
����������
�������

Citation: Shelukhin, V.; Antonov, A.

Flows of Dense Suspensions of

Polymer Particles through Oblique

Bifurcating Channels: Two Continua

Approach. Polymers 2022, 14, 3880.

https://doi.org/10.3390/

polym14183880

Academic Editor: Serge Bourbigot

Received: 25 August 2022

Accepted: 15 September 2022

Published: 17 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Flows of Dense Suspensions of Polymer Particles through
Oblique Bifurcating Channels: Two Continua Approach
Vladimir Shelukhin *,† and Andrey Antonov †

Lavrentyev Institute of Hydrodynamics, 630090 Novosibirsk, Russia
* Correspondence: shelukhin@list.ru
† These authors contributed equally to this work.

Abstract: A two-velocity mathematical model is proposed for dense suspension flows through
channel bifurcations. Equations agree with thermodynamic laws and they are suitable for both heavy
and light particles. The pulsatile mode of injection of particles is considered. In the 2D-case, we
address the issue of partitioning particles and study how a loss of particles into the side branch
depends on the bifurcation angle. A qualitative agreement with experiment data are established.
We capture the Zweifach–Fung effect. We treat polymer particles as a phase enjoying the rheology
of the Bingham viscoplastic material. We prove that the polymer particle distribution between two
branches correlates with the averaged-in-time Bingham number in these branches.

Keywords: suspensions; two-velocity continua; bifurcating channel; partitioning of particles;
non-Newtonian rheology; pulsatile injection

1. Introduction

Suspension flows through bifurcating channels are relevant to many natural and tech-
nological processes. Their application concerns medicine, biotechnology and microfluidic
devices. Micromoulding of thermoplastic polymer is a developing process with great
potential for producing low-cost microfluidic devices. Among different micromoulding
techniques, micro-injection moulding is one of the most promising processes suitable for
manufacturing polymeric disposable microfluidic tubes with branches. The review pa-
per [1] presents the main significant developments that have been achieved in different
aspects of micro-injection moulding of microfluidic devices. Aspects covered include device
design, machine capabilities, mould manufacturing, material selection and process param-
eters. Problems, challenges and potential areas for research are highlighted. One more
application of the present paper concerns the control of proppant flow through perforations
in the wellbore. Such a problem is important in hydraulic fracturing technology [2].

We develop a thermodynamically consistent two-velocity model of a granular fluid,
taking into account the difference in the rheology of the carrier fluid and the solid phase
consisting of particles. There is no assumption on dilute suspensions, and the model
allows one to describe such processes as the deposition of particles. The validation of
the model was carried out on a benchmark experiment known as the Boycott effect [3],
implying that an inclination of a vertical vessel enhances the sedimentation of particles
in suspensions. Historically, suspensions have been considered within the framework
of a single-phase continuum with a viscosity dependent on particle concentration. Cur-
rently, two-phase approaches are being used more and more. They are usually based
on methods of averaging either over a volume or over an ensemble of particles. In this
paper, when deriving equations, we follow a different method, which was originally devel-
oped by Khalatnikov and Landau for the thermodynamics of superfluid helium 2He [4].
According to this method, the forces of interfacial interaction for reversible processes
are first uniquely determined, since the energy conservation makes the entire system of
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conservation laws overdetermined. Then, the dissipative forces of phase interaction are
determined by matching the conservation laws with the general principles of irreversible
de Groot–Mazur thermodynamics [5].

In a number of works on two-phase flows, additional forces are introduced into the
momentum equations, such as the force of Archimedes, Stokes, Suffman, Magnus. Even
forces that depend explicitly on time are used (the Basset–Boussinesq force) [6]. In this
work, instead of additional forces, we use the generalized Fick diffusion law for the particle
mass concentration flux vector. This approach is consistent with thermodynamics and
proved to be successful in sedimentation problems if the gravitational component is taken
into account in Fick’s law. The generalized Fick’s law takes into account not only the
concentration gradient, but also the gradients of temperature, pressure, and the modulus
of the phase velocity difference. The Stokes resistance force is taken into account through
the coefficient of interfacial friction, which satisfies the known correlations. The diffusion
approach we use imposes limitations on the applicability area. The particles must be
sufficiently small.

In the present paper, the problem of the flow when there is a branch in the main
channel is considered. The pulsatile regime, when the injection of particles alternates with
the injection of a clean fluid, is studied in detail. In a number of papers [7], suspensions of
polymer particles are treated as non-Newtonian fluids. Here, we follow the same approach
and the particulate phase is represented by the rheology of a viscoplastic Bingham fluid.
We establish that the loss of particles into the branching channel is considered as the smaller,
the greater the angle of branching from the direction of the main channel. The dependence
of the flow on the viscosities and the yield stress of the granular phase is addressed.

