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Hlaváčiková, S.; Vanovčanová, Z.;
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Abstract: In order to make bioplastics accessible for a wider spectrum of applications, ready-to-use
plastic material formulations should be available with tailored properties. Ideally, these kinds of
materials should also be “home-compostable” to simplify their organic recycling. Therefore, materials
based on PLA (polylactid acid) and PHB (polyhydroxybutyrate) blends are presented which contain
suitable additives, and some of them contain also thermoplastic starch as a filler, which decreases the
price of the final compound. They are intended for various applications, as documented by products
made out of them. The produced materials are fully biodegradable under industrial composting
conditions. Surprisingly, some of the materials, even those which contain more PLA than PHB, are
also fully biodegradable under home-composting conditions within a period of about six months.
Experiments made under laboratory conditions were supported with data obtained from a kitchen
waste pilot composter and from municipal composting plant experiments. Material properties,
environmental conditions, and microbiology data were recorded during some of these experiments
to document the biodegradation process and changes on the surface and inside the materials on a
molecular level.

Keywords: polylactic acid (PLA); polyhydroxybutyrate (PHB); blend polymeric material; biodegra-
dation; industrial compost; home-compost

1. Introduction

Biodegradable polymers are one of the possible alternatives to conventional polymeric
materials that can, for specific applications, provide the benefit of biological decomposition
without leaving unwanted litter or potentially dangerous microplastics [1,2]. However,
biodegradable polymers and materials based on them are significantly different in the con-
ditions needed for their biodegradation and in the time frame of their biodegradation [3–5].
Ideally, for a given application, we need a material that fulfils the necessary application
properties and most important mechanical properties and at the same time can biodegrade
under the conditions related to the particular application. It is often difficult to find or
develop a material that fulfils all of those requirements.

Mainly with the aim to achieve suitable processing and mechanical and barrier prop-
erties for a given application, real polymer materials are often blends of several polymers
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and contain various additives and fillers [6–8]. The whole material has to be biodegrad-
able, which means that correct selection of individual components is very important and
can significantly affect its biodegradability. The plasticizer triacetin, used in a study by
Sedničková et al. [9], was tested with PLA and PLA/PHB blends, and the materials were
exposed to biodegradation in compost at 58 ◦C. The results of the study prove higher
sensitivity of PHB (polyhydroxybutyrate) towards biodegradation in comparison with that
of PLA under the same conditions. Additionally, the plasticizer triacetin degraded faster
in comparison with PLA. The study also showed that changes in material composition
(e.g., amount of plasticizer) might change the biodegradation rate. Another bio-based
plasticizer, acetyl-tri-n-butyl citrate (ATBC), in combination with polyethylene glycol (PEG)
was also tested as a component of PLA/PHB blends [10]. The material exhibits disintegra-
tion under composting conditions in less than one month. The ability of PHB to act as a
nucleating agent in PLA/PHB blends slowed down the disintegration, while plasticizer
content accelerated it.

It is expected in many cases that waste containing biodegradable plastics is collected
along with other primarily plant-based organic waste and it is further treated in municipal
or agricultural composting plants. In general, materials suitable for such an end-of-life
should comply with EN 13432 standard describing procedures for testing under so-called
industrial composting conditions [11]. According to this standard, industrial composting
requires an elevated temperature (55–60 ◦C) in combination with relatively high water
activity expressed as water content (approximately 60% w/w) and the presence of oxygen.
Under such conditions, several criteria must be met: (i) The disintegration of the material
from at least 90% must take place within 12 weeks, (ii) 90% mineralization of the composted
material must be achieved in less than six months, which is usually measured from evolved
CO2, and (iii) the material should not have a negative effect on compost quality (no or
minimal heavy metal content, no ecotoxicity) [12].

