2962, 2912, 2800, 1408, 1260, 1091, 1027, 800, 690.
GPC: Mn = 7.9 kDa, PDI = 1.13.
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3. Results and their Discussion
3.1. Cores Synthesis

Synthesis of cis-tetraorganocyclotetrasilsesquioxanes containing methyl-, tolyl-, and
phenyl- groups was carried out according to Scheme 1.
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Scheme 1. General scheme of cis-tetraorganocyclotetrasilsesquioxanes synthesis.

The respective organotrialkoxysilane was treated by equimolar quantity of sodium
hydroxide or potassium hydroxide in presence of equimolar amount of water. n-Butanol
was used as solvent in case of tolyl- and phenyl- substituent; in case of methyl- substituent,
methanol and hexane mixture with 1/7 ratio was used. For further use of these cycles as
SSP cores, they were treated by dimethylchlorosilane according to Scheme 1.

The isomerization of cis-tetra[phenyl(dimethylsiloxy)]cyclotetrasiloxane was carried
out in mass in presence of sulfocationite (Amberlyst 15) at 70 ◦C for 4 h (Scheme 2). As a
result, the mixture of all four isomers in equal quantities with 90% yield was formed.
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The kinetics of isomerization process was monitored by 1H NMR method (Figure 1).
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Figure 1. 1H NMR-spectra of initial compound (violet), after 1 h from the beginning of reaction
(turquoise), after 2 h (green) and after 4 h (burgundy).

Reaction mass samples were taken after 1, 2, and 4 h from the beginning of reaction.
According to the 1H NMR spectroscopy data of initial compound, cis-tetra[phenyl

(dimethylsiloxy)]cyclotetrasiloxane (a violet curve), in the field of 4.9 ppm we observe a
signal that corresponds to SiH-group. As isomerization goes on, the emergence of new
signals in the field of 4.5–5 ppm (turquoise and green curves), which correspond to SiH
isomers groups is observed. The appearance of signals of equal intensity for all SiHgroups
in the region of 4.5–5 ppm (burgundy curve) shows the moment when the reaction ends.
The isomerization reaction is completely over (stopped) 4 h after the start.

Composition of mixture obtained and structure of isomers were identified by 1H
NMR-spectroscopy (Figure 2).
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According to GPC data, the hydrodynamic radius of isomers in the mixture and of
initial cis-tetra[phenyl(dimethylsiloxy)]cyclotetrasiloxane coincide (Figure 3).
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3.2. Synthesis of Arm

The monofunctional PDMS-arm with n = 15 polymerization degree was synthesized
by method of living anionic polymerization of hexamethylcyclotrisiloxane in presence of
n-BuLi, with subsequent blocking by vinyldimethylchlorosilane (Scheme 3).
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3.3. Assembly of Star-Shaped Polydimethylsiloxanes

For SSP synthesis on the basis of various tetracyclic cores, the reaction of hydrosilyla-
tion was carried out in the presence of Karsted’s catalyst in toluene (Scheme 4).
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Scheme 4. The scheme of SSP synthesis on the basis of tetra[organo (dimethylsiloxy)] cyclotetrasiloxane.

The course of the reaction was monitored by 1H NMR based on the disappearance
of SiH signals in the initial organocyclosiloxane. Four SSPs with identical quantity and
length of arms but with different cores were synthesized as a result. Molecular-mass
characteristics of the polymers obtained are presented in Table 1. All polymers have narrow
molecular-mass distribution.

Table 1. Molecular-mass characteristics of a linear arm and star-shaped polymers.

Sample Mn
NMR, kDa Mn

GPC, kDa Mw
GPC, kDa PDI Output, %

PDMS-15 1.3 2.4 2.7 1.13 95

Ph4-15 5.9 6.7 7.6 1.14 96

Phr
4-15 5.9 6 6.7 1.11 91

Tol4-15 5.9 7.9 8.9 1.13 98

Me4-15 5.5 6.6 7.1 1.08 91

3.4. Thermal Properties

The synthesized SSP and the initial arm (PDMS-15) were studied by TGA and
DSC methods.

