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Abstract: Poly(ethylene succinate-co-1,2-propylene succinate) (PEPS) is a novel aliphatic biodegrad-
able polyester with good mechanical properties. Due to the presence of methyl as a side group, the
crystallization rate of PEPS is remarkably slower than that of the poly(ethylene succinate) homopoly-
mer. To promote the potential application of PEPS, the effect of cellulose nanocrystals (CNC) on
the crystallization behavior, crystalline morphology, and crystal structure of PEPS was investigated
in this research with the aim of increasing the crystallization rate. CNC enhanced both the melt
crystallization behavior of PEPS during the cooling process and the overall crystallization rate during
the isothermal crystallization process. The crystallization rate of PEPS became faster with an increase
in CNC content. The crystalline morphology study directly confirmed the heterogeneous nucleating
agent role of CNC. The crystal structure of PEPS remained unchanged in the composites. On the basis
of the interfacial energy, the nucleation mechanism of PEPS in the composites was further discussed
by taking into consideration the induction of CNC.

Keywords: poly(ethylene succinate-co-1,2-propylene succinate); cellulose nanocrystals; crystallization

1. Introduction

Due to the growing concerns regarding both fossil resource deficiency and envi-
ronment protection, bio-based and biodegradable aliphatic polyesters have been the re-
search focus, from a sustainable viewpoint, ofboth the academic and industrial fields in
recent decades [1–6]. Poly(ethylene succinate) (PES) is a typical member of bio-based and
biodegradable aliphatic polyesters, as the monomers to synthesize PES, i.e., ethylene glycol
and succinic acid, may be derived from either fossil resource or bio-based resources. It
shows a melting point (Tm) of approximately 103 ◦C with a glass transition temperature
(Tg) of −11 ◦C; in addition, the tensile mechanical property of PES is comparable to those
of low-density polyethylene and polypropylene [7–13]. For instance, it displays a tensile
modulus (Et) of 409 ± 13 MPa, a tensile strength (σ) of 23.4 ± 1.5 MPa, and an elonga-
tion at break (ε) of 285 ± 30% [14]. To modify the physical properties and meet various
practical application requirements, some PES based copolymers have been synthesized
through the copolymerization method by introducing a new linear diol or diacid monomer
during the polymerization process of PES [15–20]. With respect to PES, these copolymers
usually display lower Tm values and better toughness with higher ε values [15–20]. In
addition, some novel PES based copolymers with different lengths of side groups have
also been synthesized and studied in the literature by the use of some 1,2-diols, such as
1,2-propanediol, 1,2-hexanediol, and 1,2-decanediol, as comonomers [14,21–24]. These
novel PES-based copolymers show the same main chain structures as PES, except that some
side groups (such as methyl, butyl, and octyl) are randomly linked to the polymer main
chain. In a previous study, the effect of different lengths of side groups on the thermal,
crystallization, and mechanical properties of PES were systematically investigated [24].
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Among these copolymers, poly(ethylene succinate-co-1,2-propylene succinate) (PEPS) is
of great importance and interest, as the presence of a small amount of the simplest C−H
side group of methyl (−CH3) can lead to a remarkable change of the physical properties
of PES [14,24]. For instance, the storage modulus, loss modulus, and complex viscosity of
PEPS were significantly higher than those of PES; even the 1,2-propylene succinate (PS)
unit was only approximately 5 mol%. In addition, the tensile mechanical property of PEPS
was superior to that of PES. For instance, PEPS with roughly 5 mol% of PS unit showed
a higher σ of 40.9 ± 4.1 MPa and a higher ε of 755 ± 91%, while the σ and ε values of
PES were only 23.4 ± 1.5 MPa and 285 ± 30%, respectively [14]. Although PEPS showed
better rheological and tensile mechanical properties than PES, the crystallization rate of
PEPS became slower due to the random copolymer feature. From a practical application
viewpoint, the crystallization rate of PEPS should be remarkably enhanced. So far, the
use of heterogeneous nucleating agents has been regarded as the most efficient method to
accelerate the crystallization of polymer materials because it may both provide sufficient
active nucleating sites and reduce the nucleation activation energy barrier of polymer
crystallization [7–13,23].

Among the widely used nucleating agents, cellulose nanocrystals (CNC) are of partic-
ular interest. The characteristics of CNC are as follows: bio-based, biodegradable, highly
crystalline, rod-like, high aspect ratio, and superior mechanical property; in addition, the
hydroxyl groups on the surface also provide the possibility of chemical modification to
increase the solubility in organic solvent and the compatibility with polymer matrix [25–28].
So far, some CNC nucleated biodegradable polymers have been reported in the literature,
such as poly(ε-caprolactone) (PCL), poly(L-lactic acid) (PLLA), PES, poly(butylene succi-
nate) (PBS), poly(hexamethylene succinate) (PHS), poly(butylene succinate-co-butylene
adipate) (PBSA), and poly(ethylene adipate) (PEA) [29–40].

