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Abstract: Anthocyanin has attracted increasing attention due to its superior biological activity. How-
ever, the inherently poor stability of anthocyanin limits its practical applications. In this study, a
fast and straightforward method was developed to improve the stability of anthocyanin. Cellulose
acetate ultrafine fiber-loaded anthocyanin (CA@Anthocyanin UFs) was prepared by robust electro-
spinning, and the potential application of cellulose acetate ultrafine fibers (CA UFs) as a bioactive
substance delivery system was comprehensively investigated. The experimental results showed that
CA@Anthocyanin UFs had protective effects on anthocyanin against temperature, light, and pH.
The results of the artificially simulated gastric fluid (pH = 2.0) indicated that the CA@Anthocyanin
UFs had a controllable release influence on anthocyanin. A 2,2-Diphenyl-1-picrylhydrazyl (DPPH)
radical-scavenging assay suggested that the CA@Anthocyanin UFs still had an excellent antioxi-
dant activity similar to anthocyanin. This work demonstrated the potential application of robust
electrospinning-constructed cellulose acetate ultrafine fibers in bioactive substance delivery and
controlled release systems, as well as its prospects in green packaging due to the nature of this
environmentally friendly composite.

Keywords: cellulose acetate; cellulose acetate@anthocyanin ultrafine fiber; robust electrospinning;
stability; controlled release

1. Introduction

Anthocyanin, as a class of water-soluble natural food pigments, is rich in resources,
safe, and non-toxic. It is widely found in fruits, vegetables, grains, and other plants, giving
plants different colors such as blue, red, or purple [1]. Anthocyanin is a kind of flavonoid
compound formed by the binding of anthocyanidin with various sugars through glycosidic
bonds. Anthocyanin is classified according to the types of sugars bonded with antho-
cyanidin [2]. Anthocyanin belongs to the polyphenol family of compounds and is also an
important bioactive substance with various functions and nutritional values [3]. It is widely
used for scavenging pure radicals [4], cancer treatment [5], tumor ablation [6], its anti-
inflammatory aspects [7], protecting eyesight, losing weight, and preventing diabetes [8].
With the development and deepening of its research, various effects of anthocyanin have
been revealed, and it has been found that anthocyanin has great utilization values and ap-
plication prospects in food [9], medicine [10], cosmetics [11], and other fields [12]. However,
anthocyanin is extremely unstable. During storage and processing, its stability can be easily
affected by external environmental conditions, such as temperature, light, pH, oxygen,
and metal ions, which can reduce its biological activity, resulting in a low bioavailability
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and limiting its applications [1]. Therefore, it is necessary to explore ways to improve the
stability of anthocyanin and expand the applications of anthocyanin in various fields.

A large number of studies have reported that anthocyanin can be loaded into various
delivery systems, including biopolymer-based nanoparticles, nanogels, and complex coac-
ervates, to improve its stability and biological activity [13]. These delivery and controlled
release systems not only protect the biological activity of anthocyanin, but they can also
control its release characteristics. Therefore, the selection of the correct materials is crucial
to improving the stability and bioavailability of anthocyanin. Electrospinning is a simple
and effective method used to prepare continuous fibers based on polymers and composites,
and it has become a research hotspot in recent years [14–16]. Electrospun nanofibers have
the advantages of a large surface area, small fiber diameter, high porosity, and other unique
abilities, which can improve drug-loading efficiency, reduce the sudden release of a drug,
and ensure the safety of a drug’s application [17]. They have shown great potential in drug
and bioactive substances’ delivery and release. Ahmad et al. developed a new type of
rod-shaped implantable drug delivery systems (IDDS) by electrospinning cellulose acetate
and polycaprolactone nanofiber membranes [18]. The results showed that the developed
nanofiber membranes were suitable for long-term drug delivery via their implantation
in subcutaneous tissues. Han et al. prepared lutein-loaded polyvinyl alcohol/sodium
alginate nanofibers by electrospinning and further evaluated their release behavior, which
confirmed the potential of polyvinyl alcohol/sodium alginate electrospinning-constructed
fibers for bioactive substance delivery and controllable release [19].

Cellulose acetate (CA) is a good candidate for use in bioactive substances’ delivery
and controlled release among the different types of materials. It is a kind of regenerated
cellulose fiber obtained by the esterification reaction of cellulose and acetic acid, possessing
the characteristics conducive to environmental protection, security, and good degrada-
tion [20]. Thus, CA is widely used as a drug-carrying fiber to load a variety of drugs
and small molecules [21]. CA-electrospun nanofibers loaded with gallic acid showed
controllable release characteristics, antioxidant activity, and antibacterial activity, whereby
CA-electrospun fibers could serve as gallic acid carriers in a transdermal drug delivery
system and wound-dressing scenario [22]. Yang et al. prepared clear core–shell nanofibers
through a modified triaxial–electrospinning process—a mixture of ibuprofen and gliadin
fibers with a thin layer of CA in the nanocores. A dissolution test in vitro showed that
the existence of the CA coating eliminated the initial burst release of ibuprofen from the
drug–protein complex, thereby prolonging the release time, which was proportional to the
coating thickness. The research provided a new method for developing novel functional
nanomaterials [23]. Milovanovic et al. employed CA as a carrier of thymol and explored
the effect of the thymol content on CA, thymol’s release kinetics, and antibacterial activity.
The results have also shown that CA, as a controlled release carrier of thymol, has wide
application prospects [24].