Recently, interest in the flow of suspensions through channel bifurcations has been
growing in microfluidics and biology due to the problem of particle separation [8]. Parti-
tioning of erythrocytes, leukocytes, and platelets at vascular junctions plays an important
role in determining microvascular hematocrits and has important physiological implica-
tions. One of the advantages of continuum models is that solvers known in computational
fluid mechanics can be applied to them. In addition, these solvers can be easily adapted to
complex geometries and non-Newtonian fluid rheology.

A number of approaches have been developed, which use external forces to affect
the fluid/particle behavior in microchannel-based separation systems. Such forces can be
magnetic [9], optical [10], acoustic [11], chemical [12], thermal [13], gravitational [14,15],
electrical and electronic [16,17]. The most popular separation method is based on gravi-
tation. However, this technique is not as effective in microchannel devices because of the
low Reynolds number, laminar flow and interface tension [18]. In macro-scale separation
systems, gravitational approaches are based on the forces of inertia to help speed up the
separation process, an example of this being centrifugal sorting [19]. This has led to an inter-
est in adopting new microscopic separation methods, in which viscous forces, shear strain
rate, interface tension and the geometrical effects—often used for inertial focusing—play an
important role. Various devices have been designed that make use of the effects of hydrody-
namics and viscous forces. Examples include microfilter devices [20,21] and microchannel
devices [22,23]. Furthermore, the bending channel [24,25], channel constriction [26,27], and
bifurcated channels [28,29] have been explored. In the bending channel design, inertial
effects are exploited whereby a centrifugal force is produced on the particles when passing
through the curved section of the channel and the skimmed liquid is likely to be formed
in the central region. Flow velocity is a key factor for the effectiveness of this design. A
channel constriction is used to force particles to move to the channel center.

Fluid separation in T-shaped microchannels is studied in many papers, see, for exam-
ple [30]. Xi and Shapley studied the flow of concentrated suspension in an asymmetric
T-junction bifurcation of rectangular channels with nuclear magnetic resonance imag-
ing [31]. They observed that the particles are almost equally partitioned between the
downstream branches, and this indicates the migration of particles across the dividing
streamlines near the bifurcation section.



Polymers 2022, 14, 3880 3 of 24

In the present paper, we present a modeling analysis for dense suspension flows
through oblique bifurcating channels. Such an issue has been addressed in [32] for steady
flows and in the case of neutrally buoyant particles, and in the low Reynolds number
regime. We focus on the difference between fluid and particle velocities, interphase friction,
viscous forces, non-Newtonian rheology and geometrical effects. Particularly, we consider
in detail the pulsatile mode of injection of particles and study how the loss of particles into
the side branch depends on the bifurcation angle. We prove that the partitioning of particles
occurs in agreement with the Zweifach–Fung effect, stating that particles prefer the high-
flow-rate branch. Our method is suitable for both heavy and light particles. Qualitative
agreements with experiment data are established. Paying emphasis on pulsatile injection
of polymer particles, we establish that more particles fall into the branch with a lower
mean Bingham number. A numerical algorithm is developed within the framework of the
FreeFem++ package. In the incompressible case, a modified SIMPLE method is applied
in order to ensure the divergence-free condition for the average volumetric velocity. The
stability test was carried out by mesh refinement. The approach has been validated in the
previous authors’ paper concerning the Boycott sedimentation effect [33].

2. Mathematical Model

We consider a joint flow of two continua when an arbitrary volume V contains a fluid
(index f ) and a granular phase (index s). Volume, mass and pressure of the fluid and the
granular phases is denoted by Vf , m f , p f and Vs, ms, ps, respectively. It is assumed that the
granular phase is a mixture of dry particles and a carrier fluid, such as proppant gel. In this
case, Vs = VM + Vp and ms = mM + mp where VM is the mud volume, Vp is the volume of
dry particles, mM is the mud mass, and mp is the mass of dry particles.

The particles are "frozen" in the carrier liquid, i.e., the granular phase is characterized
with just one speed vs, one viscosity and one stress tensor. In what follows, the indexes f
and s stand for fluid and solid phases, respectively.

