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Abstract: Two metal oxide nanoparticles, magnesium oxide nanoparticles (MgONPs) and alu-
minum oxide nanoparticles (Al2O3NPs), were synthesized from green sources, Salvia officials
and Cuminum cyminum seed extract, respectively. These nanoparticles were used for construc-
tion of potentiometric enhancement sensors employed for the estimation of ranitidine hydrochlo-
ride (RNT) in authentic powder and commercial products. The electroactive substance ranitidine-
phosphotungstate (RNT-PT) was formed by combining RNT with phosphotungstic acid (PTA) in
the presence of plasticizing material o-nitrophenyloctyl ether (o-NPOE). The outcomes showed
that the enhanced MgO and Al2O3 nanosensors behaved linearly across the concentration ranges
1.0 × 10−9–1.0 × 10−2 and 1.0 × 10−10–1.0 × 10−2 mol L−1, respectively. However, the conventional
sensor (RNT-PT) displayed a linearity over 1.0 × 10−6–1.0 × 10−2 mol L−1. Least square equations
were calculated as EmV = (54.1 ± 0.5) log (RNT) + 762.33, EmV = (58.6 ± 0.2) log (RNT) + 696.48, and
EmV = (52.2 ± 0.7) log (RNT) + 756.76 for enriched nanometal oxides modified and conventional
sensors, respectively. The correlation coefficients of regression equations were 0.9997, 0.9995, and
0.9992 for the above suggested sensors, respectively. The recorded results showed excellent sensitivity
and selectivity of the modified nanometal oxide sensors for the quantification of the analyzed drug in
its authentic samples and commercial products.

Keywords: ranitidine hydrochloride; coated wire sensors; metal oxide nanoparticles; modified
potentiometric sensors

1. Introduction

Nanoscale materials have recently been identified as a possible key in sensors, material
building, biomedical applications and targeting systems for cancer medication. Scientists
are still attempting to expand their study field in which the advanced qualities of nano-
sized substances may be used to modify various sensitive sensors in our modern life [1].
Nanoscale material has a variety of fascinating features that were being studied as workable
solutions to a variety of contemporary challenges. It provides a significant new contribution
to addressing global and environmental issues [2].

Lately, nanotechnology involves creating intelligent materials with novel features
that have just been identified. This is extremely beneficial to analytical chemistry [3,4].
Magnesium oxide (MgO) is a basic oxide with a wide range of uses. It has potential to
be used as a caustic adsorbent for harmful chemical waste. MgONPs exhibited excellent
optical, electrical, magnetic, thermal, mechanical, and chemical characteristics due to their
distinctive architectures and diverse properties. As a result, MgONPs have been widely
used in the sectors of catalysis, hazardous waste remediation, and refractory materials [5–7].

Aluminum oxide nanoparticles (Al2O3NPs) is a type of metal oxide nanoparticle
used in various biomedical purposes due to their unique physicochemical and structural
properties, including resistance to wear, chemicals, and mechanical stresses, as well as good
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optical properties and a porous large surface area. Another reason for Al2O3NPs extensive
use is their inexpensive preparation cost and ease of handling [8,9].

Pharmaceutical quantitative analysis is required at various stages of medication re-
search and manufacture. As a result, it is advantageous to investigate low-cost, accurate
quick techniques that do not involve toxic solvents, sample pretreatment, or extraction
processes. Electroanalytical methods have recently become popular for determining medic-
inal substances. It provides several benefits, such as simplicity of use, fast, power saving,
sensitivity, cost-effective, and reliability [10,11].

The most common potentiometric electrodes for detecting medical medications, or-
ganic or inorganic chemicals are self-powered electrodes that do not require any other
energy sources. These electrodes’ potentiometric measurements are obtained as a result of
analyte concentration caused by an electrostatic process that produces an electromotive
force (emf) between the surface of the indicator sensor and the reference one [12]. Recently,
the scientists exhibited an interest in the engineering of new molecular carriers which
possess excellent electrical conductivity, lipophilic property, capability of reversibility of
binding of metal ions, and selectivity, and permitting their permeation via the sensor
membrane over the other ions [13–17].

The synthesized MgONPs and Al2O3NPs have structures and sizes, allowing them
to be used to build a variety of catalytic sensing systems with low detection limits, large
concentration ranges, increased percentage of recoveries, good repeatability, and operation
at room temperature [18,19].