The description above, however, does not correspond to the conditions on a typical
simple composting plant where temperatures over 50 ◦C can be achieved for about two to
three weeks maximally [13]. Then, the process continues in a milder mesophilic temperature
range. To address this issue, a group of standards was formulated describing so-called
“home-composting” (Vicotte OK compost HOME, AS 5810 Austrian standard) [14]. Here,
besides other requirements, the temperature should be kept between 20 and 30 ◦C during
the biodegradation test. Despite the fact that some commercially used materials declared
as compostable polymers are often used in applications where composting is meant to be
the final stage of life of these materials, they do not meet these requirements and therefore
are not compostable. Chemical and biological processes, in general, are, to some extent,
accelerated with temperature [15,16]. For example, PLA needs temperatures well over
50 ◦C to initiate the biodegradation process, which is possibly related to the glass transition
temperature of PLA occurring in approximately the same temperature range [17]. This fact
was demonstrated, e.g., by Sedničková et al. [9] in a study, where the biodegradation of PLA
was measured in compost incubations at 25, 37, and 58 ◦C for 119 days. The mineralization
achieved at 58 ◦C was 92.3%, but only 19.5% at 37 ◦C and 14.9% at 25 ◦C. Other studies
showed no or limited PLA biodegradation under mesophilic conditions [18,19].

Moreover, in reality, the almost complete mineralization must be achieved within six
months, most of the time at relatively mild temperatures, to make the material compatible
with the typical composting plant operation settings [12]. As a consequence, today, typical
relatively simple composting plants with no fundamental process control possibilities often
tend to reject biodegradable polymer materials, even those labelled as compostable, because,
according to their experiences, these items do not decompose fast enough, complicate
operations at the plant, and contaminate the resulting compost [20,21].

Another prospective material, PHB, also produced from renewable resources [22,23],
can, in contrast to PLA, reach 100% mineralization in five weeks under mild conditions,
e.g., in the soil [24]. This polymer itself does not have sufficient processing and mechanical
properties for many applications.
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The main aim of this study is to demonstrate the biodegradation of the original bio-
based biodegradable materials and some model products made of these materials under
conditions corresponding to industrial composting (58 ◦C) and some of them even under
conditions corresponding to home-composting (28 ◦C) in a reasonable time frame. The
samples were also evaluated in a real municipal composting plant. Other supporting
methods were performed to follow the biodegradation process. This study is meant to
show that the presented materials with very good mechanical and processing properties
are also biodegradable and fully compatible with common composting technology in a
simple municipal composting plant or even in the proper home-compost.

2. Materials and Methods
2.1. Materials

Samples made of PLA/PHB or PLA/PHB/TPS (thermoplastic starch) blends for this
study were developed for various processing technologies and applications. Thermoplastic
starch TPS was prepared by blending corn starch + glycerol 70/30 in a twin screw extruder
at 160 ◦C. The used plasticizers are based on esters of citric acid. Blends according to
composition in Table 1 were prepared by blending in a co-rotating twin screw extruder
with the following parameters: L/D = 44, D = 26 mm, temperature profile from hopper to
head: 50-160-170-170-170-170-170-170-160-160 ◦C, screw speed 150 rpm. The blends were
cooled in a water bath and pelletized. All blends were sent to production companies that
made the test products. The basic characteristics of all the used blends are listed (Table 1).

Table 1. Basic characteristics of the tested materials.

Blend
No.

Blend
Technology

PLA Ingeo
4043D
%wt.

PHB Enmat
Y1000
%wt.

ATBC
Citrofol B2

%wt.

TPS
%wt. MFI P TS ε Tg

IM 2 Injection
moulding 40 50 10 0 5.8 1.2 31 8 N/A

IM 1 Injection
moulding 30 40 5 25 35 1.3 34 5 53

TF -1 Thermoforming 65 30 5 0 6.2 1.2 28 36 N/A
FB 2 Film blowing 70 15 15 0 18 1.2 18 330 28
FB 1 Film blowing 50 10 15 25 33 1.3 11 288 24

MFI, melt flow index, 180 ◦C, 2.16 kg, g/10 min; P, density g/cm3; TS, tensile strength at break, MPa; ε, elongation
at break, %; Tg, glass transition temperature, ◦C.

The test specimens based on PLA/PHB or PLA/PHB/TPS are listed in Table 2. Cups
were produced by the company KS-PT s.r.o. (Slovakia), the thermoforming sheet was
produced in Panara a.s. (Slovakia), and blown films were produced in Topstav s.r.o.
(Slovakia) in their pilot (Panara a.s.) plant or production plant (KMS-PT s.r.o. and Topstav
s.r.o.). The smaller picture of the sample represents the specific used test specimen for
biodegradation testing in home-compost, industrial compost, and an electric composter.

Table 2. Products that were tested for biodegradation and compostability.

Sample Grade No Thickness Description

A, bicomponent cup
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Table 2. Cont.