Empowered by the preparation of nanofibers by the electrostatic-spinning method,
CA can greatly embed various biologically active substances and has the characteristics
of environmental protection, naturality, non/low toxicity, and good degradation. Herein,
CA ultrafine fibers loaded with anthocyanin (CA@Anthocyanin UFs) were prepared via a
robust electrospinning process, and the microstructure and thermal stability of the samples
were further analyzed. In addition, the stability, controlled release performance, and
oxidation resistance of the composite film were evaluated. The information obtained in this
study can provide new ideas and methods for the development of nanomaterials used for
loading and delivering bioactive substances. In addition, this work also offers potential
prospects in green packaging.

2. Materials and Methods
2.1. Materials

Cellulose acetate (CA, Mn ~30,000) was provided by Sigma-Aldrich (St. Louis, MO,
USA). Acetone was purchased from Hengfa Chemical Reagent Co., Ltd. (Tianjin, China).
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Methanol anhydrous, anhydrous citric acid, sodium citrate, sodium chloride, sodium
hydroxide, N, N-Dimethylacetamide (DMAc), and 2,2-Diphenyl-1-picrylhydrazyl (DPPH)
were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Anhydrous
ethanol was provided by Kermel Chemical Reagent Co., Ltd. (Tianjin, China). Hydrochloric
acid was purchased from China Pingmei Shenma Group Kaifeng Dongda Chemical Co.,
Ltd. (Kaifeng, China).

2.2. Synthesis of CA@Anthocyanin UFs

Cellulose acetate@anthocyanin ultrafine fibers (CA@Anthocyanin UFs) were fabricated
using a needle-based, temperature-assisted electrospinning setup. Details of the fabrication
of CA@anthocyanin UFs are as follows. A total of 1.44 g of CA was dissolved in 9 mL
of DMAc, acetone, and anhydrous methanol homogeneous solution (1:1:1, v/v/v) under
constant magnetic stirring at room temperature for 1.5–2 h to obtain completely dissolved
CA solution (16%, w/v). Various mass fractions (3 wt.%, 5 wt.%, 7 wt.%, 9 wt.%, and
11 wt.%) of anthocyanin were then added into the CA solution by constant stirring at room
temperature until the anthocyanin was dissolved to obtain the electrospinning solution.

Then, the electrospinning solution was placed in a syringe and pumped by a syringe
pump at a flow rate of 1.0 mL/h. The voltage power was set at 20 kV and the distance from
the needle tip to the collector was 16 cm, according to the previous electrospinning process
but with some changes [25]. The nanofibers were collected in a cylinder collector wrapped
with conductive aluminum foil. Electrospinning was conducted at room temperature
throughout the experiment. Finally, CA@Anthocyanin UFs were obtained, and pure
cellulose acetate ultrafine fibers (CA UFs) without anthocyanin were prepared under the
same conditions for comparative analysis.

2.3. Characterizations

Morphological characterizations of the surfaces of cellulose acetate ultrafine fiber–
loaded anthocyanin (CA@Anthocyanin UFs) and neat cellulose acetate ultrafine fibers
without anthocyanin (CA UFs) were carried out using a scanning electron microscope
(SEM, Hitachi S-3000N, Tokyo, Japan). The average diameters were obtained based on
SEM images by using an image analysis software (ImageJ 1.51). Fourier transform infrared
(FTIR) spectra were determined by a NEXUS670 spectrometer (Thermo Nicolet Corporation,
Madison, WI, USA) and the scanning wavelength range was 4000–400 cm−1. A thermo-
gravimetric analysis (TGA) was performed on a TGA/DSC/1100SF instrument (Mettler
Toledo Instruments Co., Ltd., Shanghai, China) in an N2 atmosphere with a temperature
range of 30–800 ◦C and a heating rate of 10 ◦C/min. Differential scanning calorimetry
(DSC) analysis was carried out on a DSC instrument (TA Instruments, Netzsch, Germany)
in an N2 atmosphere at a temperature range of 25–300 ◦C and a heating rate of 10 ◦C/min.
X-ray diffraction (XRD) patterns were recorded on a X-ray diffractometer (PANalytical
Empyrean, Almelo, The Netherlands) with Cu-Kα radiation. Dynamic mechanical analysis
(DMA) was performed on a DMA Q800 instrument (TA Instruments, New Castle, DE,
USA) at a speed of 2 mm/min. The absorbance was performed using the WFJ7200 visible
spectrophotometer (Unico Instrument Co., Ltd., Shanghai, China).

