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Abstract: The use of biodegradable polymers in daily life is increasing to reduce environmental
hazards. In line with this, the present study aimed to develop a fully biodegradable polymer
composite that was environmentally friendly and exhibited promising mechanical and thermal
properties. Bamboo powder (BP)-reinforced polycaprolactone (PCL) composites were prepared
using the solvent casting method. The influence of BP content on the morphology, wettability, and
mechanical and thermal properties of the neat matrix was evaluated. In addition, the degradation
properties of the composites were analysed through soil burial and acidic degradation tests. It was
revealed that BP contents had an evident influence on the properties of the composites. The increase
in the BP content has significantly improved the tensile strength of the PCL matrix. A similar trend
is observed for thermal stability. Scanning electron micrographs demonstrated uniform dispersion
of the BP in the PCL matrix. The degradation tests revealed that the biocomposites with 40 wt·%
of BP degraded by more than 20% within 4 weeks in the acidic degradation test and more than 5%
in the soil burial degradation test. It was noticed that there was a considerable difference in the
degradation between the PCL matrix and the biocomposites of PCL and BP. These results suggest
that biodegradable composites could be a promising alternative material to the existing synthetic
polymer composites.

Keywords: bamboo powder; polycaprolactone; biodegradable; mechanical properties; thermal
properties; hardness

1. Introduction

The use of products made from polymers in the daily lives of individuals and society
has increased due to their ease of production and relatively low cost and versatility [1,2].
However, this increase has led to the accumulation of an enormous amount of polymeric
waste, which poses a serious hazard to the environment. Notably, most polymeric products
are developed from non-biodegradable polymers, which can take years to degrade at the
end of the product life cycle [3]. Therefore, researchers have been actively seeking ways to
reduce the environmental impacts of polymeric products through the practice of reducing,
reusing, and recycling [4,5]. Thus, there is a glowing interest in exploiting new eco-friendly
materials based on biodegradable polymers to reduce environmental hazards [6].

Biodegradable polymers are materials that can degrade in the environment when ex-
posed to various conditions such as temperature, ultraviolet radiation, humidity, and soil
pH [7]. In addition, other ecological actions involving microorganisms (bacteria, fungi, and
algae) aid the rapid degradation of polymers. As a result, biodegradable polymers can be
transformed into water, carbon dioxide, or methane gas without causing environmental
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pollution [8]. Polycaprolactone (PCL) is a notable biodegradable polymer that can be ob-
tained through the polymerisation of hydroxy caproic acid or by opening the ε-caprolactone
ring [9]. PCL has good mechanical properties, such as flexibility and impact resistance [10],
low glass transition and melting temperatures [11], and biocompatibility. Furthermore, PCL
can degrade easily in a short period (a few months to many years), depending on its molec-
ular weight, degree of crystallinity, shape, porosity, and the surrounding environment [12].
Therefore, PCL is used in numerous products, such as packaging materials, microcapsules
for sustainable agriculture, and biomedical orthopedic applications [13]. The cost and
complexity of the PCL manufacturing process greatly limit its large-scale applications.

One of the effective and economic methods to reduce the production cost of PCL
is to partially replace the expensive polymer with low-cost fillers without sacrificing the
biodegradation performance of PCL. Karakus et al. [14] studied the thermal and mechanical
properties of PCL reinforced with wheat straw flour composites. The composites were
produced by using the injection moulding technique. Adding wheat straw flour to the PCL
matrix improved the flexural and tensile modulus but reduced the impact strength and
elongation at break. Valdés et al. [15] evaluated the morphological, mechanical, thermal,
and degradation properties of PCL-based biocomposites reinforced with almond skin. The
results indicated that an increase of filler loading from 10 wt·% to 30 wt·% increases the
elastic modulus from 280 MPa to 350 MPa. The improved thermal properties with increased
filler content indicated effective adhesion between the matrix and filler. Furthermore, the
presence of almond skin in PCL aided in accelerating the degradation rate of composites.