Sample Grade No Thickness Description

B, 500 mL cup
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2.2. Biodegradation Testing by CO2 Production Quantification

Composting biodegradation tests were performed according to the adapted and
miniaturized ISO 14855 method in 500 mL biometric flasks with septum-equipped stoppers.
Mature compost from a nearby municipal composting facility (TSZ Ltd., Zlín, Czech
Republic) was used in this part of the study. This test was done at 58 ◦C for industrial
composting and at 28 ◦C to simulate home-composting conditions. Into each flask, 2.5 g
of dry-weight compost, 5 g of perlite, and 1 mL of mineral salt medium were weighed,
and the water content of the substrate mixture was eventually adjusted to 60% by the
addition of sterile drinking water. One hundred milligrams of the samples were cut into
5 × 5 mm fragments that were placed in each sample flask. For each sample, three flasks
plus 4 blank flasks were used. The internal production of CO2 in blank incubations was
always subtracted to calculate the net sample mineralization. Headspace gas was sampled
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at appropriate intervals through the septum with a gas-tight needle and conducted through
a capillary into a gas analyzer (UAG, Stanford Instruments, Sunnyvale, CA, USA) to
determine the amount of CO2. Biodegradation percentage (Dt) was calculated as

Dt =
(CO2)t − (CO2)b

ThCO2
× 10 (1)

where (CO2)t is the released CO2 by each sample, (CO2)b is the CO2 produced by the blank
flasks, and (ThCO2) is the theoretical CO2 from the sample. A flash elemental analyzer 1112
(Thermo Fisher Scientific, Waltham, MA, USA) was used to measure the carbon content of
the samples.

2.3. Compostability Testing in an Electric Composter

A small electric composter GG 02 from the JRK company (Slovakia) was used for
biodegradation testing while the samples were incubated together with kitchen waste. The
effective volume of the composter was 40–50 liters. The temperature was 65 ◦C during
the whole operation time, except for one hour per day when the temperature increased
to 75 ◦C to ensure the hygienization of the content. The internal stirrer was activated
for 20 min during each hour, providing altered mixing sequences in forward and reverse
directions. The biodegradation process was initiated according to the user manual using
the original ACIDULO® bacteria culture. Samples of PLA/PHB or PLA/PHB/TPS blends
were inserted into the composter two weeks after the stabilization of the process in the
composter. Each day, 0.5–1.0 kg of kitchen food waste was added to the composter. The
samples were weighed before being inserting into the composter. Only one sample was
measured for every composition because of technical reasons of the experiments. The
content of the composter was removed each week and sieved through a sieve with a
mesh size of 2 × 2 mm. Pieces larger than 2 mm (which did not pass through the sieve)
were collected from the fraction above the sieve. The collected samples were washed in
water, subsequently dried in an air oven for 1 h at 90 ◦C, and weighed with precision of
0.0001 g. Then, the samples were returned to the composter immediately after weighing.
Biodegradation was evaluated as the percentage of disintegration. Microbiology inside
the composter was monitored with DNA isolation and sequencing following an already
established methodology [25].

2.4. Disintegration Testing in a Municipal Composting Plant

The disintegration of samples was tested also in the municipal composting facility of
the city of Nitra (Nitra District, Southwest Slovakia) under real conditions of industrial
composting. The compost pile consisted of approximately 11 m3 of biodegradable munici-
pal waste (a family house garden and public greenery plant-based waste). Disintegration
testing was realized in two independent 12-week-long composting cycles. The first cycle
was realized from 6 July 2019 to 27 September 2019, and the second cycle—from 16 July
2020 to 12 October 2020 on a dedicated roofed site. Both cycles followed a certified method-
ology [26]. The samples were weighed and enclosed in a plastic net with a 2 × 2 mm mesh
diameter. The cut samples were inserted to approximately 2/3 of the height of the compost
pile (Figure 1).

Right below the samples, probes were placed to measure the temperature and humidity
inside the compost pile. The data were continuously monitored and recorded. The samples
were inspected every 2–3 weeks; sample packages were carefully removed from the pile,
visually inspected, and photographed. Afterwards, they were again inserted to 2/3 of the
height of the compost pile. The residues of the samples were dried and weighed at the end
of the cycle. Biodegradation was evaluated as the percentage of disintegration. The outside
air temperature (in both cycles) was about 22 ◦C on average.
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During the first cycle, only one specimen was tested from each sample. The average
value of humidity during the entire monitored period was 39.3% (vol). The average value
of inner temperature during the first cycle was 62.6 ◦C. During the second cycle, two
specimens were tested for each sample. The average humidity during the entire monitored
period was 35% vol. The average inner temperature during the second cycle was 61.1 ◦C.