2.4. The Degree of Swelling of CA UFs and CA@Anthocyanin UFs

The swelling degree of ultrafine fibers is responsible for its controlled release properties.
Electrospun ultrafine fibers with identical sizes (20 × 20 mm2) were immersed in 1.0 M
of phosphate buffer saline solutions at a stirring rate of 50 rpm for 24 h. The degree of
swelling of ultrafine fibers was calculated using the following equation [26]:

Degree of swelling (%) = (W2 − W1)/W1 × 100 (1)

where W1 and W2 represent the weight of dried ultrafine fibers and swollen ultrafine
fibers, respectively.
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2.5. Determination of Anthocyanin Loading Efficiency

A total of 0.2 g of CA@Anthocyanin UFs were shredded and immersed in 10 mL of
acetone; then, 200 mL of distilled water was added, under continuous magnetic stirring.
Then, the sample solution was evaporated until the volume was about 10 mL with a rotary
evaporator at 37 ◦C, and the solution was filtered and collected. The absorbance value
was measured; then, the amount of anthocyanin in the solution was calculated according
to the standard curve (Figure S1). The above steps were repeated in the precipitate, and
finally, the amount of anthocyanin in 0.2 g of CA@Anthocyanin UFs was calculated by the
following formulas [27]:

M1 = W1 × V1
M = (M1 + M2 + M3 + . . . + Mn)/0.2

Loading efficiency (%) = (M/N) × 100
(2)

where W1, V1, M1, and N represent the anthocyanin amount in solution according to the
standard curve, volume of solution after rotary evaporation, the anthocyanin amount of the
filtrate, and the original anthocyanin mass fraction of CA@Anthocyanin UFs, respectively.

2.6. Effects of Temperature, Natural Light, and pH on the Stability of Anthocyanin and
CA@Anthocyanin UFs

In order to explore the effect of temperature on the stability of pure anthocyanin, 50 mg
of pure anthocyanin was weighed, deposited into a test tube with a stopper, and placed
in the dark for 2 h and 6 h in a water bath at 30, 60, and 90 ◦C. Then, the samples were
immediately cooled in an ice bath and diluted to 100 mL with distilled water. The loss
rate was calculated by measuring the absorbance value of the sample solution. To research
the effect of temperature on CA@Anthocyanin UFs, 0.2 g of CA@Anthocyanin UFs was
weighed and put into a cuvette with a stopper, placed in a water bath at 30, 60, and 90 ◦C
in the dark for 2 h and 6 h, and then cooled in an ice bath immediately. A total of 10 mL
of acetone was added to completely dissolve the CA@Anthocyanin UFs, and then 200 mL
of distilled water was added. Then, the volume of the mixture was evaporated to below
10 mL using a rotary evaporator, followed by the introduction of water to raise the volume
by 10 mL for the calculation of loss rate.

In order to explore the effect of natural light on the stability of pure anthocyanin
and CA@Anthocyanin UFs, a certain amount of pure anthocyanin was weighed and
stored in a petri dish under room lights. A total of 50 mg of pure anthocyanin was
extracted every 2, 4, 6, and 8 days, and water was added to a constant volume of 100 mL
to measure the absorbance value and calculate the loss rate. Similarly, a certain amount
of the CA@Anthocyanin UF sample was weighed and placed in a petri dish under room
light. A total of 0.2 g of CA@Anthocyanin UFs was extracted every 2, 4, 6, and 8 days and
completely dissolved with 10 mL of acetone. A total of 200 mL of distilled water was added
and then evaporated to below 10 mL using a rotary evaporator. Then, water was added to
a constant volume of 10 mL, followed by filtration treatment. Finally, the absorbance value
was recorded, and the loss rate was calculated.

In order to explore the effect of pH on the stability of pure anthocyanin and CA@
Anthocyanin UFs, a citric acid/sodium citrate buffer solution was prepared with pH = 2.0,
4.0, 6.0, 7.0, 8.0, and 10.0. A certain amount of anthocyanin and CA@Anthocyanin UF
sample was placed in a colorless transparent vial containing the above buffer solution
and left in the dark. The color changes of anthocyanin and CA@Anthocyanin UFs were
observed at 0 h, 1 h, 2 h, 4 h, and 8 h.

2.7. Determination of Controlled Release Properties of CA@Anthocyanin UFs In Vitro

The release characteristics of anthocyanin were studied by artificially simulating
gastric fluid in vitro. A total of 0.3 g of CA@Anthocyanin UF (7 wt.%) was added into
20 mL of artificially simulated gastric fluid (pH = 2.0), which was placed in a vibrator under
a temperature of 37 ◦C and a speed of 50 r/min. One sample (from a total of eight samples)
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was taken every 30 min and filtered in the dark. Anthocyanin content and release rate were
calculated by measuring the absorbance [18].