Bamboo is one of the most rapidly growing species of timber material. It possesses
strong mechanical and thermal properties, and it has low nitrogen, sulphur, and ash
content. According to Kitagawa et al. [16], 60% of the cellulose found in bamboo has
a high concentration of lignin. Furthermore, bamboo has a small microfibrillar angle
(2–10◦). Because of these intrinsic properties, bamboo has been widely used in many
applications such as fencing, furniture, roofing, clothing, and especially in construction
and scaffolding in the construction industry. The high consumption of bamboo has led
to the accumulation of waste bamboo in landfills. This sustainable waste material can be
reused in the production of composites as reinforcement for various polymer matrices.
Researchers have developed a range of methods to extract bamboo in the form of fibers,
particulates, and powders [17–19].

Rasheed et al. [20] developed biodegradable composites with microcrystalline cel-
lulose (MCC) extracted from bamboo chips reinforced with polylactic acid (PLA) and
polybutylene succinate (PBS). The biocomposites were produced by melt-mixing at 180 ◦C
and hot-pressing at 180 ◦C. The results stated that the addition of MCC enhanced the
crystallinity, thermal stability, and tensile strength of the PLA-PBS blends. Xing et al. [21]
studied the effect of the bamboo flour (BF) loading on the mechanical properties, thermal
stability and, melt-crystallisation behaviour of a blend of PCL and PLA. BF-reinforced
PCL-PLA composites were manufactured by blending BF and PCL–PLA using the melt-
mixing process. The results revealed that the mechanical properties of composites first
increased and then decreased with the increase in BF loading. The further impact strength,
tensile, and elongation at the break of the composites achieved a maximum of 1.26 kJ/m2,
12.68 MPa, and 5.2%, respectively, when the BF mass fraction was 40%. There were no
significant changes in the thermal properties with the increase in the BF mass fraction,
although a change in the glass transition temperature and an increase in the crystallisation
temperature were identified [21]. Chen et al. [22] examined the mechanical and rheological
properties of PLA-polypropylene (PP) reinforced with bamboo fibers. The composites
demonstrated a uniform dispersion of bamboo fibers in the matrix. Furthermore, the ther-
mal and mechanical properties were strengthened when the filler loading was increased by
up to 35%. Qi et al. [23] investigated a bamboo powder (BP)-reinforced PBS composite as a
biofilm carrier for denitrification. The results indicated that the incorporation of BP in a PBS
matrix achieved the acceptable removal of nitrates. An antibacterial analysis demonstrated
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that the interaction between the composite and bacterial and fungal communities played a
vital role in composite degradation and denitrification.

Many studies focused on developing a novel material by mixing biodegradable poly-
mers with natural fibers [24,25]. However, the open literature has provided very little
attention to the combination of PCL and waste products of bamboo. Therefore, in this study,
the bamboo powder was extracted from the waste products of bamboo after industrial
processing and used as a filler to reinforce the PCL matrix. The composites were charac-
terised using a scanning electron microscope (SEM) and Fourier transform infrared (FTIR)
spectroscopy to observe the morphological and chemical interactions of the composites. In
addition, the influence of bamboo powder on the thermal and mechanical properties of the
PCL matrix is also analysed. Furthermore, the porosity, wettability, and biodegradability of
the composites were assessed.

2. Materials and Methods
2.1. Materials

PCL, dichloromethane (DCM), and hydrochloric acid (HCl) were purchased from
Sigma Aldrich (Melbourne, Australia), and the processed bamboo canes were supplied by
Raw Boards Pty Ltd. (Bendigo, Australia). The canes were ground into a fine powder of
70–90 µm using a carpentry grinder.

2.2. Solvent Casting and Compression Moulding

Initially, the BP was dried in the oven at 105 ◦C for 24 h to remove the moisture content.
Subsequently, PCL and BP were weighed according to the weight percentage, as summarised
in Table 1 [10]. The PCL was then dissolved in the DCM through mechanical stirring at a
temperature of 50 ◦C and a speed of 500 rpm for 1 h, and the BP was slowly added to the
solution, stirred for another 30 min to achieve a mixing consistency, and finally, the mixture
was poured into a petri dish and oven dried at 40 ◦C for 24 h. The composite film was
then peeled off from the petri dish and broken into small fragments and compressed using
a hydraulic hot press at a temperature of 60 ◦C and a pressure of 20 kPa for 15 min. The
illustration of the solvent casting of PCL-BP composites is shown in Figure 1.