Ranitidine hydrochloride (RNT, Figure 1) are H2 antagonists and histamine which are
competitively inhibited at the H2 receptor in parietal cells by H2 antagonists. They prevent
both meal-stimulated acid release and the regular acid secretion by parietal cells. They
accomplish this by using two pathways: When the H2 receptors are blocked, histamine
released by enterochromaffin-like (ECL) cells in the stomach is prevented from binding to
parietal cells’ H2 receptors, which stimulate acid secretion. Other substances that stimulate
acid secretion (such as gastrin and acetylcholine) also have less of an effect on parietal
cells [20,21].
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Figure 1. Structural formula of ranitidine hydrochloride.

The use of modified metal oxide sensors to determine and quantify dose form phar-
maceuticals is now gaining a lot of interest. The goal of this research is to create modified
coated wire sensors enhanced with MgONPs and Al2O3NPs that are very sensitive and
selective. The results show that the created electrodes have several advantages, including
simplicity, versatility, and cost-effectiveness.

2. Materials and Methods
2.1. Chemicals

Ranitidine hydrochloride (RNT-HCl), magnesium nitrate hexahydrate, aluminum
nitrate hexahydrate, hydrochloric acid 37%, sodium hydroxide, acetone 99.9%, tetrahy-
drofuran (THF) 97.0%, methanol 99.9%, ortho-nitrophenyloctyl ether (o-NPOE), phospho-
molybdic acid, ethanol 99.9%, and polyvinyl chloride (PVC, high molecular weight) were
provided by Sigma Aldrich (Hamburg, Germany). The medication form of RNT HCl,
Ranimax® tablets (150 mg ranitidine hydrochloride/tablet) were obtained from Jazeera
Pharmaceutical Industries (Riyadh, Saudi Arabia).
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2.2. Instrumentation

All experimental studies were carried out using a 211-HANNA pH meter (HANNA
instruments, Smithfield, VA, USA). Another pH meter (Metrohm-744) was used to adjust
the pH of the analytical samples. The characterization of the synthesized nanomaterials
was performed using spectroscopic devices including, Shimadzu-spectrophotometer (Shi-
madzu Corporation, Kyoto, Japan), BX-spectrometer (PerkinElmer, Waltham, MA, USA).
The surface structure of the formed nanomaterials was examined under scanning electron
microscopes (SEM, JSM-7610F JEOL, Tokyo, Japan). The size of the metal oxide nanoparti-
cles was evaluated from the spectra of 6000-X-ray diffractometer (XRD, Shimadzu, Kyoto,
Japan). To confirm the presence of Mg and Al metals, Energy-Dispersive X-Ray Spec-
troscopy (EDX) analysis was performed using a SEM microscope connected with EDX.

2.3. Green Preparation of Nanoparticles

The synthesis of MgONPs starts by preparing Salvia officials extract solution; 5.0 g of
dried Salvia officials leaves were added to 500 mL deionized water and boiled for an hour at
100 ◦C. The formed extract was filtered using a filter paper (Whatman No. 1). The prepared
extract was used for the synthesis of MgONPs. Approximately, 10 mL of Salvia officials
extract was mixed with 50 mL of freshly prepared 0.1 mol L−1 of magnesium nitrate
hexahydrate solution under magnetic agitation at 80 ◦C for 2 h. The pH was adjusted in
the range of 10–12 using 2.0 mol L−1 sodium hydroxide solution. The MgONPs precipitate
was collected after centrifugation of the solution for 10 min at 10,000 rpm. To remove
the excess of Mg (NO3)2 and plant material from the MgONPs precipitate, the collected
precipitate was washed three times with absolute ethanol, then oven-dried at 40 ◦C for 8 h.
The resulting material was then finely powdered with mortar and pestle and then calcined
in a muffle furnace at 450 ◦C for 30 min (Figure 2a) [22].
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Figure 2. Green synthesis of (a) MgONPs using Salvia officials leaves extract and (b) Al2O3NPs using
Cuminum cyminum seeds extract.

For Al2O3NPs synthesis, 10 g of Cuminum cyminum seed was stirred in 500 mL of
deionized water and boiled for 2 h at 100 ◦C. The formed extract was then filtered using
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Whatman filter paper No. 1. The clear cumin seed extract was obtained. To a 50 mL
aqueous solution of 0.1 mol L−1 Al (NO3)3, 5 mL Cuminum cyminum seed extract was
added; 2.0 mol L−1 NaOH was used to adjust the pH of the resulting solution to pH 8.
A change in the color of the solution to brown indicated the production of Al2O3NPs. At
normal temperature (25 ◦C), the reduction of aluminum ions to nano aluminum takes 2 h.
The synthesized nanoparticle solution was centrifuged at 10,000 rpm for 10 min prior to
being distributed in deionized water and left to dry (Figure 2b) [23].