In this research, we prepared low contents of CNC nucleated PEPS composites and
extensively studied the effect of CNC as a heterogeneous nucleating agent on the crystal-
lization of PEPS. CNC could induce the melt crystallization of PEPS at a relatively fast
cooling rate of 20 ◦C/min; moreover, CNC remarkably shortened the crystallization time
and crystallization half-time of PEPS during the isothermal crystallization indicating the
efficient nucleating agent effect. The significance of this study is summarized as follows.
On the one hand, PEPS/CNC composites, both of which were biodegradable, were pre-
pared and studied for the first time. On the other hand, CNC significantly accelerated the
crystallization of PEPS under different crystallization conditions; moreover, we further
reasonably discussed the nucleation mechanism of PEPS induced by CNC on the basis of
the interfacial energy. Therefore, this research is important and interesting in the fields of
both polymer crystallization and biodegradable polymer composites.

2. Experimental Section
2.1. Materials

PEPS (Mn = 5.3 × 104 g/mol, PDI = 1.89, and PS content = 4.1 mol%) was synthe-
sized via a two-stage melt polycondensation reaction in our laboratory [14]. CNC (with
an average diameter of 5~20 nm and length of 50~200 nm) was produced by Shanghai
ScienceK Nanotechnology Co., Ltd. N,N-dimethylformamide (DMF) (purity = 99.5%) was
bought from Tianjin Damao Chemical Reagent Factory, China.

The chemical structures of PEPS and CNC are illustrated in Figure 1.

2.2. Preparation of PEPS/CNC Composites

Three PEPS/CNC composites, i.e., PEPS/CNC0.25, PEPS/CNC0.5, and PEPS/CNC1,
were prepared in this research, with the number being the wt% of CNC. The preparation
procedure of PEPS/CNC1 was simply described as follows. First, PEPS (2.97 g) was
dissolved into DMF (35 mL) at 40 ◦C for 2.5 h, and CNC (30 mg) was dispersed into
DMF (15 mL) after a sonication process of 2.5 h. Second, the PEPS solution and the CNC
dispersion were mixed together at 40 ◦C for 4.5 h. Third, the film was obtained after
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evaporating DMF at 40 ◦C for one night in a fume hood and for 7 days in a vacuum oven.
Similarly, PEPS/CNC0.25 and PEPS/CNC0.5 were also prepared.
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2.3. Characterizations

Thermogravimetric analysis (TGA) was performed on a TA instrument Q50 to study
the thermal stability of PEPS and PEPS/CNC composites under nitrogen atmosphere at
a heating rate of 20 ◦C/min.

The crystallization behavior of PEPS and PEPS/CNC composites was investigated
with a TA Q100 differential scanning calorimeter (DSC) under a nitrogen atmosphere. The
weight of each sample was approximately 4~5 mg. For each test, the thermal history
of a fresh sample was first eliminated by heating at 40 ◦C/min to 130 ◦C (almost 40 ◦C
above the Tm of 93.9 ◦C for PEPS) and holding there for 3 min. The nonisothermal melt
crystallization behavior of PEPS and PEPS/CNC composites was studied at a cooling rate
of 20 ◦C/min after the elimination of the previous thermal history of the samples. In the
case of the isothermal melt crystallization kinetics study, the sample was isothermally
crystallized at the chosen crystallization temperature (Tc) for sufficient time after cooling
from the crystal-free melt at 60 ◦C/min after the elimination of previous thermal history. In
this research, the crystallization was studied in a Tc range from 63 to 71 ◦C.

A polarized optical microscope (POM) (Olympus BX51) equipped with a hot stage
(Linkam THMS 600) was used to observe the spherulitic morphology of PEPS and
PEPS/CNC composites.

A Rigaku Ultima IV X-ray diffractometer was operated at 40 kV and 200 mA to study
the crystal structures of PEPS and PEPS/CNC composites. The wide-angle X-ray diffraction
(WAXD) experiments were performed with a rate of 5◦/min at ambient temperature in
a 2θ range of 5◦ to 40◦. The samples for the WAXD measurement underwent an isothermal
crystallization at 63 ◦C for 8 h in an oven.