2.5. Material Characterization Methods

SEM microscopy. Surface changes on the tested films were observed using SEM.
The samples were coated by a gold/platinum alloy using Balzers SCD 050 sputtering
equipment. TESLA BS 300 was used for the observation of samples composted in an
electric composter, and JEOL F 7500 SEM (JEOL, Tokio, Japan) was used for the samples
from an industrial city composting plant. Phenom Pro Desktop SEM (Thermo Fisher
Scientific, Waltham, MA, USA) was used for laboratory experiments under industrial and
home-composting conditions.

Thermophysical properties’ measurement. Differential scanning calorimetry (DSC)
was used for the determination of basic thermophysical properties such as glass transition
temperature, crystallization temperature, and melting temperature of samples after 0, 6,
and 13 days of composting. The conditions for DSC measurements are in Table 3.

Table 3. Conditions for DSC measurements.

Phase Ramp Temperature, ◦C Time, min

1. Conditioning isothermal 0 1
2. Heating 10 ◦C/min 200 20

3. Conditioning isothermal 200 1

Gel permeation chromatography (GPC) measurements. Samples (5 mg) were dis-
solved in chloroform (1 mL) at 70 ◦C and filtered through 0.45 µm polytetrafluoroethylene
(PTFE) syringe filters. GPC was performed in a 185 Agilent HPLC series 1100 chromato-
graph (Santa Clara, CA 95051, United States) with a PLgel mixed-c 5 µm, 7.5 × 300 mm
column, with chloroform as the mobile phase. Twelve polystyrene standards (0.2–2000 kDa)
were used for calibration.

3. Results and Discussion
3.1. Characterization of the Studied Materials

PLA/PHB- and PLA/PHB/TPS-based materials and final products (films, sheets, and
cups) are described in Tables 1 and 2. The materials were developed to be compostable in
industrial compost or even under home-composting conditions while still having favorable
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processing and service properties and containing an important proportion of PLA, which is
probably the most available bio-based polymer but still considered to be non-biodegradable
under home-composting conditions. All specimens listed in Table 2 were tested in the
electric composter, municipal composting plant, and laboratory tests under industrial com-
posting conditions. Samples in the film form (D, E, F) were also tested for biodegradability
in a laboratory test under home-composting conditions. The selection of these samples
for home-composting was based on their relatively low thickness and on the assumption
that home-composting conditions are less aggressive than those in industrial composting,
especially for the PLA component of the materials [27,28].

3.2. Biodegradability in the Laboratory Test under Industrial and Home-Composting Conditions

All samples were exposed to the laboratory test under industrial composting condi-
tions (58 ◦C). It was expected that based on the composition of the samples; they all should
be completely mineralized under these conditions. For the thick-wall samples without TPS
(A and B), more time to reach 100% mineralization was assumed.