Table 1. Composition of PCL-BP composites.

Composite PCL (wt·%) BP (wt·%)

PCL 100 0
PCL-BP10 90 10
PCL-BP20 80 20
PCL-BP30 70 30
PCL-BP40 60 40Polymers 2022, 14, 4169 4 of 19 
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2.3. Morphology

The morphology of the fractured cross-sectional surface of the PCL-BP composites
was observed using an SEM (Hitachi Benchtop SEM 3030, Tokyo, Japan). The samples
were vacuum sputter coated with platinum at 10 kV for 30 s before the microstructure was
examined. The micrographs were obtained at 15 kV in a low vacuum mode.

2.4. Degradation
2.4.1. Soil Burial Degradation

The PCL-BP composites were buried in wet fertile black soil for the soil biodegradation
test [26]. The black soil consisted of hummus, which included crushed tree branches and
leaves. The test was carried out at room temperature, and the relative humidity was 70–90%.
The samples (5 cm in length) were buried in loose soil under the top-soil surface layer and
weighed at regular intervals of 4, 8, 12, 16, 20, 24, and 28 days. The samples were washed
with distilled water to remove any residual dirt and oven dried at 50 ◦C to measure weight
loss [27,28]. Each composite was weighed before and after degradation, and the weight
loss of each composite was calculated using Equation (1):

M(%) =
[(

Mi − M f

)
/M f

]
× 100 (1)

where Mi is the initial weight of the composite and Mf is the final weight of the composite.

2.4.2. Acidic Degradation

The PCL-BP composites were subjected to acidic degradation to evaluate their degra-
dation in an acidic environment [26]. The degradation test was conducted in a glass bottle
with a sample immersed in 50 mL of HCl. The sample was weighed at regular intervals
of 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, and 28 days, and the average weight loss was
calculated using Equation (2):

W(%) = [(Wt − Wo)/Wo]× 100 (2)

where Wt and Wo are the specimen weights before and after immersion in acid, respectively.
Each sample was performed thrice, and the mean and standard deviation (SD) were reported.

2.5. Porosity

The porosity percentage of the PCL-BP composites was evaluated based on Archimedes’
principle using a specific gravity bottle [29,30]. The porosity of the composites was calculated
based on Equation (3):

Porosity(P%) =
w2 − w3 − ws/ρe

w1 − ws/ρe
× 100 (3)

where w1 is the specific gravity bottle weight filled with ethanol, w2 is the specific gravity
bottle weight with ethanol and sample, w3 is the specific gravity bottle weight after the
ethanol-saturated sample has been removed, ws is the sample weight, and ρe is the ethonal
density. Each sample was performed thrice, and the mean and standard deviation (SD)
were reported.

2.6. Water Contact Angle Measurement

The contact angle of the PCL-BP composites was measured using the sessile-drop
technique. A micrometre syringe was used to displace a droplet on the surface of the PCL-
BP composites, and the contact angle was measured by scanning the droplet profile for 15 s
with an Attention Theta Flex instrument (Biolin Scientific, Gothenburg, Sweden), following
the procedure used in other studies [31,32]. The water droplet size was maintained at
approximately 3 µL to avoid the effects of weight [33]. The measurements were repeated
three times (n = 3) for each sample.
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2.7. Thermal Analysis
2.7.1. Thermogravimetric Analysis

A thermogravimetric analysis (TGA) was performed using a PerkinElmer TGA 4000
(Waltham, MA, USA). Samples of approximately 4 mg were heated from 30 ◦C to 850 ◦C at
a rate of 10 ◦C/min under a nitrogen flow of 20 mL/min.