2.4. Spectroscopic and Microscopic Characterization of Nanoparticles

The pre-synthesized metal oxide nanoparticles were subjected to different spectro-
scopic and microscopic techniques to confirm their nanoscale features. The optical prop-
erties of MgONPs and Al2O3NPs were measured using UV-Vis spectrophotometer in the
range of 200 to 800 nm. To confirm the possible functional groups, present on the surface of
the synthesized MgONPs and Al2O3NPs, FT-IR spectrophotometer was used in the range
from 400–4000 cm−1. The size estimation of the formed metal oxide nanoparticles was
calculated from the recorded XRD peaks measured at a voltage of 40 kV and a current of
40 mA with Cu Ka radiation of wavelength 0.15406 nm. The morphology of the nanoparti-
cles was studied using SEM and the elemental composition of the formed nanomaterials
was determined using an EDX spectrometer.

2.5. Preparation of Standard Solution

A preparation of standard solution of 1.0× 10−2 mol L−1 was conducted by dissolving
0.35 g of RNT in 100 mL of distilled water. Analytical solutions with different concentrations
were obtained from the dilution of the standard one to the desired concentrations using
distilled water.

2.6. Formation of Ion-Pair Complex

By mixing 50 mL of 1.0 × 10−2 mol L−1 RNT solution with the equivalent volume
of 1.0 × 10−2 mol L−1 PTA solution, ranitidine hydrochloride-phosphotungstate (RNT-
PT) was obtained. RNT-PT was produced as a faint yellow precipitate. The produced
precipitate was dried overnight at room temperature after being filtered and washed.

2.7. Sensor Design and Membrane Composition

RNT-PT, RNT-PT, RNT-PT-MgONPs, and RNT-PT-Al2O3NPs were designed by sus-
pending PVC (190 mg), electroactive complex (RNT-PT, 10 mg), and plasticizer (o-NPOE,
0.35 mL) in 5 mL of organic solvent (THF). The blended solution was allowed to evaporate
in a Petri dish with a diameter of 3 cm until an oily membrane solution developed. To
create the conventional RNT-PT sensor, an Al wire that had been polished and cleaned
with acetone was dipped into the membrane mixture numerous times. A plastic mem-
brane mixture including MgONPs or Al2O3NPs (5 g), PVC (190 mg), RNT-PT-MgONPs
or RNT-PT-Al2O3NPs ion pair (10 mg), and o-NPOE plasticizer (0.35 mL) in 5 mL of
THF were performed in order to create the modified sensors. At room temperature, a well-
homogeneous distributed membrane mixture was created by swirling constantly for 15 min.
A thin layer on the surface of the sensors was simulated using the generated membrane mix-
ture. After drying, sensors were repeatedly submerged in the coated membrane solution to
create a thickly coated wire membrane (Figure 3).
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2.8. Calibration Graphs

The designed sensors and Ag/AgCl as a reference electrode were used to assess and
evaluate 25 mL of 1.0 × 10−10–1.0 × 10−2 mol L−1 RNT standard solution, separately. The
calibration graphs of each sensor displayed the potential values as a function of -logarithm
RNT concentrations.

2.9. Optimization of Potential Readings’ Conditions

To investigate the pH impact of 1.0× 10−3 mol L-−1 of the analyte RNT solution on the
potential value of the designed sensors, it was used in conjunction with a reference sensor
Ag/AgCl and a combined glass electrode, and the pH was measured in 50 mL aliquots
of the tested drug; 0.1 mol L−1 HCl or a few drops of 0.1 mol L−1 NaOH were used to
modify the pH. The pH values as a function of potential measurements of each sample were
shown on pH graphs. The standard approach for evaluating the selectivity of the fabricated
sensor in such studies is the separate solution method [24]. The dynamic response time
was calculated using the potential response for drugs with varying concentrations from
1.0 × 10−9–1.0 × 10−2 mol L−1.

2.10. Analytical Applications

Five Ranimax® tablets (150 mg/tablet) were finely crushed, and 0.53 g was dissolved
in distilled water to make a standard solution of 1.0 × 10−2 mol L−1. To achieve varied
concentrations of RNT in the range of 1.0 × 10−6–1.0 × 10−3 mol L−1, working solutions
were created. To determine each concentration of the tested medication, the recommended
sensors RNT-PT-MgONPs and RNT-PT-Al2O3NPs were utilized individually.