Three samples for each composition were measured, including the reference sample
(cellulose). The average standard deviation for all tested compositions was ±8.6 for the
industrial composting conditions. Mineralization of 100% was obtained for all tested
samples after about 90 days of incubation (Figure 2). No sample except E exhibited a lag
phase. Sample E contained the highest amount of PLA (70%), so this typical feature of
PLA compost biodegradation was demonstrated in this sample [28,29]. All other samples,
which degraded without a lag phase, contained at least 30% of easily biodegradable PHB
and/or TPS, which were able to smooth out the lag phase in the biodegradation curve
under industrial compost conditions. In the case of E, the PHB phase was probably closed
inside the dominant PLA phase. After the lag phase, mineralization went on exponentially,
and the sample reached complete mineralization as the first one. The mineralization
was also fast for other film samples D and F, with F being faster at the beginning, which
probably reflected its higher content of easily biodegradable TPS and plasticizers (40%) in
comparison to that in D (5%). Surprisingly, the mineralization was also fast for a relatively
thick (1 mm) sample C with high PHB and TPS contents (65%). The slowest degradation
was observed in the case of both thick samples A (4 mm) and B (1 mm). TPS-containing cups
exhibited slightly faster biodegradation in very good correlation with the cup’s construction
(thickness). Interestingly, the thickness of the sample, at least to some extent, did not play
a very significant role. The thin film F composed of a PLA/PHB/TPS blend exhibited
a course of biodegradation similar to that of the thick sample C. Both were made of a
comparable formulation, but if TPS was not present in the composition, thickness played a
more important role (samples B, D, and E were TPS-free formulations). Possibly, the TPS
phase could initiate early disintegration of the sample and thus circumvent the importance
of thickness.
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The selected samples were removed from the compost after incubation, and they were
observed in SEM to evaluate microbial colonization and deterioration of the material’s
surface (Figure 3). After only 10 days in the compost, all materials were densely colonized,
and the density of the biofilm was clearly increased with the time of exposure. It was
not possible to identify the microorganisms present, but the morphological appearance
suggested filamentous thermophilic actinobacteria with distinguishable round endospores.
The erosion of the surface was also clearly apparent.
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Film samples D, E, and F were selected for biodegradation under home-composting
conditions (28 ◦C, Figure 4). From our previous experiences [28,29] and the majority of
the scientific literature on the topic [30], it should be expected that the PLA fraction of the
materials should not be mineralized under such conditions.
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Three samples for each composition were measured, including the reference sample
(cellulose). All samples exhibited total mineralization in a period of about 180 days. The
average standard deviation for all tested compositions was ±3.9 for the home-composting
conditions. An about 15-day-long lag phase occurred for all tested samples. Additionally,
the curves for the tested samples were not so far from that of the cellulose reference and
had the expected order. The thin film of the PLA/PHB/TPS blend (F) exhibited the fastest
biodegradability, followed with a minimal gap by the thin film sample without TPS (E).
In this case, apparently, thickness and plasticizer played a significant role; the thick film
made of PLA/PHB without TPS and at lower plasticizer content (D) degraded significantly
slower than did the thin film with higher plasticizer content (E).

When observed in SEM (Figure 5), the samples from the home-compost experiments,
in general, showed a much lower degree of surface colonization if compared with that in the
industrial compost experiment, which can be explained by the fact that at this temperature,
a completely different microbial community was present. Again, filamentous (actinomyces
most probably) but also rod-shaped bacteria were discernible (e.g., Figure 5F, 30 days).
(1) (2) (3) Cavities and cracks were gradually formed. At this temperature, fungi were very
active, with their extracellular enzymes probably degrading the material even if they were
not seen attached to the surface.

A very important result from the environmental as well as practical points of view
is the fact that PLA/PHB-blend samples degraded fully at home-compost conditions. It
means that 100% mineralization was reached despite the general opinion that PLA is
not able to biodegrade at temperatures below its Tg, (about 55 ◦C) under home-compost
conditions and therefore only the mineralization of the non-PLA part of the blends could
be expected. The blending of PLA and PHB in the hot melt state probably causes re-
esterification reactions, leading to the formation of PLA/PHB co-polyesters. The easily
biodegradable PHB segments in such a co-polyester can promote a release of low MW
fragments that are prone to further biodegradation [27]. It is very difficult to investigate
the occurrence and extent of re-esterification by standard analytical methods, but the
results from the home-composting biodegradation can be considered as proof. This is
indeed a significant discovery not only for the eventual compositing “at home” but also
for industrial composting plants. In these usually municipal facilities, the composting
process is quite simple and not always fully controlled, so the thermophilic phase of
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the composting process could be too brief or not sufficiently hot to initiate total PLA
mineralization. Problems have been reported with various items from PLA-based material
labelled as “compostable”, and often, such items are no longer accepted in these plants.
Additionally, this will prevent microplastic formation, one of the most-closely watched
environmental risks studied recently.
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3.3. Composting in the Electric Composter

All samples in Table 2 were also tested in a small electric composter. Test specimens of
10 × 7 cm with the original thickness were inserted into the composter. Biodegradation
was evaluated as weight losses in percentages; it can also be stated that the degree of
disintegration was evaluated. The results presented in Figure 6 show differences between
the disintegration of individual samples. The disintegration of all film samples was very
fast, and all films were disintegrated into pieces smaller than 2 mm after 20 days. The
cup containing TPS (C) exhibited fast disintegration into particles smaller than 2 mm
after 40 days. The other two cups (B, PLA/PHB-based; A, TPS-containing cup) were
disintegrated after a very similar time period, while the combined cup A was slightly
faster. The comparison of biodegradation curves based on CO2 measurements (in industrial
compost conditions and home-compost conditions (Figure 6) and disintegration curves
(Figure 6) can provide an important insight into the problem of the eventual formation
of microplastics.
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Figure 6. The disintegration of tested samples in a small electric composter, expressed as weight loss.