Release rate (%) = m1/(m × 7 wt.% × n) × 100 (3)

where m1, m, and n are the amount of released anthocyanin, the amount of CA@Anthocyanin
UFs, and the loading efficiency of CA@Anthocyanin UFs (7 wt.%), respectively.

2.8. Antioxidant Activity of Anthocyanin and CA@Anthocyanin UFs

The antioxidant activity of CA@Anthocyanin UFs was illustrated by measuring the
DPPH radical-scavenging capability of the released anthocyanin from CA@Anthocyanin
UFs, modified from a previously reported method [4]. A total of 7.88 mg of DPPH was
dissolved in 100 mL of absolute ethanol to prepare 0.2 mmol/L DPPH solution. A total of
4 mg of anthocyanin and 115.78 mg of CA@Anthocyanin UFs were added into 100 mL of
acetone and methanol anhydrous homogeneous solution (1:1 = v/v), respectively, to obtain
test specimens. Afterwards, 2 mL of test solution was mixed with 2 mL of DPPH solution.
Then, the solution was shaken for 1 min and reacted for 30 min at room temperature in
the dark. The absorbance of the solution at a wavelength of 517 nm (A1) was measured
using a UV–Vis spectrophotometer. At the same time, DPPH ethanol solution was replaced
with an equal volume of anhydrous ethanol, and the absorbance value was denoted as A2.
The sample solution was replaced with an equal volume of anhydrous ethanol, and other
operations followed the same procedure. The absorbance value was determined as A0. The
modified equation to determine the antioxidant activity of both the anthocyanin and the
CA@Anthocyanin UFs is as follows [4]:

DPPH radical-scavenging rate (%) = [1 − (A1 − A2)/A0] × 100 (4)

The measurements were conducted in triplicate. By comparing the DPPH radical-
scavenging rates of anthocyanin and CA@Anthocyanin UFs, the standard deviation was
calculated, and the significance was analyzed.

2.9. Statistical Analysis

The statistical analyses of the data were performed by Duncan’s test using SPSS-26.
Different letters represent significant differences (p < 0.05) between groups.

3. Results and Discussion
3.1. The Morphology and Loading Efficiency of CA@Anthocyanin UFs

The process followed for preparing the cellulose acetate@anthocyanin ultrafine fibers
(CA@Anthocyanin UFs) by robust electrospinning is shown in Scheme 1.
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The relationship between the absorbance and anthocyanin content was measured by
determining the standard curve of the anthocyanin aqueous solution. The loading efficiency
and scanning electron microscope (SEM) images of the CA@Anthocyanin UFs carrying an-
thocyanin at different concentrations are shown in Figure 1 and Figure S2. As demonstrated,
with the increasing anthocyanin content in the spinning solution, the loading efficiency
of anthocyanin first increased and then decreased gradually. The CA@Anthocyanin UFs
carrying 7 wt.% anthocyanin had a better loading efficiency (49.35%). Much higher concen-
trations of anthocyanin can affect the properties of the spinning solution, and the spinning
fluid is prone to drop to hinder the normal spinning process. It can also be seen that a
higher concentration of anthocyanin has more obvious effects on the nanofibrous morphol-
ogy. As shown in Figure 1a, the pure CA UFs were smooth. With the gradual addition
of anthocyanin into the spinning solution, the diameter of the electrostatic spinning fiber
was decreased. This was because the addition of anthocyanin reduced the viscosity of
the spinning solution and made the electrospinning jet easy to stretch, which led to the
decreased fiber diameter [28]. When the content of anthocyanin was 7 wt.%, the fiber
diameter was small and relatively uniform, smooth (without beads), and microfibers with
a good morphology were formed. When the anthocyanin content exceeded 7 wt.%, the
fiber diameter became inconsistent, which was caused by the excessive anthocyanin con-
centration. This resulted in too much surface tension, and the high-voltage electrostatic
field did not completely overcome the surface tension of the spinning solution (Figure S2).
Therefore, the CA@Anthocyanin UFs (7 wt.%, Figure S3) with the highest anthocyanin
loading were selected for the subsequent experimental studies.

Polymers 2022, 14, x FOR PEER REVIEW 6 of 14 
 

 

 
Scheme 1. Schematic illustration of as-prepared CA@Anthocyanin UFs by electrospinning. 