We pass to quantities assigned to the unit volume:

ρ =
m
V

, ρs =
ms

V
, ρ f =

m f

V
, ρp =

mp

V
, φj =

Vj

V
, ρM =

mM
V

, c =
mp

m
. (1)

Here, c = ρp/ρ is the particle mass concentration and φj is the volume fraction of the
j-phase with j = f , p, M. It follows from the above definitions that the partial densities ρj
are related to the material densities ρ̄j by the following equations

ρj = φjρ̄j, ρ̄j ≡
mj

Vj
, φ f + φs = 1, φs = φp + φM, ρ = ρ f + ρp + ρM.

Generally, the phase pressures ps and p f are different. However, as in [34], we assume
that ps = p f = p. Such a hypothesis works well when the surface tension at the boundaries
separating the phases are negligible.

Let vi, Ti, l, k stand for the velocity, the viscous part of the stress tensor, the particle
concentration flux vector and the interphase friction coefficient, respectively.

We introduce the tensor notations. Given two vectors a and b, we define the scalar
product a · b = aibi. The tensor product a⊗ b is a matrix, such that (a⊗ b)ij = aibj. The
matrix A∗ stands for the adjoint matrix of A, i.e., (A∗)ij = (A)ji. The i-th component of the
vector div A is defined by the formula (div A)i = ∂Aik/∂xk.

If we neglect the rotation of particles and thermal effects, then one can derive from [34]
the following mathematical model for six unknowns functions ρs, ρ f , p, c, vs, v f :

∂(ρsvs)

∂t
+ div (ρsvs ⊗ vs) = −

ρs

ρ
∇p−

ρsρ f

2ρ
∇u2 − k u + div Ts + ρsg , (2)

∂(ρ f v f )

∂t
+ div (ρ f v f ⊗ v f ) = −

ρ f

ρ
∇p +

ρsρ f

2ρ
∇u2 + k u + div Tf + ρ f g, (3)
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∂(ρc)
∂t

+ div (cj + l) = 0, (4)

ρst + div (ρsvs) = 0, ρ f t + div (ρ f v f ) = 0, (5)

where p = p(ρ) is the prescribed state equation, g is the gravitation vector, and

(∇ p)i =
∂p
∂xi

, j = ρsvs + ρ f v f , ρ = ρs + ρ f , u = vs − v f , div l ≡ ∂li
∂xi

, u2 = u · u.

Now, we discuss rheology. Given a velocity field v(x), we introduce the corresponding
rate of strain tensor D and its deviatoric part Dd, as follows

D =
∇v + (∇v)∗

2
, Dd = D− (div v)I, Iij = δi

j, (∇v)ij =
∂vi
∂xj

, |D|2 = DijDij.

The fluid phase is considered to be a viscous Newtonian fluid. It implies that

Tf = 2η f D f
d , (6)

with the constant η f staying for shear viscosity. As for the compression viscosity, it is
assumed negligible. The solid phase contains particles, with c being its mass concentration.
Given a vanishing number δ and the volume fraction of the solid phase φs, we define
rheology of the solid phase by the regularized Bingham equation:

Ts(φs) =

[
2ηs(φs) +

τ(φs)

|Ds
d|δ

]
Ds

d, |D|2δ = |D|2 + δ2, |D|2 = D : D, A : B = Ai
jB

i
j. (7)

Here,

ηs(φs) = η0
s

(
1− φs

φ∗s

)−2.5φ∗s
(8)

is the viscosity given by the Krieger–Douhgerty empirical closure [35], with φ∗s and η0
s

being the maximal reference value of φs and the consistency, respectively. As for for the
yield stress, we take it by the correlation formula

τ(φs) = τ0 ·

√
(1− φs)

(
1− φs

φ∗s

)−2.5φ∗s
(9)

proposed in [36]. A mathematical proof is provided in [37] to ensure that Equation (7) is a
good approximation for the Bingham fluid.

One more rheological equation is the Fick law [33]:

l = −
(

γ2∇c + γ1∇p + γ3∇ u2
)
+ ρcBg. (10)

Due to the mass conservation laws (5), Equations (2) and (3) reduce to

ρs

(
∂vs

∂t
+ vs · ∇vs

)
= −ρs

ρ
∇p−

ρsρ f

2ρ
∇u2 − k u + div Ts + ρsg , (11)

ρ f

(
∂v f

∂t
+ v f · ∇v f

)
= −

ρ f

ρ
∇p +

ρsρ f

2ρ
∇u2 + k u + div Tf + ρ f g. (12)

Such equations are of use in calculations performed below.
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Let us formulate a hypothesis of incompressibility. We assume that the mud volume
fraction φM is negligible and the densities of materials ρ f , ρp and ρM are constants. Then, it
follows from (1) that