In Figure 7, sample C is shown as a typical example of all three cups. It means that the
composting process in this case ensured direct microbial conversion of the materials to CO2
with a relatively short disintegration step. On the contrary, the films rapidly disintegrated
into smaller particles, and the mineralization followed immediately. This observation
in the case of films was given by the low mechanical strength of the samples and the
mechanical strain during the mixing inside the composter. A thick cup was more resistant
to mechanical breakdown than thin films were before the samples became too brittle due to
the biodegradation process. A similar effect was also observed when home-composting
and electric composter biodegradation were compared in the case of sample E (Figure 7),
where, logically, a more significant delay of mineralization after disintegration was detected.
These results show that the studied materials really also underwent mineralization in home-
composting conditions, and eventual fragments/microplastics after their disintegration
were readily mineralized.
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Figure 7. Comparison of biodegradation curves measured as CO2 in industrial compost conditions
(58 ◦C) for samples C and E and in home-compost conditions (28 ◦C) for sample E with disintegration
curves obtained using an electric composter for samples C and E.

All tested samples exhibited well-visible changes in the surface morphology after only
6 days of incubation, as can be seen in the SEM figures. Thick samples B without TPS and
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C with TPS that were not disintegrated instantly are shown as examples (Figure 8). The
microscopic observation is in perfect correlation with the results of biodegradation and
disintegration testing discussed previously. Cavities of various dimensions and depths
were created in relation to the sample´s composition, which resulted in the enlargement of
the surface area and acceleration of the biodegradation process.
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Figure 8. SEM images of the tested samples before composting and after 6 days of incubation in
an electric composter. Specifications according to Table 2. (B—500 mL cup and C—200 mL cup
with TPS).

The composition of the bacterial community was described by next-generation 16S
r DNA metagenome sequencing in different stages of the process. The design of the
composter and its operation exhibited a severe limitation for the bacterial community. Very
high operation temperature (65 ◦C) and a daily hygienization period (75 ◦C) put even
thermophilic bacteria on the limit of their survival. These parameters should be adjusted to
provide a better environment for the compost microflora; however, it is not the topic of this
study. Evidently (Figure 9), the community was dominated by thermophilic spore-forming
taxa (Bacilli, Actinobacteria). The presence of other taxa like Bacteroidia, Negativicutes,
and even Clostridia witness probably the presence of anaerobic pockets inside the compost.
The introduced inoculum strongly influenced the initial stage, then, the gradual increase of
the other taxa with time could be seen.
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Figure 9. The bacterial community inside an electric composter. (A): heatmap at class taxonomic
level, RA, relative abundance. (B): PCoA scatter plot.

3.4. Composting at the Municipal Composting Plant

The study of compostability under real conditions and verification of the results from
the laboratory and the electric composter were realized in two composting cycles at Nitra
municipal composting plant (Slovakia). Samples B, C, and F were tested during the first
cycle. All investigated (Table 2) samples were tested in the second cycle. The first and
second cycles were realized separately, the first one during the summer of 2019 and the
second one during the summer of 2020. The main difference between the first and second
cycles was in the humidity curve of the compost substrate (Figure 10). During the first
cycle, the composting process started with a high level of moisture which then decreased
over time. The moisture profile in the second cycle was exactly the opposite. In both cases,
pure pulp paper (pure cellulose) was used as a reference. Biodegradation was evaluated
from the weight losses after 12 weeks of incubation.
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Figure 10. Moisture and temperature profiles during composting in a municipal composting plant.