3. Results and Discussion
3.1. Characterization of the Synthesized Nanoparticles

Microscopic methods such as SEM were used to characterize the synthesized MgONPs
and Al2O3NPs. Using field emission scanning electron microscopy (FESEM) showed the
morphology and shape of the produced MgONPs and Al2O3NPs at 30,000× magnification.
The micrographs of MgONPs and Al2O3NPs have been displayed in Figure 4a,b. They
showed the widely distributed hexagonal particles, but they are all connected or closely
related. The size of the produced particles ranges from a few nanometers to 100 nm. The
smaller size particles are crammed together so tightly that they appeared to be embedded
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in the surface. The synthesized samples did not contain any additional structures or
morphologies other than MgONPs and Al2O3NPs.
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Furthermore, FT-IR analysis was applied to confirm various functional groups that
present in the formed metal oxide nanoparticles. Notable remarkable bands at 3698.65 cm−1

and 3449.49 cm−1 in the FT-IR spectra of the synthesized MgONPs were attributed to
be associated to OH-stretching groups. A significant band at 2367.22 cm−1 verified the
existence of CH-stretching. The bands at 1517 cm−1 and 1488 cm−1 and 1378 cm−1 were
found to be associated to carboxylic acid C=O groups and equines C=C groups, respectively.
The peak at 445.60 cm−1 (Figure 5a) verified the synthesis of MgO metal stretching. For OH-
stretching groups in Al2O3NPs, well-defined bands were found at 3798 cm−1, 3693.25 cm−1,
and 3496 cm−1. The presence of CH-stretching was established by the absorption band
2341.71 cm−1. The band at 1633.20 cm−1 was determined to be associated to a carboxylic
acid’s C=O group (Figure 5b).

The presence of magnesium and aluminum elements in MgONPs and Al2O3NPs was
discovered utilizing a SEM equipped with an EDX spectrometer to examine their EDX
profiles. The content percentages of Mg and Al nanoparticles were 39.28% Mg and 60.72% O
for MgONPs (Figure 6a), and 26.25% AL and 73.75% O for Al2O3NPs (Figure 6b), according
to the recorded profiles. The maximum intensity peaks for Mg and AL were 0.8 keV and
0.8 keV, respectively.

XRD is an analytical technique for measuring and quantifying various crystalline
structures in the samples under investigation (Figure 7a). This analysis was carried out
utilizing a Cu-kα XRD diffractometer at (k = 1.5406
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leaves and Cuminum cyminum seed extract, respectively, at Cu-kα and (k = 1.54060 Å ). 

(a) (b) 

). XRD patterns of MgONPs and their
exhibited distinct peaks at 2θ = 37.8◦, 46.6◦, 63.8◦, 74.3, and 78.9 corresponding to MgO of
(1 1 1), (2 0 0), (2 2 0), (3 1 1), and (2 2 2), respectively. These values can be assigned as a
high hexagonal crystalline phase, and these results were matched to the JCPDS file of MgO
(No. 89-7746).

For Al2O3NPs, XRD investigation (Figure 7b) revealed a series of diffraction peaks at
2θ = 26.8◦, 37.62◦, 39.63◦, 55.95◦, 60.2◦, 64.8◦, and 72.5◦, which correspond to the crystal
planes of (0 1 4), (1 0 4), (1 1 0), (0 2 4), (1 1 6), (1 2 2), and (6 2 0). All of the diffraction peaks
matched a pure cubic structure of Al2O3 (JCPDS Card no. 71-1123).
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3.2. The Fabricated Sensors Behavior

RNT combines with PT to generate a stable RNT-PT ion pair that can be dissolved in
organic solvents such as THF. In the presence of PVC, the solvent mediator o-NPOE was
applied with the RNT-PT ion pair. The critical response characteristics of the fabricated
sensors were determined and presented in Table 1.

Table 1. Electrochemical response characteristics of conventional coated wire RNT-PT, modified
RNT-PT-MgONPs, and RNT-PT-Al2O3NPs sensors.