ρs ≈ cρ, ρ f ≈ (1− c)ρ, φs =
c

R0 + c(1− R0)
, φ f =

R0(1− c)
R0 + c(1− R0)

, (13)

where R0 = ρ̄s/ρ̄ f . Observe that the total density ρ and the partial densities ρj are not
constant in contrast to the densities of materials. By the incompressibility assumption, one
can derive easily the following formulas:

ρs

ρ̄ f
= c[1 + (R0 − 1)φs(c)] ≡ rs(c),

ρ f

ρ̄ f
= 1− φs(c) ≡ r f (c), ρ =

ρs
R0 + c(1− R0)

.

The functions rs(c) and r f (c) are dimensionless partial densities.
One more consequence of the incompressibility assumption is that the volumetric

mean velocity is divergence-free:

div v = 0, v ≡ φs(c)vs + φ f (c)v f . (14)

Equation (4) is equivalent to

∂c
∂t

+ ṽ · ∇ c + ρ−1(c)div l = 0, ṽ ≡ cvs + (1− c)v f , (15)

where ṽ is the mass mean velocity. Thus, we derived a mathematical model for four un-
known functions p, c, vs v f , obeying the Equations (11), (12), (14) and (15). The parameters
ηs, η f , k, γj are assumed to be know functions of the mass concentration c.

Under the incompressibility hypothesis, pressure is no longer a thermodynamic pa-
rameter and does not satisfy the equation of state. It is now included in the list of unknown
functions as in the case of Navier–Stokes models of a viscous incompressible fluid. Densities
can be restored from equalities (13).

The diffusion coefficients γj vanish when any phase disappears. As for the friction,
we use the correlation formula

k(c) =
3
4

CD
cρ̄ f |u|

dp
, (16)

proposed in [38] where dp is the particle diameter and CD is the particle/fluid friction:

CD =

{
24

Rep

(
1 + 0.15Re0.678

p

)
if Rep < 1000,

0.44 if Rep > 1000,
Rep =

dpρ̄ f |u|
η f

.

Now, we apply the described governing equations for 2D flows of suspensions in
an oblique bifurcating channel (Figure 1) representing a branching system, in which the
parent branch divides into two daughter branches (one branch follows the inlet, termed
as the main branch; and another bifurcate follows at an angle α with the main branch,
termed as the side branch). This type of bifurcating channel is often encountered in the
industry, nature, and human body, and one of the important tasks is to find out the bulk
suspension and particle partitioning in the daughter branches for a better understanding of
the flow behavior.
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L
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X

Y

Figure 1. Scheme of flow domain. AB is the inlet boundary, CD and EF are the outlet boundaries.
ABLK is the inlet branch, MNDC is the main branch, LFEN is the side branch. ∠END is the
bifurcation angle α. The boundaries AC, BL, LF, ND, NE are impenetrable.

On the (x, y) plane, the parent branch is directed along the x-axes, Figure 1. The side
branch is at the angle α relative to the main branch. Let H, V, l0, t0 and p̄ stand for the
reference values of the channel width, suspension velocity, particle concentration flux, time
and pressure. We pass to dimensionless variables

x′ =
x
H

, y′ =
y
H

, v′ =
v
V

, p′ =
p
p

, l′ =
l
l0

, t′ =
t
t0

,

and choose the reference values in such a way that

t0 =
H
V

, l0 = ρ̄ f V, p = ρ̄ f gH.

Flows are defined by the following demensionless numbers:

Re =
HVρ̄ f

η f
, k1 =

18η f H
ρ̄ f Vd2

p
, Fr =

gH
V2 , β = k1 · Re = 18

H2

d2
p

, τ̃∗ =
τ0H
η f V

,

Γ1(c) =
γ1ρ̄ f V2

Hl0
, Γ2(c) =

γ2

Hl0
, Γ3(c) =

γ3V2

Hl0
, Γ4(c) =

Bg
ρ̄ f V

c[rs(c) + r f (c)].