The relationship between the absorbance and anthocyanin content was measured by 
determining the standard curve of the anthocyanin aqueous solution. The loading effi-
ciency and scanning electron microscope (SEM) images of the CA@Anthocyanin UFs car-
rying anthocyanin at different concentrations are shown in Figures 1 and S2. As demon-
strated, with the increasing anthocyanin content in the spinning solution, the loading ef-
ficiency of anthocyanin first increased and then decreased gradually. The CA@Anthocya-
nin UFs carrying 7 wt.% anthocyanin had a better loading efficiency (49.35%). Much 
higher concentrations of anthocyanin can affect the properties of the spinning solution, 
and the spinning fluid is prone to drop to hinder the normal spinning process. It can also 
be seen that a higher concentration of anthocyanin has more obvious effects on the nano-
fibrous morphology. As shown in Figure 1a, the pure CA UFs were smooth. With the 
gradual addition of anthocyanin into the spinning solution, the diameter of the electro-
static spinning fiber was decreased. This was because the addition of anthocyanin reduced 
the viscosity of the spinning solution and made the electrospinning jet easy to stretch, 
which led to the decreased fiber diameter [28]. When the content of anthocyanin was 7 
wt.%, the fiber diameter was small and relatively uniform, smooth (without beads), and 
microfibers with a good morphology were formed. When the anthocyanin content ex-
ceeded 7 wt.%, the fiber diameter became inconsistent, which was caused by the excessive 
anthocyanin concentration. This resulted in too much surface tension, and the high-volt-
age electrostatic field did not completely overcome the surface tension of the spinning 
solution (Figure S2). Therefore, the CA@Anthocyanin UFs (7 wt.%, Figure S3) with the 
highest anthocyanin loading were selected for the subsequent experimental studies. 

 
Figure 1. (a, b) SEM images of the CA@Anthocyanin UFs with various concentrations of anthocya-
nin (inset: diameter distribution of CA@Anthocyanin UFs; (a)―0%; (b)―7%); (c) loading efficiency 
of the CA@Anthocyanin UFs with various concentrations of anthocyanin. 

3.2. FTIR of Pure Anthocyanin, CA UFs, and CA@Anthocyanin UFs 
The Fourier transform infrared (FTIR) spectra of the CA UFs, pure anthocyanin, and 

CA@An thocyanin UFs are shown in Figure 2. According to Figure 2a, the stretching vi-
bration peak of the hydroxyl group at ~3489 cm−1, the stretching vibration peak of C=O at 
~1754 cm−1, the stretching vibration peak of C-O-C at ~1236 cm−1, and the stretching 

Figure 1. (a,b) SEM images of the CA@Anthocyanin UFs with various concentrations of anthocyanin
(inset: diameter distribution of CA@Anthocyanin UFs; (a)—0%; (b)—7%); (c) loading efficiency of the
CA@Anthocyanin UFs with various concentrations of anthocyanin.

3.2. FTIR of Pure Anthocyanin, CA UFs, and CA@Anthocyanin UFs

The Fourier transform infrared (FTIR) spectra of the CA UFs, pure anthocyanin,
and CA@An thocyanin UFs are shown in Figure 2. According to Figure 2a, the stretch-
ing vibration peak of the hydroxyl group at ~3489 cm−1, the stretching vibration peak
of C=O at ~1754 cm−1, the stretching vibration peak of C-O-C at ~1236 cm−1, and the
stretching vibration peak of C-O at ~1044 cm−1 are characteristic peaks of CA. The FT-IR
spectra of anthocyanin showed characteristic peaks at ~3423 cm−1 (O-H stretching vi-
bration), ~1616 cm−1 (aromatic ring stretching vibration), and ~1071 cm−1 (C-H bending
vibration) (Figure 2b). It was worth noting that after the addition of anthocyanin, the
CA@Anthocyanin UFs (Figure 2c) covered typical peaks of CA and anthocyanin, and the
position of the characteristic peak of the CA UFs was not significantly changed. Therefore,
both CA and anthocyanin were successfully coupled into the UFs.
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3.3. Thermal Properties of CA UFs and CA@Anthocyanin UFs

The thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG) curves
intuitively show the changes in the thermal properties of the nanocomposites
(Figures 3 and S4). There was only one obvious period of rapid decline at ~300 ◦C. After
adding a certain amount of anthocyanin into the CA system, the degradational trend of the
CA@Anthocyanin UFs was similar to that of the CA UFs.
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The CA UFs and CA@Anthocyanin UFs were stabilized up to ~250 ◦C and then began
to degrade. After that, they stabilized at ~390 ◦C. The CA UFs were degraded stably until
reaching 10 wt.% residue. However, the CA@Anthocyanin UFs were degraded stably,
with a residue of 20 wt.%. The experimental results were consistent with a previous
study [29]. The CA UFs and CA@Anthocyanin UFs had a nearly vertical thermogravimetric
process between 300–400 ◦C [30], indicating that the sample itself was undergoing a violent
decomposition reaction, which caused an about 75 wt.% mass loss. This also showed that
the CA UFs and CA@Anthocyanin UFs were relatively stable below 300 ◦C.

Differential scanning calorimetry (DSC) was also used to evaluate the thermal stability
of the CA UFs and CA@Anthocyanin UFs (Figure S5). The CA UFs showed a significant
endothermic peak at ~228 ◦C, which was slightly higher than the melting temperature (Tm)
of CA powder (~207 ◦C) [31]. The CA@Anthocyanin UFs showed an endothermic peak
at ~227 ◦C. This indicated that the addition of 7 wt.% anthocyanin could not significantly
influence the Tm of the CA UFs, aside from a slight decrease in Tg from 199.54 ◦C to
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198.87 ◦C, which was observed for the CA UFs after the introduction of anthocyanin.
Hence, the introduction of anthocyanin has a quite slight effect on the Tm and Tg.