Parameters Conventional
RNT-PT Sensor

Modified
RNT-PT-MgONPs Sensor

Modified
RNT-PT-Al2O3NPs Sensor

Slope (mV. Decade−1) 52.2 ± 0.7 54.1 ± 0.5 58.6 ± 0.2
Intercept 756.76 762.33 696.48

Correlation coefficient, r 0.9992 0.9997 0.9995
Linear range (mol L−1) 1.0 × 10−6–1.0 × 10−2 1.0 × 10−9–1.0 × 10−2 1.0 × 10−10–1.0 × 10−2

LOD 5.0 × 10−7 4.9 × 10−10 5.0 × 10−11

Response time/s 50 30 25
Working pH range 3–9 3–9 3–9

Lifetime/day 20 40 50
Temperature, ◦C 25 25 25

Accuracy (%) 99.04 ± 0.73 99.49 ± 0.40 99.54 ± 0.53

The fabricated sensors gave Nernstian responses with slopes of 52.2± 0.7, 54.1± 0.5, and
58.6± 0.2 mV over the drug concentration ranges of 1.0× 10−6–1.0× 10−2, 1.0× 10−9–1.0× 10−2,
and 1.0 × 10−10–1.0 × 10−2 mol L−1 for conventional RNT-PT and modified RNT-PT-
MgONPs and RNT-PT-Al2O3NPs, respectively (Figure 8a,c).

The presence of MgONPs and Al2O3NPs nanocrystals, which enhanced the membrane
sensitivity of the fabricated modified sensors and their stability during the potentiometric
measurements, is responsible for the excellent performance of the potentiometric RNT
sensors. The high sensitivity of the modified sensors using Al2O3NPs more than that
modified by MgONPs was due to the high dielectric constant of Al2O3NPs (ε = 8.4) than
MgONPs (ε = 3.2) which enhanced the conductivity of the sensor transducer surface
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and increased the detection of the target analyte. Furthermore, metal oxides’ outstanding
electrical and extraordinary capacity features, such as high charge transfer at nanomaterial
interfaces, are essential when nanomaterials are exploited as transducing materials in
sensing applications [25].
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The effect of pH on the potential of conventional and modified sensors was inves-
tigated in order to determine the safe pH range for RNT detection. The results showed
that in the pH range 3–9, conventional RNT-PT, modified RNT-PT-MgONPs, and RNT-PT
Al2O3NPs sensors were essentially independent, and this range can be used to determine
RNT in a safe manner (Figure 9).

To determine the selectivity of the developed sensors for the drug under investigation,
the proposed sensors were evaluated to analyze 1.0 × 10−3 mol L−1 of different inorganic
cations, sugars, amino acids, and related RNT chemical structure compound. The modi-
fied sensors RNT-PT-MgONPs and RNT-PT-Al2O3NPs showed excellent selectivity. The
construction of the sensors became more conductive and therefore more selective for the
medication under study due to the inclusion of metal oxide nanoparticles with significant
surface area and physicochemical characteristics. The RNT+ ions’ free energy transfer
between the membrane and the surrounding medium may be the cause of this selectivity.
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The free energy of RNT+ transfer between the aqueous and coated membrane phases was
often referred to as the selectivity of RNT coated membrane sensors. Due to the ionic size
differences, mobility, and permeability of the proposed sensors, compared to RNT+, no
interference was observed in the detection of inorganic cations (Table 2).
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Table 2. Selectivity coefficient (KPot RNT+) of conventional coated wire RNT-PT and modified
RNT-PT-MgONPs and RNT-PT-Al2O3NPs sensors using the separate solution method using
1.0 × 10−3 mol L−1 RNT.

Interfering Species Conventional RNT-PT Sensor Modified
RNT-PT-MgONPs Sensor

Modified
RNT-PT-Al2O3NPs Sensor

Fe3+ 3.6 × 10−3 1.4 × 10−4 4.9 × 10−4

Ca2+ 7.5 × 10−3 1.6 × 10−5 7.7 × 10−5

Cr3+ 4.1 × 10−3 5.2 × 10−5 5.4 × 10−4

K+ 5.5 × 10−3 5.8 × 10−4 4.6 × 10−4

Na+ 6.9 × 10−3 4.2 × 10−4 3.5 × 10−5

Ag+ 2.1 × 10−3 6.8 × 10−5 1.6 × 10−4

Mg2+ 6.2 × 10−3 8.4 × 10−5 8.1 × 10−4

Lactose 5.2 × 10−3 6.3 × 10−4 2.4 × 10−5

Glycine 8.5 × 10−3 4.5 × 10−5 1.5 × 10−4

Histidine 6.3 × 10−3 3.6 × 10−4 2.3 × 10−5

Leucine 7.9 × 10−3 9.8 × 10−4 3.9 × 10−4

Niperotidine 9.5 × 10−3 3.5 × 10−4 4.8 × 10−4

It is not surprising that the addition of metal oxide nanoparticles in the membrane
composition or the introduction of a thin layer as an intermediate layer improved the
stability, sensitivity, and selectivity of the modified sensors. The metal oxides (MgONPs
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and Al2O3NPs) belong to the nanostructures elements that gained excellent physical and
chemical features that bulk their counterparts. The high surface area-to-volume ratio
and semiconducting characteristics recognized them. The electroactive surface area is
increased, and electron transport between the sensor membrane and the ions of analytes is
improved [26].