Dimensionless stress tensors appear:

Tf =
η f V

H
T′f , Ts =

η f V
H

T′s ,

with

T′f = 2(D′) f
d , T′s =

2η0
s

η f

(
1− φs

φ∗s

)−2.5φ∗s
+

τ̃∗

√
(1− φs)

(
1− φs

φ∗s

)−2.5φ∗s

|(D′)s
d|δ

(D′)s
d. (17)

In the absence of any phase, the parameters γ1,γ2, γ3 disappear. This is why we
impose the formulas

Γi = Γ0
i c(1− c), Γ4 = Γ0

4c, i = 1, 2, 3. (18)

We introduce the mean mass velocity ṽ = cvs +(1− c)v f . Let the differential operators

ds

dt
=

∂

∂t
+ vs · ∇,

d f

dt
=

∂

∂t
+ v f · ∇,

d
dt

=
∂

∂t
+ ṽ · ∇,

stand for the material derivatives.
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When omitting primes, we find that the functions v′f (x′, y′, t′), v′s(x′, y′, t′), c(x′, y′, t′),
p′(x′, y′, t′) obey the equations

rs(c)Re
dsvs

dt
= −cRe∇p− Re

rs(c)(1− c)
2

∇u2 − βcu + div Ts + rs(c)ReFr · eg, (19)

r f (c)Re
d f v f

dt
= −(1− c)Re∇p + Re

r f (c)c
2
∇u2 + βcu + div Tf + r f (c)ReFr · eg, (20)

div v ≡ div
[
φs(c)vs + φ f (c)v f

]
= 0, (21)

dc
dt

+
div l

r f (c) + rs(c)
= 0, (22)

where
l = −Γ2(c)∇c− Γ1(c)∇p− Γ3(c)∇u2 + Γ4(c)eg, (23)

In what follows, we neglect the gravitation effect since we restrict ourselves to 2D
horizontal flows.

The flow domain Ω is depicted in Figure 1. Let n stand for the unit outward normal
vector to ∂Ω. The boundary conditions are formulated as follows. At the inlet boundary,
we set

v f = vinlet
f (t, y), vs = vinlet

s (t, y), c = cinlet(t, y). (24)

The outlet boundary conditions are given as follows:

∂v f

∂n
= 0,

∂vs

∂n
= 0,

∂c
∂n

= 0, p = poutlet = const. (25)

At the impenetrable boundaries, we set

v f = 0, vs = 0,
∂c
∂n

= 0. (26)

The initial conditions are

v f = v0
f (x, y), vs = v0

s (x, y), c = c0(x, y). (27)

The functions standing in the right-hand sides of Equations (25)–(27) are assumed known.

3. Numerical Algorithm

Let us write the system (19)–(22) in the weak form using the Sobolev space W1
2 (Ω).

Given test functions w1, w2 ∈ W1
2 (Ω)2 and ψ1, ψ2 ∈ W1

2 (Ω), we apply the boundary
conditions (24)–(26) to derive the equations ∫∫

Ω

w1 ·
[

rs(c)
dsvs

dt
+

βc
Re

u
]

dx dy +

+
∫∫
Ω

1
Re
∇w1 : Ts dx dy−

∫∫
Ω

div w1

[
cp +

rs(c)(1− c)
2

u2
]

dx dy = 0,
(28)

∫∫
Ω

w2 ·
[

r f (c)
d f v f

dt
− βc

Re
u
]

dx dy +

+
∫∫
Ω

1
Re
∇w2 : Tf dx dy−

∫∫
Ω

div w2

[
(1− c)p−

r f (c)c
2

u2

]
dx dy = 0,

(29)
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∫∫
Ω

∇ψ1 ·
[
φs(c)vs + φ f (c)v f

]
dx dy = 0, (30)

∫∫
Ω

ψ2
dc
dt

dx dy−
∫∫
Ω

∇ψ2 · l
rs(c) + r f (c)

dx dy = 0, (31)

We solve the system (28)–(31), applying the finite element method embedded into the
open source package FreeFem++.

While passing from the time level tm to the level tm+1 with τ = tm+1 − tm = const, all
the functions

vm
f = v f (x, tm), vm

s = vs(x, tm), um = vm
s − vm

f ,

pm = p(x, tm), cm = c(x, tm), x = (x, y)

are assumed known.
Over triangulation of the domain Ω, we use piecewise P2-elements for velocities,

whereas for concentration and pressure, we use P1-elements.
To calculate the material derivative of a function f (x, t), we use the following approximation:

d f
dt

=
∂ f
∂t

+ v · ∇ f ≈ f (x, tm+1)− f (Xm(x), tm)

τ
,

where Xm = X(tm) with X(t) being the solution of the Cauchy problem

dX(t)
dt

= vm(X(t)), X(tm+1) = x, tm < t < tm+1.