In Figure 4, DSC curves for Phr
4-15, Me4-15, Ph4-15 и, and Tol4-15 polymers differing

in organic substituent at Si atom and stereoregularity of the cyclic core, (Phr
4-15 and

Ph4-15 polymers) and initial PDMS-15 are presented. According to DSC data obtained,
full suppression of PDMS-arm crystallization process is observed in all SSPs. Similarly,
crystallization of side chains was not observed for SSPs with 21 PDMS units per arm [44].
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Thus, introduction of a cyclic fragment as the branching core suppresses the ability of
polymeric chains of the target products to crystallize.
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Figure 4. DSC curves for PDMS-15 (1) and Me4-15 (2), Tol4-15 (3), Ph4-15 (4), Phr
4-15 (5) star-shaped

polymers at 10 ◦C/min heating rate.

Glass-transition temperatures for all SSPs are close and are within −124 to −122 ◦C
that is characteristic of classical linear PDMS [51].

TGA data obtained for Phr
4-15, Me4-15, Ph4-15, and Tol4-15 polymers and PDMS-15

arm are presented in Table 2 and in Figure 5. They show SSP improved thermal and thermo-
oxidative stability compared with their linear arm. The destruction onset temperatures in
argon and in air are within temperature limits typical for linear PDMS of similar molecular
weight [51].

Table 2. Thermal characteristics of SSP obtained.

Sample Tg, C Tcc, C Tm, C
Td

5%, C M, Mas. %

Air Argon Air Argon

PDMS-15 −133 −83 −60 234 281 43 4

Ph4-15 −123 - - 331 410 43 11

Phr
4-15 −122 - - 337 420 50 13

Tol4-15 −124 - - 357 439 20 16

Me4-15 −123 - - 322 413 46 9
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3.5. Rheological Properties
In Solution

Intrinsic viscosity [η] depends on solvent quality, i.e., on its thermodynamic affinity to
polymer. The macromolecular coil in various solvents swells differently. The “better” is
the solvent the bigger is its size that, in turn, results in bigger hydrodynamic resistance to
flow and [η] increase. Heptane is a “good” solvent for PDMS that is confirmed by value χ

= 0.409 defined in [52]. In [53], the constants of Mark–Kuhn–Houwink equation for linear
PDMS in heptane at 25 ◦C [η] = 1.207 × 10−4 M0.741 were found.

The measured values of intrinsic viscosity for SSP and calculated values of intrinsic
viscosity of their linear analogs are presented in Table 3 and Figure 6.
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Table 3. Rheological properties of SSP in solution and in bulk.

Sample Star/
Linear Polymer

Pa*s
Star Ea, kJ/mol

Ph4-15 0.049/0.091 0.081 16.3

Phr
4-15 0.044/0.083 0.080 16.6

Tol4-15 0.047/0.100 0.080 16.3

Me4-15 0.054/0.086 0.073 15.8
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In Figure 6, concentration dependencies of reduced viscosity of diluted solutions in
heptane are presented. The values of intrinsic viscosity [η] defined at C→ 0 are given in
Table 3.

As presented data show (Table 3 and the Figure 6), all SSPs have small intrinsic
viscosity values irrespective of macromolecule branching-out center structure that might
evidence rather dense SSP macromolecule packing in solution.

The results of SSP rheological study in bulk are presented in Table 3. Low viscosity
values in both solution and block are characteristic of practically all studied samples, and
still viscous flow activation energy values “feel” the cyclic branching-out center. For all
studied samples, viscous flow has high power consumption.

Flow curves of SSP and of their linear analog PMS-200 are presented in Figure 7. As
Figure 7 shows, SSP viscosity practically does not depend on shift rate that indicates the
Newtonian character of the flow.

For linear polymer, the Newtonian flow begins at shear rates over 100 s−1. At smaller
shift rates, viscosity decreases as the shift rate grows that is related to gradual orientation
of polymer macromolecules in the shear field. SSP viscosity in the whole interval of shear
rates is less than for linear polymer, and Me4-15 has the least viscosity among SSPs.

Flow curves of Ph4-15 at various temperatures are presented in Figure 8. Similar
dependencies were also obtained for other SSPs.

The viscosity temperature dependencies in Arrhenius equation coordinates (Figure 9)
were plotted.
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They have linear shape that allows to calculate viscous flow activation energy (Ea) for
all SSPs.

Based upon the data obtained, it can be assumed that the macromolecule coil size in
bulk is smaller than for the polydimethylsiloxane analog. On the other hand, as PDMS-
arms have much smaller length, they orient quicker in the shift field that is confirmed by
the Newtonian character of their flow at all shear rates.