2.7.2. Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) measurements were performed using a PerkinElmer
DSC 6000 (Waltham, MA, USA). First, the samples were heated from 30 ◦C to 200 ◦C at a rate of
20 ◦C/min and then retained at that temperature for 5 min to remove the thermal history. The
samples were then cooled to 30 ◦C at a rate of 20 ◦C/min and heated again to 200 ◦C at a rate
of 20 ◦C/min. The endothermic peaks were recorded as the enthalpy of melting (∆Hm) and
melting temperature (Tm).

2.8. Fourier Transform Infrared Spectroscopy

The FTIR spectra of the PCL-BP composites were recorded from 4000 to 650 cm−1

with the help of a computerised FTIR (Cary 630, Agilent Technologies, Santa Clara, CA,
USA). The samples had been air-dried before the analysis. The transmission method used
32 scans with a 4 cm−1 resolution [34].

2.9. Mechanical Properties
2.9.1. Tensile Properties

The tensile properties of the composites were measured using a Zhongli ZL-8001A
universal testing machine (Dongguan Zhongli Instrument Technology Co., Ltd., Dongguan,
China) at a crosshead speed of 3 mm/min and a load of 500 kN, with the samples com-
pressed using a hot press into dog-bone shape (ASTM D638 Type 4). The samples were
in dry condition before testing and were tested at room temperature. Each sample was
performed thrice, and the mean and standard deviation (SD) were reported.

2.9.2. Flexural Properties

The three-point bending behaviour of the PCL-BP composites was determined through
three-point flexural testing using an Instron 5890 (Norwood, MA, USA) universal testing
machine. The test was performed at 5% deflection of the composite samples [35,36]. The
samples were prepared using hot press according to ASTM standards (ASTM D790) [37].

2.10. Hardness Test

The hardness test was conducted using Vickers hardness (DuraScan 32 series G5, Emco-
Test, Kuchl, Austria). A 0.2 HV Vickers indenter was used to perform the measurement.
Initially, a minor load of 5 kg was applied to ensure that the indenter penetrated the
specimen, eliminating possible surface roughness errors. A major load of 10 kg was then
applied for 10 s, and the hardness value was denoted in HV. The measurements were
repeated three times (n = 3) for each sample.

2.11. Statistical Analysis

Statistical analysis was evaluated using GraphPad Prism 9.0 (GraphPad Software, Inc.,
San Diego, CA, USA) using the ANOVA method. The calculations were carried out three
times (n = 3) for each sample and presented as mean ± standard deviation (SD) unless
otherwise stated. The standard error of the mean is represented by error bars in all the
figures, and the significance level of the p-value of ≤0.05 was determined to be significant
(*). The analysis was performed based on the following literature [29,38,39].
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3. Results and Discussion
3.1. Morphology

The SEM micrographs of BP and PCL-BP composites are presented in Figure 2. BP
exhibited a rough surface (Figure 2a), which would help it to enhance the bonding between
fiber and matrix [6]. In Figure 2b, the hot-pressed PCL showed a smooth and homogenous
appearance. In addition, the stretch marks corresponded to the rupture of the specimen
during the tensile test. Similar morphology was observed by Da Silva et al. [40]. Figure 2c,d
shows the PCL-BP30 and PCL-BP40 composites, and it is evident that the BP was randomly
dispersed in the PCL matrix [41]. In spite of the random dispersion of the BP, the PCL-BP
composite exhibited some pores, as depicted in Figure 2e,f, which was evaluated using the
porosity of the composite. Figure 2g,h depicts the energy dispersive X-ray (EDX) spectra of
PCL and PCL-BP40. The carbon (C) and oxygen (O) peaks were expected to originate from
the elemental composition of PCL. In the case of the PCL-BP40 composite, peaks of C and
O were present, along with slight traces of sodium, potassium, chlorine, and silicon. The
presence of the other elements may be caused by the contamination of the solvent during
the solvent casting and hot-press procedures [34].
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3.2. Fourier Transform Infrared Spectroscopy