3. Results and Discussion

Thermal decomposition temperature (Td) is an important physical parameter from the
viewpoints of both polymer processing and the long time use at elevated temperatures. The
influence of CNC on the thermal stability of PEPS was first explored with TGA at a heating
rate of 20 ◦C/min under a nitrogen atmosphere. Figure 2 demonstrates the TGA curves of
PEPS and PEPS/CNC composites, from which one-step thermal decomposition behavior
was found for all samples, irrespective of CNC content. The Td values, corresponding
to 5 wt% weight losses, were read from Figure 2, which increased slightly from 338.3 ◦C
for PEPS to about 343.7 ◦C for the composites. The slight increase in Td arose from the
presence of CNC, which played a role in physical barriers and hindered the heat transfer
and permeation of combustion gas in the PEPS matrix [35].
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Figure 2. TGA curves of PEPS and PEPS/CNC composites.

Although PEPS has the same main chain structure as PES, the presence of methyl
as a side group destroys the regularity of the main chain structure. As a result, the
crystallizability of PEPS is remarkably weaker than that of the PES homopolymer. The
DSC cooling traces are depicted in Figure 3 for PEPS and PEPS/CNC composites, which
were nonisothermally crystallized at a fast cooling rate of 20 ◦C/min from the crystal-
free melt. Under this crystallization condition, PEPS did not crystallize, showing no
crystallization exothermic peak in Figure 3. On the contrary, regardless of CNC content,
the three PEPS/CNC composites showed obvious crystallization exothermic peaks during
the crystallization process, indicating that CNC played an outstanding nucleating agent
role and enhanced the crystallization of PEPS. From Figure 3, the melt crystallization
temperature (Tmc) was determined. The Tmc values gradually increased from 28.3 ◦C for
PEPS/CNC0.25 to 29.7 ◦C for PEPS/CNC0.5 and 35.5 ◦C for PEPS/CNC1, respectively.
Similarly, the melt crystallization enthalpy (∆Hmc) remarkably increased from 21.9 J/g for
PEPS/CNC0.25 to 47.1 and 54.6 J/g for PEPS/CNC0.5 and PEPS/CNC1, respectively. By
using the equilibrium heat of fusion of PES (180 J/g) [10], the absolute degree of crystallinity
values of the three composites was approximately calculated to be 12.2%, 26.2% and 30.3%,
respectively. The obvious increase in both Tmc and ∆Hmc revealed that CNC remarkably
enhanced the melt crystallization of PEPS even at a relatively fast cooling rate of 20 ◦C/min
as an efficient nucleating agent.
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The effect of CNC on the isothermal melt crystallization kinetics of PEPS was further
investigated with DSC in this research. Figure 4a show the plots of relative crystallinity
versus crystallization time of PEPS and PEPS/CNC composites at a Tc of 71 ◦C. Due to the
small degree of supercooling, PEPS crystallized slowly and required 87.8 min to complete
the crystallization, while the total crystallization time for PEPS remarkably became shorter
in the composites. For instance, PEPS/CNC0.25 needed 29.6 min to finish the crystallization,
while PEPS/CNC1 even only required 18.2 min at the same Tc, suggesting that the higher
the CNC content, the shorter the crystallization time. The significantly short crystallization
time of PEPS/CNC composites indicated that the isothermal melt crystallization of PEPS
was also promoted by CNC as an effective nucleating agent.
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The well-known Avrami equation was utilized to analyze the isothermal crystallization
kinetics of PEPS and PEPS/CNC composites. Relative crystallinity shows a relationship
with crystallization time as follows:

1 − Xt = exp(−ktn) (1)

where Xt is the relative crystallinity at crystallization time (t), k is the crystallization rate
constant, and n is the Avrami exponent [41–46]. Figure 4b depict the related Avrami plots
at 71 ◦C, showing almost parallel fitting lines for PEPS and PEPS/CNC composites, from
which the n and k values were obtained. PEPS and PEPS/CNC showed similar results
when they were crystallized at other Tc values. For simplicity, they are not shown here.
Table 1 summarize the related isothermal crystallization kinetics parameters for PEPS and
PEPS/CNC composites in the investigated Tc range.

Table 1. Isothermal crystallization kinetics parameters for PEPS and PEPS/CNC composites.