Significant differences in the first cycle (year 2019) were observed in the degradation
of the pulp paper reference in both cycles (Figures 11 and 12). While temperature profiles
were very similar in both cycles, the trends of the compost substrate humidity differed
significantly. The first stages of composting in the second cycle proceeded apparently
at insufficient humidity, which could explain why in the second cycle, the compost was
not sufficiently active for the biodegradation of the reference material. Suitable moisture
content is an essential parameter for the composting process, especially during the initial
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hot phases of the composting. The pulp paper reference was not found in the first cycle of
composting after 12 weeks, while in the second cycle, with low humidity in the first stages
of composting, lower than 50% weight loss was observed (Figure 12), and the paper still
preserved its original shape (Figure 11).
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Figure 12. Weight losses of the tested samples after 12 weeks of incubation in the first and second
composting cycles at a municipal composting plant.

The investigated samples provided very interesting results regarding the above-
discussed differences between both composting cycles. Despite the humidity profile, film
samples degraded completely in both composting cycles (sample F in the first composting
cycle, as well as samples D, E, F in the second composting cycle). A thick cup sample
containing TPS (sample C) degraded equally in both cycles, and the humidity profile had a
small effect on their biodegradation. The thick sample without TPS (cup sample B) and the
combined cup (sample A) were probably more sensitive to the moisture content but still
biodegraded substantially. In general, the samples in the study biodegraded comparably or
even better than the cellulose reference did in the described real-condition experiment.

The surface morphology of the samples was also studied in the second cycle of the
industrial composting experiment. Film samples could not be analyzed because they
were decomposed completely; all other samples exhibited significant changes in surface
morphology (Figure 13). Similarly, as with the samples from the electric composter, strong
surface erosion was observed.
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Figure 13. SEM images after 12 weeks of incubation at a municipal composting plant (second cycle).

3.5. Changes in the Material Properties during the Composting Experiments

In the case of the electric composter, after each period, molecular weight distributions
were measured by GPC. It must be noted that GPC measurements were realized with
solid, nondegraded residuals of composted materials. GPC curves of unprocessed PLA
and PHB used in the blends were also analyzed, and the records are shown (Figure 13,
insert). Partial degradation due to blending and then processing of the blend during sample
preparation was noticeable for each sample. The degradation caused by processing only
in the melt state was not very extensive; only in the case of sample C was its extent more
significant. This can relate to the presence of glycerol in TPS and possible alcoholysis of PHB
by glycerol [31,32]. The intense shift of the main peaks to lower molecular weights after
composting was visible mainly in the case of thick cup samples. In addition, the appearance
of low-molecular-weight fractions was clearly seen in GPC records. The last indicated
fraction produced by the biodegradation process exhibited an average molecular weight
(MW) of about 1000 g/mol. Lower MW fractions (below 500 g/mol) were probably easily
mineralized. The fast gradual decrease of MW was observed for all samples (Figure 14).
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Figure 14. MW evolution during incubation in an electric composter. The GPC records of sample C
after 0, 27, and 41 days of composting are shown as an example (insert).

Regardless of the original MW, all samples that did not biodegrade exhibited similar
MW values after 30 days of composting. It means that the degradation process ran not only
on the surface of the samples but also in the bulk of the materials. Only short time periods
were evaluated in the case of film samples because already after 14 days of composting, no
film sample could be retrieved.

The process at the municipal composting plant also caused a dramatic decline in MW
below 1000 g/mol, as shown for selected samples (Figure 15). Such low-molecular-weight
substances are considered to be easily and rapidly biodegradable during the following
composting period.
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composting cycle (2020).

The mentioned changes in polymer structure were also confirmed by DSC measure-
ments realized on solid residuals after each evaluated period of composting process in the
electric composter (Figure 16).
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Figure 16. DSC curves of sample B before composting (B_0) and after 55 days of composting (B_55)
in an electric composter.

Significant changes were visible in the first heating as well as in the cooling and the
second heating cycle. The temperatures of melting were significantly shifted to lower
values after 55 days of composting; after the same period, the crystallization tempera-
ture was significantly decreased. The composting caused the disappearance of the cold
crystallization peak visible in the original sample, and the melting peak was split in two.
Quantitative analysis of DSC measurements (Figure 17) also showed that the changes in
thermograms in the first run were not connected only to the consumption of the amorphous
phase, but significant changes in the molecular structure occurred. This was confirmed by
the decrease of crystallization enthalpy as well as of the melting enthalpy in the second
heating cycle when the record of the sample was no longer affected by its previous thermal
and other history.