3.3. Quantification of Ranitidine Hydrochloride

The designed sensors were used to quantify RNT in its bulk form and the percentage
recoveries were 99.35 ± 0.5, 99.71 ± 0.3 % and 99.38 ± 0.2, and 99.78 ± 0.4 using RNT-PT,
RNT-PT-MgONPs, and RNT-PT-Al2O3NPs sensors, respectively (Table 3). The advanced
properties of the additional nanoparticles were linked to the upgraded sensors’ sensitivity.
Furthermore, it was found that the Al2O3NPs-modified sensor had high sensitivity and
selectivity for the examined drug, owing to Al2O3NPs having a higher dielectric constant
than MgONPs.

Table 3. Statistical analysis of data obtained from the determination of RNT in bulk powder using
conventional coated wire RNT-PT, RNT-PT-MgONPs, and RNT-PT-Al2O3NPs sensors.

Conventional RNT-PT Coated
Wire Sensor Modified RNT-PT MgONPs Sensor Modified RNT-PT-Al2O3NPs Sensor

Taken
−log (RNT)

mol L−1

Found
mol L−1

%
Recovery

Taken
−log (RNT)

mol L−1

Found
mol L−1

%
Recovery

Taken
−log (RNT)

mol L−1

Found
mol L−1

%
Recovery

Statistical
Analysis

6.00 5.96 99.33 9.00 9.00 100.00 9.00 8.98 99.78
5.30 5.23 98.68 9.50 9.45 99.47 8.50 8.50 100.00
5.00 5.00 100.00 8.00 7.97 99.63 8.00 7.95 99.38
4.30 4.24 98.60 7.50 7.45 99.33 7.00 7.00 100.00
4.00 3.95 98.75 7.00 6.98 99.71 6.50 6.45 99.23
3.30 3.28 99.39 5.50 5.50 100.00 6.00 5.99 99.83
3.00 3.00 100.00 4.00 3.91 98.75 4.00 4.00 100.00
2.30 2.28 99.13 2.50 2.49 99.60 3.50 3.44 98.29
2.00 1.95 97.50 2.00 1.98 99.00 3.00 2.98 99.33

Mean ± SD 99.04 ± 0.73 99.49 ± 0.40 99.54 ± 0.53
n 9 9 9

Variance 0.54 0.16 0.28
* %SE 0.24 0.13 0.18
%RSD 0.74 0.40 0.53

* SE (%Error) = %RSD/
√

n.

3.4. Method Validation

According to ICH requirements, the suggested analytical procedure was guaranteed
and validated [27]. The developed RNT-PT-MgONPs and RNT-PT-Al2O3NPs sensors
showed a wide range of linear concentration correlations over 1.0 × 10−9–1.0 × 10−2,
1.0 × 10−10–1.0 × 10−2 mol L−1, respectively, with respect to 1.0× 10−6–1.0× 10−2 mol L−1

for the conventional coated wire type. The regression equations were EmV = (54.1 ± 0.5) log
(RNT) + 762.33, EmV = (58.6 ± 0.2) log (RNT) + 696.48 for enhanced nanometal oxides, respec-
tively. The conventional type RNT-PT showed a potential response of EmV = (52.2 ± 0.7) log
(RNT) + 756.76 with correlation coefficients 0.9997, 0.9995, and 0.9996 for the RNT-PT-
MgONPs, RNT-PT-Al2O3NPs, and RNT-PT sensors, respectively.