3.6. Langmuir Layers

Amphiphilic siloxane SSPs form Langmuir monolayers at the air–water interface after
spreading of the solutions and evaporation of the solvent. The macromolecules contain
identical hydrophilic fragments and differ by hydrophobic substituents. Hydrophilic
covalent-ionic Si-O bonds are directed into water subphase and form hydrogen bonds
with water molecules. Hydrophobic butyl-, methyl-, phenyl-, or tolyl- groups are directed
into air phase. SSPs studied in this paper differ from their analogs with bigger number
of arms [44]. They have strictly four arms of 15 Si-O units instead of 21. Their cores
contain both similar [44] phenyl-groups, and methyl- or tolyl- groups. Such SSP selection
allows the discovery of the following: (1) whether SSP behavior in Langmuir monolayers
is influenced by the type of hydrophobic groups in the core (among Me4-15, Ph4-15,
and Tol4-15); (2) how regular cis-SSP features manifest themselves in comparison with
their irregular analog, while all their other molecular parameters are identical (Phr

4-15,
and Ph4-15).

Dependencies of surface pressure (π) and surface potential (∆U) on the area of inter-
phase surface per molecule (A) for Me4-15 are given in Figure 10, for Phr

4-15, Ph4-15, and
Tol4-15 in Figure 11. A–D points on curve 1 in Figure 10 correspond to traditional [54–56]
designation of π-A isotherm characteristic points of PDMS. Values of surface pressure,
surface areas both per molecule and per repeating dimethylsiloxane unit in points A–D,
and surface potential ranges (defined similarly as shown for curve 1 in Figure 10) are
summarized in Table 4. Calculation of changes in surface areas per repeating dimethyl-
siloxane unit allows SSPs to be compared with each other, with PDMS, and with SSPs [44].
Brewster angle microscopy images for SSP Langmuir layers are shown in Figure 12.
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Table 4. Characteristic points A–D of π-A and ∆U-A isotherms for Me4-15, Ph4-15, Phr
4-15, Tol4-15.

A B C D

PDMS
[57,58]

Area per (OSi(CH3)2) unit, Å2 19.0 15.0 8.0 7.0
Surface pressure, mN m−1 0 7.0 8.5 9.0

Surface potential range, mV 190–200

Me4-15

Area per a molecule, Å2 1780 1410 790 690
Area per (OSi(CH3)2) unit, Å2 18.5 14.6 8.2 7.2

Surface pressure, mNm−1 0 6.8 7.6 8.1
Surface potential range, mV 180–195

Ph4-15

Area per a molecule, Å2 1900 1530 850 700
Area per (OSi(CH3)2) unit, Å2 18.5 14.9 8.3 6.8

Surface pressure, mN m−1 0 6.2 7.2 8.6
Surface potential range, mV 150–175

Phr
4-15

Area per a molecule, Å2 1680 1340 750 610
Area per (OSi(CH3)2) unit, Å2 18.6 14.8 8.3 6.7

Surface pressure, mN m−1 0 6.1 7.0 8.4
Surface potential interval, mV 160–175

Tol4-15

Area per a molecule, Å2 2230 1800 1010 800
Area per (OSi(CH3)2) unit, Å2 18.6 14.9 8.4 6.6

Surface pressure, mN m−1 0 6 7.0 8.4
Surface potential interval, mV 155–180
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Figure 12. Brewster angle microscopy images of Me4-15 Langmuir layer surface obtained at com-
pression up to the following values of surface pressure and area per a molecule: 0 mN m−1 and
1890 Å2 (a), 3.8 mN m−1 and 1610 Å2 (b), 7.5 mN m−1 and 1030 Å2 (c), 8.4 mN m−1 and 490 Å2 (d).