Within FreeFem++, there is a procedure called “convect” which allows to solve this
Cauchy problem and to determine the value f (Xm(x), tm):

f (Xm(x), tm) = convect(vm(x),−τ, f m(x)) (32)

The material derivatives d f /dt and ds/dt are approximated in a similar way.
Let us describe an algorithm.
Step 1. To tackle nonlinearity, we apply iterations as far as the concentration c is

concerned. Given cm at the time level tm, we find cm+1 at the time level tm+1 by iterations.
Given function citer, we define the next iteration citer+1 as a solution to the problem

∫∫
Ω

ψ2
citer+1(x, tm+1)− convect(vm(x),−τ, cm)

τ
dx dy −

−
∫∫
Ω

(∇ψ2 · l)
r f (citer) + rs(citer)

dx dy = 0,

l = −
(

Γ1(citer)∇citer+1 + Γ2(citer)∇pm + Γ3(citer)∇(um)2
)
+ Γ4(citer)eg,

(33)

We take cm as the first iteration.
Step 2. We calculate the relative discrepancy

Ec =

√∫∫
Ω

(
citer+1 − citer

)2 dx dy√∫∫
Ω

(
citer+1

)2 dx dy
. (34)

Steps 1 and 2 are repeated until the condition Ec < 0.01 is met. With the last iteration
c f inal at hands, we define concentration at the level tm+1 by the equality cm+1 = c f inal .

Next, we solve the hydrodynamic part of equations. To this end, we use a modified
SIMPLE method which is one of predictor–corrector approaches. At the prediction step,
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the guess velocities v∗s and v∗f are calculated, starting from the current pressure field

pS. As an initial value for the field pS, we use pm. Then, a correction q to the current
pressure is calculated with the help of the guess velocities. The final correction step
consists of improving the guess velocities and the current pressure. The process is iterated
until it converges, i.e., until the correction to pressure becomes small enough. There is a
nonlinearity related to the convective terms in the momentum Equations (28) and (29). To
tackle such nonlinearity, we use the simple iteration method.

Step 3. With the function cm+1, pm, vm
f and vm

s being known, we look for pm+1, vm+1
f

and vm+1
s by iterations. To this end, we construct a finite sequence of guess pressures pS

(S = 1, 2, · · · ) starting from pS = pm when S = 1. We associate with pS finite sequences of
current velocities viter

f and viter
s (iter = 1, 2, · · · ), such that

viter
f = vm

f , viter
s = vm

s when iter = 1.

Given pS, viter
f , viter

s , we define v∗f and v∗s by solving the following system of equations:

∫∫
Ω

w1

[
rs(cm+1)

dsv∗s
dt

+
βcm+1

Re
u∗
]

dx dy +

+
∫∫
Ω

1
Re

(∇w2 : T∗s ) dx dy −

−
∫∫
Ω

div w2

[
cm+1 pS +

rs(cm+1)(1− cm+1)

2
u∗ · uiter

]
dx dy = 0,

(35)

∫∫
Ω

w2

[
r f (cm+1)

d f v∗f
dt
− βcm+1

Re
u∗
]

dx dy +

+
∫∫
Ω

1
Re

(∇w2 : T∗f ) dx dy −

−
∫∫
Ω

div w2

[
(1− cm+1)pS −

r f (cm+1)cm+1

2
u∗ · uiter

]
dx dy = 0,

(36)

Step 4. Given v∗f and v∗s , we find qiter as a solution of the equation

∫∫
Ω

∇ψ1

[
φs(cm+1)v∗s + φ f (cm+1)v∗f

]
dx dy −

−
∫∫
Ω

∇ψ1

[
τ∇qiter

r f (cm+1) + rs(cm+1)

]
dx dy+

+
∫

AB
ψ1

[
φs(cm+1)vinlet

s + φ f (cm+1)vinlet
f

]
· ds = 0,

(37)

Step 5. Now, we correct the current velocities, as follows:

viter+1
f = v∗f −

(1− cm+1)τ

r f (cm+1)
∇qiter, viter+1

s = v∗s −
cm+1τ

rs(cm+1)
∇qiter (38)
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Step 6. We calculate the relative discrepancy of velocities

Ev =

√∫∫
Ω

[(
viter+1

f − viter
f

)2
+
(

viter+1
s − viter

s

)2
]

dx dy,√∫∫
Ω

[(
viter+1

f

)2
+
(

viter+1
s

)2
]

dx dy.

(39)

If Ev ≥ 0.05, we substitute viter
f and viter

s in (35) and (36) by viter+1
f and viter+1

s and
repeat the procedure until the inequality Ev < 0.05 is met. Then, iterations are recognized as
convergent and we use the final iterations to define vSIMPLE

s = v f inal
f and vSIMPLE

s = v f inal
s .