3.4. Crystallinity and Mechanical Properties of CA UFs and CA@Anthocyanin UFs

It can be seen from Figure S6 that the X-ray diffraction (XRD) pattern of anthocyanin
showed a broad peak near 2θ = 20◦, which indicated that the anthocyanin was amor-
phous [32]. The diffraction peak intensity of the CA UFs decreased after anthocyanin was
introduced. Hence, the addition of anthocyanin led to the reduced crystallinity of the
CA UFs.

The mechanical properties of the CA UFs and CA@Anthocyanin UFs are shown in
Figure S7. The tensile strength of the CA@Anthocyanin UFs was lower than that of the CA
UFs, which was due to the addition of anthocyanin that could reduce the compactness of the
CA UFs [33]. In addition, the elongation at break of the CA@Anthocyanin UFs decreased
slightly compared with the CA UFs, which resulted from the fact that anthocyanin could
hinder the interactions between fibrous chain–chain interactions within CA, reducing the
flexibility of the CA@Anthocyanin UFs [34].

3.5. Swelling Properties of CA UFs and CA@Anthocyanin UFs

As shown in Figure 4, the swelling degree of the CA UFs was ~553%, and that of the
CA@Anthocyanin UFs displayed a higher swelling degree of ~574%. This result was in
agreement with the previously reported works [35,36], where anthocyanin has the excellent
hydrophilic nature.
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3.6. Effects of Temperature on the Stability of Anthocyanin and CA@Anthocyanin UFs

The loss rate of the anthocyanin at different temperatures is shown in Figure 5a
(2 h) and Figure 5b (6 h). The loss rate of pure anthocyanin and anthocyanin loaded in
CA@Anthocyanin UFs increased with the increase in the water bath temperature. The
loss rate of anthocyanin and the CA@Anlthocyanin UFs changed less at lower tempera-
tures. However, the loss rate of pure anthocyanin increased more significantly when the
temperature was higher.
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The loss rate of anthocyanin increased from 6.01% to 9.93% after 2 h and 6 h in the
90 ◦C water bath, while the loss rate of the CA@Anthocyanin UFs only increased from
2.54% to 3.19%. The CA@Anthocyanin UFs showed a significantly lower loss rate than
pure anthocyanin at 90 ◦C. This was probably because anthocyanin was quite sensitive to
heat and unstable at high temperatures; therefore, the increase in temperature led to the
rupture of glycoside bonds and promote anthocyanin degradation [37]. This phenomenon
was consistent with the result of a previous study, which reported that a high temperature
led to the degradation of anthocyanin and that the degradation rate of anthocyanin was
proportional to temperature under certain conditions [38]. Wojdyło et al. also reported
that the degradation of anthocyanin was related to temperature and that the anthocyanin
in the products stored at low temperature was more stable [39]. The loss rate of pure
anthocyanin was higher than that of the CA@Anthocyanin UFs (Figure 5). Therefore, the
CA@Anthocyanin UFs could greatly protect anthocyanin from degradation.

3.7. Effects of Natural Light on the Stability of Anthocyanin and CA@Anthocyanin UFs

Under light irradiation, the acyl group on the molecular structure of anthocyanin was
prone to detachment and might have caused other degradational reactions to reduce the
stability of anthocyanin. Natural light contains many ultraviolet rays, which also lead to
the oxidation or decomposition of anthocyanin and reduce its stability [40]. As shown in
Figure 6, the loss rate of anthocyanin and the CA@Anthocyanin UFs increased with the
increasing natural light irradiation time. This phenomenon occurred because natural light
can also promote the degradation of anthocyanin since there are enough ultraviolet rays
within natural light.

However, the loss rate of anthocyanin in the CA@Anthocyanin UFs was always smaller
than that of pure anthocyanin. After 8 days of illumination, the loss rate of anthocyanin in
the CA@Anthocyanin UFs was only 17.79%, while the loss rate of pure anthocyanin was
23.62%, which is 1.33 times that of the CA@Anthocyanin UFs. Herein, the degradation
rate of anthocyanin loaded in cellulose acetate was lower than that of pure anthocyanin.
Therefore, the CA@Anthocyanin UFs had a certain protective effect on anthocyanin, which
could inhibit the degradation of anthocyanin from natural light and protect the light
stability of anthocyanin.
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3.8. Effects of pH on the Stability of Anthocyanin and CA@Anthocyanin UFs

pH affects the structure of anthocyanin; consequently, the stability of the anthocyanin
in this study was affected [1]. In the solution with different pH levels, the surface structure
of anthocyanin was altered, leading to a color difference. Anthocyanin was mainly present
as a stable red to orange colored AH+ form at pH ≤ 2.0. When the pH = 3.0–6.0, antho-
cyanin existed predominantly in the form of a red to blue mixture of neutral tautomeric
Q− bases. The anionic base Q− was formed via increasing the pH (pH > 8.0). Under alka-
line conditions, the structure of pure anthocyanin was changed, the color was obviously
deepened, and the stability and its activities were gradually decreased with the increasing
the pH values [41].