The FTIR spectra of the PCL and PCL-BP composites are presented in Figure 3. In
the spectra of PCL, the weak peaks observed at 2940 cm−1 and 2870 cm−1 corresponded
to asymmetric elongation of the methylene-oxygen (CH2-O) and symmetric methylene
groups (CH2), respectively [42,43]. The sharp and strong peak representing C=O bonds
was observed at 1720 cm−1 [44]. Furthermore, the peaks at 1292 cm−1 were related to the
stretching of the C-C and C-O bonds in the crystalline phase [45]. In addition, the peaks
at 1165 cm−1 and 959 cm−1 correspond to the C-O-C bond and stretching of the oxime
bond in PCL [43]. In the spectrum of the PCL-BP composite, an absorption band was
observed at 3350–3250 cm−1, which was assigned to typical OH stretching vibrations due
to the contributions from -OH groups of the BP [46,47]. It can also be seen that when the
BP content decreased, the band weakened [45,46]. Moreover, the peaks in the spectra of
PCL-BP were similar to those of PCL, implying that there were no major structural changes
due to the addition of BP in PCL, such as new chemical bond formation between the PCL
chains and BP [43,48]. These spectra are consistent with those reported by Si et al. [11] and
Vidal et al. [49].
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3.3. Porosity

The porosity of the PCL-BP composites is depicted in Figure 4. It can be seen from
the figure that the increase in weight percentage of the BP increased the porosity of the
PCL-BP composites. PCL had the lowest porosity at 0.41%, while the porosity of the PCL-BP
composites increased from 1.3% to 3.25% with the increase of BP content from 10 wt·%
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to 40 wt·%. The increase in porosity is due to the reduction in the overall density of the
composites with the increase in BP content. Swain et al. [50] reported that the incorporation
of natural fibers into a biodegradable polymer led to an increase in water absorption, which
directly affected the porosity of the composites. This is because the natural fibers mainly
consist of cellulose, hemicellulose, lignin, and other natural proteins, which have high
water-retaining capacities [51], and hence, more water-absorbing pores can be formed.

Polymers 2022, 14, 4169 9 of 19 
 

 

BP composites increased from 1.3% to 3.25% with the increase of BP content from 10 wt·% 
to 40 wt·%. The increase in porosity is due to the reduction in the overall density of the 
composites with the increase in BP content. Swain et al. [50] reported that the incorpora-
tion of natural fibers into a biodegradable polymer led to an increase in water absorption, 
which directly affected the porosity of the composites. This is because the natural fibers 
mainly consist of cellulose, hemicellulose, lignin, and other natural proteins, which have 
high water-retaining capacities [51], and hence, more water-absorbing pores can be 
formed. 

 
Figure 4. The porosity of PCL and PCL-BP composites (n = 3, * p ≤ 0.05, ** p ≤ 0.01). 

3.4. Water Contact Angle 
Figure 5a–e presents the sessile drop images on the composite surfaces to evaluate 

the water contact angle, and Figure 5f illustrates the contact angle measurements of PCL-
BP composites. According to the literature, a contact angle below 90° indicates a good 
wetting surface for any liquids [52,53]. Figure 5 summarises the results, with the PCL sur-
face having a water contact angle averaging approximately 65.33°, indicating partial wet-
ting [54]. The water contact angle measurements for PCL-BP10 were 64.96°, followed by 
59.58° for PCL-BP20, 56.18° for PCL-BP30, and 42.93°, the lowest water contact angle, for 
PCL-BP40. With the addition of BP, the water contact angle decreased due to the hydro-
philic nature of BP. Wu et al. [55] studied the wettability of bamboo fiber-reinforced PLA 
composites. It was found that the contact angle decreased with the increase in bamboo 
fiber content in the composite. This could be due to the hydrophilicity of the bamboo fiber, 
which plays a vital role in decreasing the contact angles. The present study depicts a sim-
ilar result as mentioned in the literature [55]. 

Figure 4. The porosity of PCL and PCL-BP composites (n = 3, * p ≤ 0.05, ** p ≤ 0.01).