The potential readings of the developed sensors were obtained after each sensor
slope was reduced by 17.9 mV to determine the lower limit of detection (LOD). The
obtained results were found to be 4.9 × 10−10, 5.0 × 10−11, and 5.0 × 10−7 mol L−1 for the
above described sensors, respectively. The devised potentiometric method was tested on
nine samples, and the (mean SD) values for the aforementioned sensors were 99.040.7%,
99.490.4%, and 99.540.5%, respectively (Table 3). Through inter-day and intra-day assays,
the intermediate precision was also assessed, and the percentage relative standard deviation
(%RSD) was computed. The results showed that the %RSD for the manufactured RNT-
PT-MgONPs and RNT-PT-Al2O3NPs were 0.6% and 0.6%, respectively, during intra-day
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and inter-day. All values fall below the advised value (2.0%), suggesting high precision
(Table 4). By adding an acetate buffer with a pH of 50.5, the robustness of the suggested
probe was assessed, and the percentage recoveries for RNT-PT, RNT-PT-MgONPs, and
other compounds were found to be 99.10.8, 99.500.6, and 99.54 0.2%, respectively. A second
investigation was conducted using a different pH meter model to confirm the robustness
of the suggested technique (Jenway-3510). For the tested sensors, the computed mean
percentage recoveries were 99.2 0.7%, 99.49 0.4%, and 99.5 0.3%. The results showed that the
proposed method’s data were accepted in conjunction with other data, and no discernible
differences were found.

Table 4. Intra- and inter-day assay of ranitidine hydrochloride by using the modified RNT-PT-
MgONPs and RNT-PT-Al2O3NPs coated wire sensors.

Precision Test Taken −log (RNT) mol L−1 % Recovery a % RSD b % Error c

RNT-PT-MgONPs

Intra-day precision
10.00 99.50 ± 0.5 0.5 0.32
5.00 98.83 ± 1.2 1.2 0.70
2.00 99.83 ± 0.2 0.2 0.12

Inter-day precision
10.00 98.53 ± 1.2 1.2 0.72
5.00 98.83 ± 0.8 0.8 0.50
2.00 97.67 ± 0.6 0.6 0.36

RNT-PT-Al2O3NPs

Intra-day precision
9.00 99.63 ± 0.3 0.3 0.17
6.00 99.23 ± 0.7 0.7 0.40
3.00 98.37 ± 0.8 0.8 0.45

Inter-day precision
9.00 99.11 ± 0.4 0.4 0.24
6.00 98.33 ± 1.3 1.3 0.73
3.00 98.79 ± 0.6 0.6 0.33

a Mean of three determinations, b %RSD = (SD/Mean) ×100, c % Error = %RSD/
√

n.

3.5. Quantification of the Drug in Its Tablets

In order to determine the analytical applicability of the sensors that have been de-
veloped, RNT was detected in its pharmaceutical form (Ranimax® 150 mg/tablet). The
recorded readings were measured versus different concentrations of RNT samples, and the
percentage of recoveries was evaluated.

The outcomes were 99.00 ± 0.26, 99.40 ± 0.37, and 99.45 ± 0.50 for the above-
mentioned sensors, respectively. It was discovered that the modified sensor RNT-PT-
Al2O3NPs was more sensitive to RNT determination than RNT-PT-MgONPs sensor. The
greater dielectric constant of Al2O3 over MgO may explain how the conductivity of RNT-PT-
Al2O3NPs is higher than that of RNT-PT-MgONPs. The results obtained were statistically
analyzed using t-student’s test and F-test [28]. The results were compared with those
achieved by the potentiometric method [29], which is established at the formation of ICPE
electrode using sodium tetraphenyl borate. The results showed that the suggested sensors
have a high sensitivity for detecting RNT in dosage forms (Table 5).

An analytical comparison was performed in Table 6 to show the advanced sensitivity
and efficiency of the suggested potentiometric modified sensors for the determination of
RNT with other previously reported analytical techniques [30–39]. The comparative results
showed that the suggested modified sensors using metal oxide nanoparticles exhibited
higher sensitivity over a wide concentration range than those reported by the previously
developed sensors.
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Table 5. Statistical analysis of data obtained from the determination of RNT in Ranimax® tablets,
150 mg/tablet, using conventional coated wire RNT-PT and modified RNT-PT-MgONPs and RNT-
PT-Al2O3NPs sensors.