Polymers 2022, 14, x FOR PEER REVIEW 18 of 20 
 

 

 
Figure 17. Evolution of enthalpies of melting and crystallization during the incubation in an electric 
composter for sample B. 

4. Conclusions 
This detailed study presents results from composting experiments in several experi-

mental settings, all aimed at the group of PLA/PHB blend materials with various compo-
sitions and, depending on the particular material, also containing citric-acid-ester-based 
plasticizers and thermoplastic starch (TPS). All tested samples were in their real final 
product forms and shapes. 

It was found that the studied PLA/PHB-based blends were fully biodegradable under 
industrial composting conditions as well as in an electric composter, which was designed 
for the composting of kitchen waste. A very important result from this study is the obser-
vation that some of the studied materials, despite their high PLA contents, could fully 
biodegrade under home conditions. The result is explained by the assumption that PLA 
could react with PHB during the blending in the melt form, and this reactive extrusion 
process could induce re-esterification of both polymer components. This extrusion pro-
cess was intentionally designed with such a purpose. The easily biodegradable PHB seg-
ments can promote the polymer chains’ scission and ultimately complete biodegradation 
of the materials under home-composting conditions.  

Evaluation of GPC, DSC, and SEM data showed that during the composting of stud-
ied PLA/PHB blends, the changes in the molecular structure and morphology proceeded 
not only on the surface but also in the bulk of the materials. SEM images showed that 
already in the first stages of biodegradation, not only macroscopic disintegration but also 
biological decomposition of the materials took place on the surface, causing an enlarge-
ment of the specific surface area and thus the acceleration of the biodegradation process.  

A very important result was the verification that disintegration and mineralization 
as the two main processes during biodegradation of materials could run in the case of the 
studied PLA/PHB blends not only in sequence but also in parallel. This was observed 
mainly in the case of thicker specimens like cups, but also in the case of thin products like 
films where the disintegration was extremely rapid but the mineralization phase was de-
layed only shortly. Based on these results, it can be concluded that these PLA/PHB mate-
rials do not leave microplastics in the environment after industrial as well as after home-
composting processes. The composting experiment in a municipal composting plant con-
firmed and verified the laboratory results. During two independent testing cycles, it was 
found that the studied PLA/PHB materials degraded comparably or even faster than the 
pure cellulose reference did. 

Figure 17. Evolution of enthalpies of melting and crystallization during the incubation in an electric
composter for sample B.

4. Conclusions

This detailed study presents results from composting experiments in several experi-
mental settings, all aimed at the group of PLA/PHB blend materials with various compo-
sitions and, depending on the particular material, also containing citric-acid-ester-based
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plasticizers and thermoplastic starch (TPS). All tested samples were in their real final
product forms and shapes.

It was found that the studied PLA/PHB-based blends were fully biodegradable under
industrial composting conditions as well as in an electric composter, which was designed
for the composting of kitchen waste. A very important result from this study is the
observation that some of the studied materials, despite their high PLA contents, could fully
biodegrade under home conditions. The result is explained by the assumption that PLA
could react with PHB during the blending in the melt form, and this reactive extrusion
process could induce re-esterification of both polymer components. This extrusion process
was intentionally designed with such a purpose. The easily biodegradable PHB segments
can promote the polymer chains’ scission and ultimately complete biodegradation of the
materials under home-composting conditions.

Evaluation of GPC, DSC, and SEM data showed that during the composting of studied
PLA/PHB blends, the changes in the molecular structure and morphology proceeded not
only on the surface but also in the bulk of the materials. SEM images showed that already
in the first stages of biodegradation, not only macroscopic disintegration but also biological
decomposition of the materials took place on the surface, causing an enlargement of the
specific surface area and thus the acceleration of the biodegradation process.

A very important result was the verification that disintegration and mineralization
as the two main processes during biodegradation of materials could run in the case of the
studied PLA/PHB blends not only in sequence but also in parallel. This was observed
mainly in the case of thicker specimens like cups, but also in the case of thin products
like films where the disintegration was extremely rapid but the mineralization phase was
delayed only shortly. Based on these results, it can be concluded that these PLA/PHB
materials do not leave microplastics in the environment after industrial as well as after
home-composting processes. The composting experiment in a municipal composting plant
confirmed and verified the laboratory results. During two independent testing cycles, it
was found that the studied PLA/PHB materials degraded comparably or even faster than
the pure cellulose reference did.
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