3.4. Water Contact Angle

Figure 5a–e presents the sessile drop images on the composite surfaces to evaluate the
water contact angle, and Figure 5f illustrates the contact angle measurements of PCL-BP
composites. According to the literature, a contact angle below 90◦ indicates a good wetting
surface for any liquids [52,53]. Figure 5 summarises the results, with the PCL surface having
a water contact angle averaging approximately 65.33◦, indicating partial wetting [54]. The
water contact angle measurements for PCL-BP10 were 64.96◦, followed by 59.58◦ for PCL-
BP20, 56.18◦ for PCL-BP30, and 42.93◦, the lowest water contact angle, for PCL-BP40. With
the addition of BP, the water contact angle decreased due to the hydrophilic nature of BP.
Wu et al. [55] studied the wettability of bamboo fiber-reinforced PLA composites. It was
found that the contact angle decreased with the increase in bamboo fiber content in the
composite. This could be due to the hydrophilicity of the bamboo fiber, which plays a
vital role in decreasing the contact angles. The present study depicts a similar result as
mentioned in the literature [55].
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3.5. Degradation
3.5.1. Acidic Degradation

The acidic degradation and composites of PCL are presented in Figure 6. The com-
posites were subjected to acidic degradation for 28 days. The degree of PCL weight loss
increased with the number of days. In terms of the composites, PCL-BP40 degraded the
most, followed by PCL-BP30, PCL-BP20, PCL-BP10, and PCL. It can be observed that the
degree of weight loss increased with the increase in BP content over the same period. PCL
showed the least weight loss, ranging up to 2.9% throughout the acidic degradation test
period, whereas PCL-BP40 showed the highest degradation, with 20.5% of weight loss
after 28 days of immersion in an acidic medium. It was followed by PCL-BP30, PCL-BP20,
and PCL-BP10 showing weight losses of around 16.5%, 12.2%, and 7.3%, respectively. It
was reported by Yang et al. [26] and Abdul Khalil et al. [6] that the BP contains certain
chemical contents such as some amount of starch and many hydroxyl groups, which are
very hydrophilic in nature. This hydrophilic nature of BP possesses a strong degradation
ability when immersed in an acidic medium. The degradation studies were carried out
according to Khalil et al. [6]. As a result of the increase in BP, the degradation of the
composites increased, as noted in the studies by Dinesh et al. [56], Lyu et al. [43], and Schrip
et al. [57].
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3.5.2. Soil Burial Degradation

The biodegradation of the composites during the soil burial period occurred because
of the presence of moisture and other enzymatic actions involving microorganisms, leading
to the weight loss of the composite material [28]. Figure 7 represents the weight change of
the PCL and its composites after they were subjected to soil burial degradation for 28 days.
The weight loss of the composites was more significant than expected with the increase
in soil burial time. Higher loadings of BP led to greater weight loss after 28 days. Among
all the composites, PCL-BP40 demonstrated the highest biodegradability, with 5.1% of
weight loss after 28 days of soil burial. PCL-BP30, PCL-BP20, and PCL-BP10 demonstrated
weight losses of 4.5%, 3.9%, and 3.5%, respectively, after 28 days of soil burial. However,
the weight loss of the pure PCL was minimal, ranging up to 0.6% throughout the soil burial
test period. The chemical contents, such as cellulose, hemicellulose, and lignin, and the
hygroscopic features promoted the microbial activity in the composites during the soil
burial test, leading to their weight loss [28].