Step 7. We calculate the relative discrepancy of pressure

Ep =

√√√√∫∫
Ω

(
q f inal

)2 dx dy

S
, S =

∫∫
Ω

1 dx dy. (40)

If Ep ≥ 10−3, we substitute pS in (35) and (36) by pS+1 = pS + q f inal and repeat steps
3–7 until the inequality Ep < 10−3 is satisfied.

For the time level tm+1, we define

vm+1
s = vSIMPLE

s , vm+1
f = vSIMPLE

f , pm+1 = pm + q f inal ,

provided that the condition Ep < 10−3 is satisfied.

4. Results

Our principle goal is to estimate the loss of particles into the side branch. We conclude
that the greater the bifurcation angle, the smaller the particle loss. To justify this conclusion,
we study the pulsatile mode of particles injection when the particle influx alternates with
pure fluid influx. A pulsating injection finds many applications in the production of various
materials [39].

We denote the total length of the channel AC (Figure 1) by l. We assume that the side
branch has the length l/2 and bifurcation of the horizontal parent branch is localized at
point L, such that |BL| = l/2. Figure 2 depicts calculated snapshots of mass concentration c
for the pulsating mode of particles injection, which corresponds to the following boundary
and initial conditions:

cinlet(t) =


0.95 t < t1,
0.05 t > t2,
linear interpolation t1 < t < t2,

(41)

c0(x) =


0.95 0 < x < x1,
0.05 x > x2,
linear interpolation x1 < x < x2,

(42)

where t1 = 50, t2 = 60, x1 = 0.01 · l, x2 = 0.02 · l and the particle injection starts at t = 0
and stops at t = 60. Exactly at t = 60, the front of the particles reaches the location of
bifurcation. In fact, the pulsating injection given by (41) and (42) is a regularization of
the ideal pulsating injection, with the numbers 0.95 and 0.05 substituted with 1 and 0,
respectively. Such a regularization facilitates calculations.
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Figure 2. The pulsatile mode of injection. Calculated snapshots of particle mass concentration for
the bifurcation angle α = 30◦ and the data (43) at the dimensionless times t = 20, 50, 60, 100, 200, 300
from left to right and from top down.

Figure 2 corresponds to data chosen as follows. We assume that all the branches have
the same width W. We set

α = 30◦, Γ0
1 = 10−3, Γ0

2 = 10−6, Γ0
3 = Γ0

4 = 0, poutlet = 10,

Re = 10, β = 105,
ρ̄s

ρ̄ f
= 2, l = 16, W = 1, τ̃∗ = 1,

η0
s

η f
= 1.

(43)

To meet an agreement with no slip boundary conditions at rigid boundaries, we
require that the inlet velocities vinlet

f (t, y) and vinlet
s (t, y) have the Poiseuille-like profile

versus the vertical variable y [40].
Let us discuss findings and implications concerning the results in Figure 2. First

of all, the partitioning of particles occurs at the bifurcation of the channel and one can
observe the propagation of the concentration wave both in the side and main branches.
We emphasize that the particle mass concentration c obeys the inequalities 0 < c < 1 in
spite of the fact that it is governed not by the common transport equation but satisfies a
complicated diffusion equation with a matrix diffusion coefficient. Observe that we do
not use any numerical cutting tricks to ensure the inclusion 0 < c < 1. The concentration
front is not blunted and there is a cusp (inverted V-shape) in the middle in agreement with
experimental data [41]. For comparison, we note that the calculations in [32] do not reveal
a cusp in the concentration front. The following explanation for the front with cusp can be
given. The particle concentration at the center is higher compared to the near-wall regions
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because the particles migrate from the region of a high shear rate (wall) to the region of
a low shear rate (center). Within the framework of our model, estimates show that the
transverse phase velocities are very small and the lateral migration of particles is mainly
due to diffusion. Since the role of diffusion is significant, there are limitations on the scope.
The results are valid for sufficiently small particles.