In Figure 7, the color of the anthocyanin solution gradually changes from red to dark
blue with the increase in pH (2.0–10.0). Compared with the pure anthocyanin, a weaker
color change of the CA@Anthocyanin UFs was observed, which demonstrated that the
CA@Anthocyanin UFs had some protective effect on anthocyanin against pH changes
and could resist the influence of acid and alkali on anthocyanin. It was also found that
anthocyanin in fibers could be slowly dissolved and dispersed into the buffer solution
over time, mainly owing to the water absorption function and swelling property of the
CA@Anthocyanin UFs. Fluorescence spectra of the CA@Anthocyanin UFs in different pH
buffers were collected over time (Figure S8), and these suggest that the fluorescence signal
was without obvious changes while in these buffers, demonstrating that there is a similar
dissolution process for anthocyanin from the CA@Anthocyanin UFs. Moreover, there were
similar release trends for the CA@Anthocyanin UFs with and without ultraviolet (UV)
irradiation (Figure S9). Therefore, the CA@Anthocyanin UFs could stabilize the loaded
anthocyanin under different external conditions.
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3.9. Determination of Controlled Release Properties of CA@Anthocyanin UFs In Vitro

The artificially simulated gastric fluid with pH = 2.0 was used as a gastric environ-
ment to calculate the release rate of anthocyanin loaded on the CA@Anthocyanin UFs in
gastric fluid. The release profile of the anthocyanin from the CA@Anthocyanin UFs in
the artificially simulated gastric fluid in vitro is shown in Figure 8a. It was observed that
there was a fast release rate of anthocyanin in the early stage (within 30 min). At 30 min
and 240 min, the release rate of anthocyanin reached 48% and 95%, respectively. At the
beginning of the release of anthocyanin, the CA@Anthocyanin UFs had a rapid release
period, and the whole release process initially followed a fast rate and then a slow rate. This
might be because the anthocyanin near the surface of the fiber had low diffusion resistance
and easily diffused into the release solution, resulting in a faster release rate in the early
stage. However, the anthocyanin within the superfine fiber needed to reach the surface
of the fiber through diffusion and then be released, resulting in a slower release rate in
the later stage, which showed that the CA@Anthocyanin UFs could control the release of
anthocyanin. These results indicate that the robust electrospun CA UFs have a promising
potential with respect to bioactive substance delivery and controlled release.

Polymers 2022, 14, x FOR PEER REVIEW 11 of 14 
 

 

3.9. Determination of Controlled Release Properties of CA@Anthocyanin UFs In Vitro 
The artificially simulated gastric fluid with pH = 2.0 was used as a gastric environ-

ment to calculate the release rate of anthocyanin loaded on the CA@Anthocyanin UFs in 
gastric fluid. The release profile of the anthocyanin from the CA@Anthocyanin UFs in the 
artificially simulated gastric fluid in vitro is shown in Figure 8a. It was observed that there 
was a fast release rate of anthocyanin in the early stage (within 30 min). At 30 min and 240 
min, the release rate of anthocyanin reached 48% and 95%, respectively. At the beginning 
of the release of anthocyanin, the CA@Anthocyanin UFs had a rapid release period, and 
the whole release process initially followed a fast rate and then a slow rate. This might be 
because the anthocyanin near the surface of the fiber had low diffusion resistance and 
easily diffused into the release solution, resulting in a faster release rate in the early stage. 
However, the anthocyanin within the superfine fiber needed to reach the surface of the 
fiber through diffusion and then be released, resulting in a slower release rate in the later 
stage, which showed that the CA@Anthocyanin UFs could control the release of anthocy-
anin. These results indicate that the robust electrospun CA UFs have a promising potential 
with respect to bioactive substance delivery and controlled release. 

 
Figure 8. (a) Anthocyanin release profile from the CA@Anthocyanin UFs into the artificially simu-
lated gastric fluid; (b) the DPPH radical-scavenging activities of CA UFs, the anthocyanin, and 
CA@Anthocyanin UFs. 

3.10. Antioxidant Activity of Anthocyanin and CA@Anthocyanin UFs 
The antioxidant activity of the CA@Anthocyanin UFs was evaluated by the DPPH 

radical-scavenging assay. In Figure 8b, the CA UFs show weak antioxidant activity, while 
the average DPPH radical-scavenging rates of anthocyanin and the CA@Anthocyanin UFs 
were 66.86% and 65.11%, respectively. The results indicate that the antioxidant activity of 
the CA@Anthocyanin UFs decreased slightly compared with that of anthocyanin, indicat-
ing that the CA@Anthocyanin UFs had a weak effect on the antioxidant activity of antho-
cyanin. However, anthocyanin was loaded by CA, which still had excellent antioxidant 
activities. These antioxidant activities were mainly attributed to the anthocyanin released 
from the CA@Anthocyanin UFs, which could capture DPPH radicals [42]. 