In another study, Chee et al. [27] investigated the biodegradability properties of
bamboo and kenaf fiber-reinforced epoxy composites. It was reported that the weight loss
increased with the increase in fiber loading, exposure time, and soil burial time. In the
present study, the outcome of the soil burial degradation test aligns well with that reported
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by Chee et al. [27], as with the increase in soil burial time and fiber loading, the weight loss
percentage increased.
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3.6. Mechanical Properties
3.6.1. Tensile Properties

Figure 8 presents the tensile stress-strain curves of the PCL and PCL-BP composites.
The tensile strength measurements were conducted following those reported by Idicula
et al. [58] and Mohanty et al. [59]. The measurements were carried out at 3 mm/min
crosshead speed in order to obtain the rupture within the timeframe [60]. Tensile strength
was found to increase with the increasing concentration of BP, as reported by Allaf et al. [54].
PCL had a tensile strength of up to 25.82 MPa, whereas PCL-BP10, PCL-BP20, PCL-BP30,
and PCL-BP40 exhibited stress concentrations of 28.67, 31.54, 34.12, and 37.27 MPa, respec-
tively. The mechanical properties of the composites are summarized in Table 2, demon-
strating that Young’s modulus increased with the increase in BP content. According to
Bhagabati et al. [10], PCL reinforced with 30% bamboo root flour revealed the highest
tensile strength. Similarly, Yang et al. [26] reported that the tensile strength of bamboo
fiber-reinforced PP composites increased with the content of fiber. Thus, the addition of BP
was sufficient to reinforce the PCL for easy stress transfer and improved tensile strength, as
reported in the following literature [61].
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Table 2. Mechanical properties of PCL and PCL-BP composites.

Composite Young’s Modulus (MPa) Ultimate Tensile Strength
(MPa)

PCL 3.01 25.82
PCL-BP10 3.17 28.67
PCL-BP20 3.51 31.54
PCL-BP30 3.92 34.12
PCL-BP40 4.19 37.27

3.6.2. Flexural Properties

The flexural behaviour was measured for the 5% deflection as per the ASTM D790
standard. The PCL-BP composite results were presented in Figure 9. The flexural strength
increased with the increase in BP because of the even dispersion of BP in the PCL matrix,
as observed in SEM micrographs. The PCL-BP40 had a flexural strength of 17 MPa, while
the flexural strengths for the PCL-BP30, PCL-B20, and PCL-B10 were 16 MPa, 14 MPa,
and 13 MPa, respectively. The pure PCL had the lowest flexural strength at 12 MPa.
Campaña et al. [62] studied the mechanical properties of PLA reinforced with bamboo. It
was reported that the 75% PLA and 25% BP composite demonstrated the highest flexural
stress and flexural modulus [62]. It was also noted that the flexural strength increased with
the increase in filler concentration. The results of the present study are consistent with
those of the aforementioned study.
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3.7. Hardness

The Vickers microhardness indentation optical images of the PCL-BP composites are
shown in Figure 10a–e, and the Vickers hardness values are presented in Figure 10f. The
Vickers hardness values significantly increased with the increase in BP. This is consistent
with the studies reported by Kaymakci et al. [63] and Kord et al. [64]. A steady increase
in the hardness values from PCL-BP10 to PCL-BP40 was observed. The continued rise
in hardness values is due to the even dispersion of BP in the PCL matrix and improved
interfacial adhesion between the PCL and BP, leading to fewer micro-voids and less filler
debonding in the interphase region, which was reported in the following literature by
Kaymakci et al. [65]. For instance, PCL had the lowest hardness value (7.2 HV) followed
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by PCL-BP10, PCL-BP20, and PCL-BP30 with 8 HV, 8.4 HV, and 9 HV, respectively, and
PCL-BP40 had the highest hardness value (9.8 HV). These results are consistent with the
study by Jumadi et al. [66].
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3.8. Thermal Properties
3.8.1. Thermogravimetric Analysis