Conventional RNT-PT Coated
Wire Sensor Modified RNT-PT MgONPs Sensor Modified RNT-PT-Al2O3NPs Sensor

Taken
−log (RNT)

mol L−1

Found
mol L−1

%
Recovery

Taken
−log (RNT)

mol L−1

Found
mol L−1

%
Recovery

Taken
−log (RNT)

mol L−1

Found
mol L−1

%
Recovery

Statistical
Analysis 6.00 5.94 99.0 9.0 8.98 99.8 7.0 6.98 99.7

5.00 4.97 99.4 8.0 7.97 99.6 6.0 5.99 99.8
4.30 4.26 99.1 7.0 6.96 99.3 5.0 4.95 99.0
4.00 3.96 99.0 6.0 5.97 99.5 4.0 4.00 100.0
3.00 2.97 99.0 3.0 2.99 98.7 3.0 2.96 98.7
2.00 1.97 98.5 2.0 1.99 99.5 2.0 1.99 99.5

Mean ± SD 99.00 ± 0.26 99.40 ± 0.37 99.45 ± 0.50
n 6 6 9

Variance 0.07 0.14 0.25
%SE * 0.11 0.15 0.20
%RSD 0.26 0.33 0.50
t-test 0.569 (2.228) ** 1.08 (2.228) ** 1.13 (2.228) **
F-test 2.85 (5.05) ** 1.43 (5.05) ** 1.25 (5.05) **

Reported
method [27]

99.13 ± 0.45
6

0.25
0.07

* SE (%Error) = %RSD/
√

n, ** The tabulated values of “t” and “F” at confidence level p = 0.05 [28].

Table 6. A comparative study between the results obtained from the determination of RNT using the
Potentiometric method by using modified RNT-PT-MgONPs and RNT-PT-Al2O3NPs sensors, and
the previously reported analytical techniques.

Analytical Method Reagent Linearity LOD Reference

Spectrophotometry RNT, ninhydrin 8.98 × 103–9.90 × 104 µg L−1 0.0997 µg mL−1 [30]

Chemiluminescence RNT, S, N co-doped carbon
quantum dots 0.5–50 µg mL−1 0.12 µg mL−1 [31]

Fluorescence RNT, CdS quantum dots 0.50–15.0 µg mL−1 0.38 µg mL−1 [32]

Chromatography
RNT, RP-HPLC method,

ortho-phosphoric acid 0.1% and
acetonitrile pH 3.5 (25:75, %v/v)

5–25 µg mL−1 1.35 µg mL−1 [33]

Electrochemical

RNT, poly(dopamine) modified
carbon

paste electrode
1.0 × 10−7–7.5 × 10−6 mol L−1 1.9 × 10−8 mol L−1 [34]

RNT, modified pencil graphite
electrode (PGE) modified with

p-amino benzene sulfonic
acid/cucurbit(6) uril

2 × 10−4–1.7 × 10−2 mol L−1 1.57 × 10−4 mol L−1 [35]

RNT, poly (chromotrope 2B)
modified activated glassy carbon

electrode (PCHAGCE)
1.0 ×10−5–4.0 ×10−4 mol L−1 5.4 ×10−7 mol L−1 [36]

RNT, poly(thionine)-modified
anodized glassy carbon electrode

(PTH/GCE)
35–500 µmol L−1 1.5 µ mol L−1 [37]

RNT, carbon paste electrode
modified with the N,N-ethylene-

bis(salicyllideneiminato)oxovanadium
(IV) complex ((VO(salen)))

9.9 × 10−5–1.0 × 10−3 mol L−1 6.6 ×10−5 mol L−1 [38]

Modified carbon paste electrode,
tetraphenylborate 1.0 ×10−6–1.0 ×10−2 mol L−1 1.0 ×10−6 mol L−1 [39]
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Table 6. Cont.

Analytical Method Reagent Linearity LOD Reference

Proposed method
Potentiometric measurement

modified RNT-PT-MgONPs and
RNT-PT-Al2O3NPs sensors

1.0 × 10−9–1.0 × 10−2 mol L−1 4.9 × 10−10 mol L−1 RNT-PT-
MgONPs sensor

1.0 × 10−10–1.0 × 10−2 mol L−1 5.0 × 10−11 mol L−1 RNT-PT-
Al2O3NPs sensor

4. Conclusions

Two coated wire membrane sensors modified with magnesium oxide and aluminum
oxide nanoparticles were used in the proposed potentiometric investigation for ranitidine
hydrochloride detection. The modified sensors’ potential readings were compared to those
of a conventional sensor. Due to their sensitivity and selectivity, the created sensors proved
to be superior to other traditional sensors. Furthermore, the employment of metal oxide
nanoparticles as coated membrane modifiers resulted in good selectivity in measuring the
chosen medication, with a wide linear concentration range and low limit of detection. Con-
sequently, the metal oxide enriched membrane sensors can be utilized for regular ranitidine
hydrochloride analysis in pharmaceutical companies, hospitals, and research labs.
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