4. Conclusions 
In summary, cellulose acetate@anthocyanin ultrafine fibers (CA@Anthocyanin UFs) 

were successfully prepared by employing electrospinning technology, and the loading 
efficiency, stability, release performance in vitro, and antioxidant properties of the 
CA@Anthocyanin UFs were further explored. The experimental data showed that the 
loading efficiency of the CA@Anthocyanin UFs with an anthocyanin content of 7 wt.% 
reached the optimum levels. The introduction of anthocyanin had no obvious impact on 
the thermal properties of the cellulose acetate ultrafine fibers (CA UFs). The 

Figure 8. (a) Anthocyanin release profile from the CA@Anthocyanin UFs into the artificially sim-
ulated gastric fluid; (b) the DPPH radical-scavenging activities of CA UFs, the anthocyanin, and
CA@Anthocyanin UFs. Note: Different letters (a–j) represent significant differences (p < 0.05) be-
tween groups.

3.10. Antioxidant Activity of Anthocyanin and CA@Anthocyanin UFs

The antioxidant activity of the CA@Anthocyanin UFs was evaluated by the DPPH
radical-scavenging assay. In Figure 8b, the CA UFs show weak antioxidant activity, while
the average DPPH radical-scavenging rates of anthocyanin and the CA@Anthocyanin UFs
were 66.86% and 65.11%, respectively. The results indicate that the antioxidant activity of
the CA@Anthocyanin UFs decreased slightly compared with that of anthocyanin, indicating
that the CA@Anthocyanin UFs had a weak effect on the antioxidant activity of anthocyanin.
However, anthocyanin was loaded by CA, which still had excellent antioxidant activities.
These antioxidant activities were mainly attributed to the anthocyanin released from the
CA@Anthocyanin UFs, which could capture DPPH radicals [42].

4. Conclusions

In summary, cellulose acetate@anthocyanin ultrafine fibers (CA@Anthocyanin UFs)
were successfully prepared by employing electrospinning technology, and the loading
efficiency, stability, release performance in vitro, and antioxidant properties of the CA@
Anthocyanin UFs were further explored. The experimental data showed that the loading
efficiency of the CA@Anthocyanin UFs with an anthocyanin content of 7 wt.% reached
the optimum levels. The introduction of anthocyanin had no obvious impact on the
thermal properties of the cellulose acetate ultrafine fibers (CA UFs). The CA@Anthocyanin
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UFs exhibited a lower crystallinity, lower mechanical properties, and a higher swelling
degree compared with the CA UFs. Furthermore, under the same treatment conditions
(temperature and light), the loss rate of anthocyanin from the CA@Anthocyanin UFs was
less than that of pure anthocyanin, indicating that the CA@Anthocyanin UFs could stabilize
and protect the loaded anthocyanin against different external conditions. The complete
release cycle of the CA@Anthocyanin UFs in the artificial gastric fluid was 240 min, which
showed its good controlled release performance. The radical-scavenging assay suggested
that the CA@Anthocyanin UFs still maintained excellent antioxidant properties. The
preparatory process of the CA@Anthocyanin UFs was simple and efficient, and the complex
showed good environmental stability, a long release duration, and good antioxidant activity.
Thus, the bioactivity and bioavailability of anthocyanin could be improved by the robust
electrospun CA UFs, which also showed that robust electrospun CA UFs exhibited a
promising potential as a new bioactive nanomaterial and green packaging material with
good development prospects.
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aqueous solution with various concentrations; Figure S2: (a–f) SEM images of CA@Anthocyanin
UFs with various concentrations of anthocyanin (a—0%, b—3%, c—5%, d—7%, e—9%, and f—11%).
Inset: diameter distribution of CA@Anthocyanin UFs; a—0%, b—3%, c—5%, d—7%, e—9%, and
f—11%; Figure S3: Captured photo of the CA@Anthocyanin UFs under room light (7 wt.%); Figure S4:
TGA curve of anthocyanin; Figure S5: DSC curves of (a) CA UFs and (b) CA@Anthocyanin UFs;
Figure S6: XRD patterns of anthocyanin, CA UFs, and CA@Anthocyanin UFs; Figure S7: (a) Typical
stress–strain curves; (b) tensile strength; (c) elongation at break of CA UFs and CA@Anthocyanin
UFs; Figure S8: Fluorescence spectra of CA@Anthocyanin UFs in the citric acid/sodium citrate buffer
solution with different pH values gathered with time interval of 10 min (0–150 min); Figure S9:
(a) and (b) Fluorescence spectra of CA@Anthocyanin UFs in water with/without UV irradiation
(10, 20, 30, 60, 90, 120, and 150 min), respectively; (c) comparison of the fluorescence intensity of
CA@Anthocyanin UFs with/without UV irradiation at different times (10, 20, 30, 60, 90, 120, and
150 min).
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