Samples Tc (◦C) n k (min−n) t0.5 (min) t1/2 (min)

PEPS

63 2.1 1.94 × 10−3 16.4 16.0
65 2.2 8.90 × 10−4 20.6 20.0
67 2.2 5.71 × 10−4 25.2 26.7
69 2.2 3.10 × 10−4 33.3 32.1
71 2.3 1.30 × 10−4 41.8 45.1

PEPS/CNC0.25

63 2.6 2.81 × 10−2 3.4 3.5
65 2.5 2.30 × 10−2 3.9 4.2
67 2.5 7.90 × 10−3 6.0 6.2
69 2.4 6.37 × 10−3 7.1 8.4
71 2.3 2.38 × 10−3 11.8 11.8

PEPS/CNC0.5

63 2.6 4.19 × 10−2 2.9 2.9
65 2.7 1.82 × 10−2 3.8 3.9
67 2.6 8.43 × 10−3 5.5 5.3
69 2.4 7.30 × 10−3 6.7 7.1
71 2.4 2.39 × 10−3 10.6 10.2

PEPS/CNC1

63 2.8 3.72 × 10−2 2.8 2.7
65 2.6 2.68 × 10−2 3.5 3.5
67 2.4 1.90 × 10−2 4.5 4.6
69 2.3 1.52 × 10−2 5.3 5.9
71 2.3 4.30 × 10−3 9.1 9.0

From Table 1, the n values were between 2 and 3 for PEPS and PEPS/CNC composites,
indicating that CNC did not change the crystallization mechanism of PEPS within the
investigated Tc range. For both PEPS and PEPS/CNC composites, increasing Tc gradually
decreased the k values, suggesting that the crystallization rate became slower with the
increase of Tc. The k values gradually increased with increasing CNC content at the same
Tc, indicating that the crystallization rate of PEPS became faster due to the nucleating agent
role of CNC. It should be emphasized that the unit of k values was min−n, while the n values
varied slightly with Tc and CNC content for PEPS and PEPS/CNC composites. Therefore,
for an accurate comparison of the crystallization rate in this research, crystallization half-
time (t0.5) with the same unit (min) was used. Through the Avrami equation, t0.5 was
calculated as follows using the n and k values listed in Table 1:

t0.5 = (
ln 2

k
)

1/n
(2)

The acquired t0.5 values are summarized in Table 1, too. As displayed in Table 1, t0.5
increased with Tc for both PEPS and PEPS/CNC composites, indicating a slower crystal-
lization rate; moreover, t0.5 of PEPS/CNC composites gradually decreased with increasing
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CNC content, suggesting the increased crystallization rate. In addition, crystallization
half-time (t1/2) could also be directly read from the plots of relative crystallinity versus
crystallization time (Figure 4a), which are also summarized in Table 1 for comparison. It is
obvious that the difference between t0.5 and t1/2 is very small, indicating that the Avrami
equation may well fit the crystallization kinetics of these systems in this research.

Crystallization rate may easily be described by the reciprocal of t0.5 (1/t0.5) with
the same unit (min−1) in polymer crystallization. The greater the 1/t0.5, the faster the
crystallization rate. To show the effect of Tc and CNC content on the crystallization rate
more clearly, Figure 5 demonstrate the variation of 1/t0.5 with Tc for all samples. On
the one hand, 1/t0.5 increased with decreasing Tc for each sample, suggesting the faster
crystallization rate due to the larger degree of supercooling. On the other hand, the
1/t0.5 values of PEPS/CNC composites were remarkably greater than that of PEPS at the
same Tc and became gradually greater with increasing CNC content. The above result
revealed that CNC, as an effective heterogeneous nucleating agent, obviously enhanced
the crystallization rate of PEPS
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As mentioned above, CNC remarkably enhanced the crystallization behavior of PEPS
under different crystallization conditions, indicating the nucleating agent role of CNC. In
this section, the spherulitic morphology of PEPS and PEPS/CNC composites was directly
observed with a hot-stage POM. Figure 6 illustrate the POM micrographs after PEPS and
PEPS finished the crystallization at 63 ◦C and filled the entire space. In Figure 6a, several
relatively large negative spherulites were observed for the unmodified PEPS due to the
small degree of supercooling. In the case of the composites, as shown in the rest of Figure 6,
the negative PEPS spherulites were still found. CNC significantly increased the number of
PEPS spherulites and accordingly reduced the size of spherulites, suggesting the efficient
nucleating agent role. Furthermore, the higher the CNC content, the stronger the nucleating
agent effect. Despite the variation of CNC content, the spherulitic growth rates of PEPS
and PEPS/CNC composites were about 2.60 µm/min. In other words, CNC only increased
the nucleation density of PEPS spherulites and did not influence the growth rate. In brief,
the crystalline morphology study directly confirmed that CNC enhanced the crystallization
of PEPS as an outstanding heterogeneous nucleating agent by increasing the nucleation
density of PEPS spherulites in the composites.
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Figure 7 displays the WAXD profiles of PEPS and PEPS/CNC composites after crystal-
lizing at 63 ◦C for 8 h. PEPS showed the same crystal structure as the PES homopolymer,
presenting three main diffraction peaks at 2θ of 20.3◦, 22.9◦, and 23.5◦, which were at-
tributed to (021), (121), and (200) planes, respectively [14,47]. In the case of the composites,
they demonstrated similar WAXD profiles as PEPS, despite CNC content, suggesting that
both the composites and PEPS shared the same crystal structure. From the WAXD profiles
of Figure 7, the crystallinity values were calculated to be 54 ± 2% for PEPS and PEPS/CNC
composites by separating the crystalline region and amorphous region of the WAXD profile
in Figure 7. In brief, the crystal structure and crystallinity of PEPS remained unchanged in
the composites despite the presence of CNC.
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From the above studies, CNC enhanced the crystallization of PEPS during both
nonisothermal and isothermal melt crystallization processes. As an effective heterogeneous
nucleating agent, CNC only promoted the nucleation density and hardly influenced the
spherulitic growth rate of PEPS spherulites. It is interesting to discuss the effect of CNC on
the enhanced nucleation density of PEPS spherulites from the viewpoint of the interfacial
energy (γ12) between CNC and PEPS. In the literature, the γ12 value between filler and
polymer matrix may be calculated through the well-known harmonic mean equation or the
geometric mean equation described as follows [48]:

γ12 = γ1 + γ2 − 4(
γd

1γd
2

γd
1 + γd

2
+

γ
p
1 γ

p
2

γ
p
1 + γ

p
2
) (3)

γ12 = γ1 + γ2 − 2
(√

γd
1γd

2 +
√

γ
p
1 γ

p
2

)
(4)

where γ1 and γ2 are the surface energy of the two components, i.e., CNC and PEPS,
respectively, in this work; γd and γp are dispersive components and the polar component
of each component, respectively. As PEPS is a new biodegradable polymer, we calculated
the surface energy, dispersive component, and polar component through the contact angle
measurements using water and ethylene glycol as the solvent according to the classical
method proposed by Owens and Wendt [49]. For simplicity, the details are not described
here. The calculated values of PEPS are listed in Table 2. In addition, the relevant values of
CNC reported in the literature are also listed in Table 2 for the calculation of γ12 [50].

Table 2. Surface energy data of PEPS and CNC.

Samples γ (mN/m) γd (mN/m) γp (mN/m)

PEPS 31.1 14.5 16.7
CNC 60.7 39.4 21.3

On the basis of the data listed in Table 2, the γ12 values were calculated to be 11.96
or 6.28 mJ/m2 through Equation (3) or (4), respectively. The relatively small γ12 value
indicated a good interfacial affinity between PEPS and CNC. Consequently, CNC may not
only provide sufficient active heterogeneous nucleation sites for PEPS chain to nucleate and
grow on the surface but also lower the nucleation barrier, thereby increasing the nucleation
rate and further overall crystallization rate.

4. Conclusions

In this research, low contents of CNC nucleated PEPS composites were successfully
prepared through a solution and casting method with the aim of increasing the crystal-
lization rate of PEPS for its potential practical application. CNC slightly increased the
thermal stability of PEPS. Under both nonisothermal and isothermal melt crystallization
conditions, CNC promoted the crystallization of PEPS. At a fast cooling rate of 20 ◦C/min,
PEPS could not crystallize during the crystallization process, showing no crystallization
exotherm, while PEPS/CNC composites showed well-defined crystallization exotherms.
For instance, 1 wt% of CNC nucleated PEPS showed a melt crystallization temperature of
35.5 ◦C with a melt crystallization enthalpy of 54.6 J/g, indicating the efficient nucleating
agent effect of CNC. Due to the small degree of supercooling, the crystallization half-time
gradually became shorter for the unmodified and nucleated PEPS at higher crystallization
temperatures. At the same crystallization temperature, CNC remarkably shortened the
crystallization half-time and increased the crystallization rate of PEPS; furthermore, the
higher the CNC content, the faster the crystallization rate. For example, 1 wt% of CNC
significantly decreased the crystallization half-time of PEPS from 16.4 to 2.8 min. The
crystalline morphology and crystal structure studies indicated that CNC did not change
the growth rate and crystal structure of PEPS but increased the nucleation density of PEPS
spherulites. On the basis of the harmonic mean equation or the geometric mean equation,
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the interfacial energy of PEPS-CNC was determined to be 11.96 or 6.28 mJ/m2, respectively.
The small interfacial energy proved the good affinity between the PEPS chain and CNC
surface. In other words, the PEPS chain should be easier to attach, nucleate, and further
grow on the surface of CNC; therefore, CNC, as an efficient, biodegradable heterogeneous
nucleating agent, significantly enhanced the crystallization of PEPS.
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