The TGA curves of the PCL and PCL-BP composites are presented in Figure 11. The
thermal degradation of pure PCL is displayed in a two-step decomposition process. The
first step of decomposition occurred at a temperature below 200 ◦C and was related to
the evaporation of moisture in the composites. The second step occurred at a temperature
above 350 ◦C. This second weight loss was associated with the degradation of the main
polymer chains of neat PCL. Unlike PCL, the decomposition of PCL-BP occurred in three
steps [67]. It was obvious that the first step below 200 ◦C was associated with the humidity
and moisture evaporation from the composites [68]. The second step occurred between
200 and 475 ◦C and was related to the decomposition of the main components of BP such
as cellulose, hemicellulose, and lignin [69–71]. The third step from 480 ◦C onward to 700 ◦C
was associated with the degradation of residual lignin in PCL-BP composites [72]. The
decomposition trends were similar to El Mechtali et al. [73], Rojas-Lema et al. [74], and
Açıkalın et al. [75]. At higher temperatures (>500 ◦C), the presence of carbonated residuals
in PCL-BP that were formed due to depolymerization, decomposition, and decarboxylation
of hemicellulose and cellulose was noted. Compared to neat PCL, the thermal stability of
PCL-BP increased with the addition of BP to the matrix. The thermal stability sequence is
as follows: PCL-BP40 > PCLBP30 > PCL-BP20 > PCL-BP10 > PCL. Similar observations
were reported for the other wood polymer composites (WPCs) [76,77].

3.8.2. Differential Scanning Calorimetry

The DSC scans of the PCL-BP composites are presented in Figure 12. The enthalpy of
melting (∆Hm) and melting temperature (Tm) of the PCL-BP composites were identified and
tabulated in Table 3. It can be seen that Tm increased slightly with the BP content in the PCL
matrix. This was mainly caused by the expansion of the BP, which would have loosened
the PCL structure as a result of the increased Tm. PCL-BP40 had the highest melting
temperature at approximately 57 ◦C, followed by PCL-BP30, PCL-BP20, and PCL-BP10 at
56 ◦C, and finally PCL at 55 ◦C.

The ∆Hm value is used as an indicator of the crystallinity of the composite. The ∆Hm
for the PCL-BP composites decreased with the increase in BP content, resulting in a lower
degree of crystallinity, as shown in Table 3. These results are similar to those obtained
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for BF-reinforced polypropylene composites in the study by Mi et al. [78]. The primary
reason for the decrease in the crystallinity of the PCL-BP composites was the hindered
motion of the PCL polymer in segments, mainly resulting from the presence of the BP in the
composites. This is a result of the steric effect, with PCL being hydrophobic and BP being
hydrophilic, leading to good dispersion in the fabrication of composites [46,79]. Similar
observations were reported for the other types of WPCs [73,80,81].
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Table 3. Melting temperature (Tm) and enthalpy of melting (∆Hm) of PCL-BP composites.

Sample Melting Temperature Tm (◦C) Enthalpy of Melting
∆Hm (J/g)

PCL 55 70
PCL-BP10 56 45
PCL-BP20 56 40
PCL-BP30 56 35
PCL-BP40 57 27

4. Conclusions

PCL-BP-reinforced composites were fabricated using solvent casting and compression
moulding techniques. The SEM micrographs revealed the even dispersion of PB in the PCL
matrix and good interfacial adhesion between the PCL and BP. FTIR results demonstrated
that all the individual peaks were related to the PCL-BP composites, indicating no structural
changes or chemical bond formations. The biodegradable composites with comparable
mechanical properties were obtained, where the tensile strength of the composites increased
from 25.82 to 37.27 MPa, and the flexural strength increased from 15 to 23 MPa, with the
increase in BP content, highlighting the strength and ductility of the composite with the
addition of BP. Furthermore, the hardness of the composites increased from 7 to 9.8 HV
with an increase in BP content from 0 wt·% to 40 wt·%. In terms of the thermal properties,
it can be noticed that thermal stability increases along with a decrease in decomposition
residue, and the melting enthalpy shows a drastic drop from 70 to 25 J/g with the increase
in BP content in the PCL-BP composites. The BP content demonstrated the influence
of degradation in natural and controlled environments. The degradation of composites
increased with the increase in BP, and the degradation rate depended on the number of days.
Since BP is hydrophilic in nature, the porosity and wettability increased with the increase
in BP concentration (30 and 40 wt·%). The present work demonstrated the development of
biodegradable composites with comparable mechanical and thermal properties to synthetic
polymer composites, which could be an alternative material to the existing synthetic
polymer composites.
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