Me4-15 contains butyl groups at the ends of arms as well as methyl groups as sub-
stituents at Si atoms similarly to PDMS. The shape of π-A isotherm and the range of surface
pressure change between the points C and D (0.5 mN m−1) for Me4-15 are similar to
the ones observed for linear PDMS. In Brewster angle microscopy images in the area of
zero surface pressure (Figure 12a), the border of darker water surface, and lighter Me4-15
monolayer, is visible. At the same time, prior to surface pressure rise, the surface potential
isotherm exhibits a jump from zero to positive ∆U values in a narrow interval of surface
area change (curve 3 in Figure 10). On compression of a monolayer in the A–B region of π-A
isotherm (curve 1 in Figure 10), the water surface is completely covered with a monolayer
(Figure 12b); the conformational transition in siloxane arms in the B–C region of the π-A
isotherm does not change Langmuir monolayer surface morphology (Figure 12c). Two
hypotheses [57] of conformational transformations of siloxane chain in the B–C region of
π-A isotherm of PDMS are known: the formation of horizontal folds from odd quantity of
chain segments, or a helix with six dimethylsiloxane units per one turn (analog of Dam-
aschun helicoid at crystallization). However, the surface pressure values in Me4-15 collapse
point are lower than those typical for PDMS [57,58]. It can result from both Me4-15 rather
low molecular mass as well as formation of less stable layer due to formation of helices
consisting of only two coil turns assumed by each SSP arm, or steric difficulties caused by
attachment of one of PDMS-arms end to the central cycle.

After the final collapse of Langmuir layer in point D (Figure 12d), Me4-15 excess
accumulates into lenses, similar to [44]. Brewster angle microscopy image shows bright
domains on a dark surface. In the range A–D, surface potential fluctuates irrespective of
conformational transformations of the siloxane chain and Langmuir film collapse (curve 3
Figure 10).

An increase in size of organic substituents attached to the core, in Ph4-15, Phr
4-15, and

Tol4-15 results in surface pressure decrease in points B and C of π-A isotherm together
with its increase in point D in comparison with Me4-15 (Figures 10 and 11). At the same
time, the surface-pressure jump between points C and D increases to 1.4 mN m−1 for
Ph4-15, Phr

4-15, and Tol4-15. It exceeds the range of 0.9 mN m−1, which was typical for
Ph4-15 analog with arm length of 21 dimethylsiloxane units [44]. Morphological changes
in Langmuir monolayers of Ph4-15, Phr

4-15, and Tol4-15 polymers according to Brewster
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angle microscopy are similar to presented for Me4-15 in Figure 12. The surface potential
obtained on compression of Ph4-15, Phr

4-15, and Tol4-15 in the A–D region fluctuates in
the range of 150–180 mV, which is reduced in comparison to 180–200 mV typical for linear
PDMS and Me4-15 polymer.

The shape of surface pressure isotherms obtained on expansion of Me4-15 and Phr
4-

15 Langmuir layers (curves 2 in Figures 10 and 11) are similar to those obtained under
compression. The hysteresis in compression–expansion cycle is observed in the whole
range of surface areas. After Langmuir layers expansion, the excess of polymers collapsed
in lenses spreads in a monolayer with conformational transformations of helix or folded
chains into straightened ones. The π-A and ∆U-A isotherm shapes, as well as the change in
Langmuir layers surface morphology in compression–expansion cycle, indicate their liquid
aggregate state.

4. Conclusions

The isomerization of cis-tetra[(phenyl)(dimethylsiloxane)]cyclotetrasiloxane was car-
ried out for the first time and the mix of all four isomers in equal quantities was obtained
with 90% yield. Four new narrow-dispersity non-crystallizable star-shaped polydimethyl-
siloxanes were synthesized. Their molecules contain identical number of arms of identical
length, but have differences in the branching-out center. Cis-tetratolyl-, cis-tetraphenyl-,
and cis-tetramethylsilsesquioxane cycles serve as the branching-out center in three SSPs,
respectively. One SSP has the mix of four stereoisomers as a core. SSP viscosimetric
research showed that their macromolecules are small-size dense coil in both solution and
in bulk.

SSP study in Langmuir layers at the air–water interface showed that the increase in
the size of organic substituents in cyclic core is a major factor for increased stability of
Langmuir layer before a collapse. Thus, Me4-15 polymer forms less stable Langmuir layers
by 1 mN m−1 than PDMS due to macromolecule structure change from linear to star-shaped
and smaller molecular weight. Replacement of only four methyl groups in a SSP cyclic core
to phenyl or tolyl without considerable change in molecular-mass characteristics, strikingly
changes the form of the surface pressure isotherm and increases the stability of the layer by
0.5 mN m−1.

At the same time, as the general tendency in behavior of studied SSP, we note the
determinative influence of PDMS-arms in comparison with the features of the branching-
out center structure. It seems advisable to continue the assessment of influence of various
elements of the SSP structure with an even bigger reduction in arms length that would
allow the influence of branching-out center features on SSP properties to be more accurately
revealed.
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