Let us introduce particle mass fluxes through the cross-sections KL (inlet), MN (outlet)
and LN (branch):

Qp
in =

∫
KL

(cj + l) · ex ds, Qp
out =

∫
MN

(cj + l) · ex ds, Qp
br =

∫
LN

(cj + l) · ey ds, (44)

where the dimensionless total mass velocity j is equal to r f v f + rsvs. We observe that such
mass fluxes include both a convective and diffusive particle discharge. By choosing the
data (43), we performed a calculation of the introduced fluxes on a pulsation time interval
(0, T) great enough to ensure that Qp

in = 0 at t = T.
Integration of the fluxes (44) over the interval 0 < t < T results in the total dimension-

less values of the mass of particles:

Mp
in =

T∫
0

Qp
in dt, Mp

out =

T∫
0

Qp
out dt, Mp

br =

T∫
0

Qp
br dt. (45)

Partitioning of particles between the branches is shown in Figure 3 for Qp
in(t), Qp

out(t),
Qp

br(t) and in Figure 4 for Mp
in, Mp

out, Mp
br. One can see that particle mass loss into the side

branch occurs. Such a result explains that particle separation in branched channels can
really happen due to hydrodynamic forces only. The front of particles reaches the channel-
branching location at a moment close to t = 100. This is why the mass flow peaks at the
cross sections of branches near the bifurcation location occur on the interval 100 < t < 120.
The mathematical model developed here enables one to optimize the separation effect by
the variation of geometric, fluidic and other data. Figure 4 is a result of integration of the
functions at Figure 3 over the time interval 0 < t < T, T = 400. Figure 5 shows dynamics
of the mean mass concentration of particles through the inlet (KL), outlet (MN) and branch
(EF) cross-sections. Almost equal fluxes for the great times into the daughter branches
bifurcating at the angle 30◦ are due to equality of their widths.

Figure 2 shows the qualitative partitioning of particles at the branching point of the
channel with the bifurcation angle at 30 degrees, while Figures 3–5 depict the quantitative
partitioning. Although the side and main branches have the same width, the flow of
particles into the side branch is slightly less. Apparently, this is the effect of inertia. In most
papers, attempts to explain the separation of particles are associated with the study of the
behavior of streamlines at the bifurcation zone [42]. Our approach is different since we
consider unsteady flows. Moreover, we take into account the difference in the velocities of
solid particles and fluid. In such a case, the notion of streamline is not applicable.

Figure 6 proves that an increase in the bifurcation angle results in a decrease in the
loss of particles into the side branch. A similar conclusion is derived by simulation in [32].
We obtained such a result by performing calculations of the relative mass loss Mbr/Mout
for α, taking the values 30◦, 45◦, 60◦, 75◦, 90◦, 105◦.
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Figure 3. Inlet (red), outlet (blue) and side (green) particle mass flow rates Qp
in, Qp

out, and Qp
br versus

time for the data (43) and the bifurcation angle α = 30◦.

Figure 4. Inlet (red), outlet (blue) and side (green) values of particle masses Mp
in, Mp

out, and Mp
br for

the data (43) and for the bifurcation angle at 30◦.
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Figure 5. Cross-section average concentration c̄ versus time for the bifurcation angle 30◦ and data (43).
The red, blue and green lines are for the inlet cross-section KL, for the outlet cross-section MN, and
for the branch cross-section EF, respectively, (see Figure 1).

Figure 6. Particle-loss curve on the plane (α, y). The vertical coordinate y = Mp
br/Mp

out means the
relative mass loss of particles into the side branch.

To compare our numerical results with experiments, we introduce the relative fluid
and particles values of mass:

f =
M f

out

M f
in

, p =
Mp

out

Mp
in

, (46)



Polymers 2022, 14, 3880 15 of 24

where

M f
in =

T∫
0

∫
KL

r f v f · exds dt, M f
out =

T∫
0

∫
MN

r f v f · ex dsdt, M f
br =

T∫
0

∫
KL

r f v f · ey dsdt. (47)

Setting α = 90◦ and varying the inlet velocities vinlet
f and vinlet

s in the pulsatile injection
regime (41) and (42), we conclude that there is a correlation between the relative values of
mass f and p given at Figure 7. One can observe that an increase in f causes the value of p
to increase; this is also in agreement with the available experiment data [43,44]. Although a
quantitative comparison with these experiments is not possible due to the 2D assumption
of the present simulations, the results in Figure 7 fairly reproduce the experimental trends.
We also should note that these experimental results concern very dilute suspensions with
c ' 0.02.

We verified that inequality

min
α∈αj

M f
br −M f

out

Mp
br −Mp

out
> 0.8, αj = [30◦, 45◦, 60◦, 75◦, 90◦, 105◦], (48)

holds for the data used in this paper. Such a result agrees with the Zweifach–Fung
effect [45], amounting to the fact that more particles fall into the branch where more
fluid enters. As far as the Zweifach–Fung effect is concerned, we would prefer not only to
validate our model, but to address some questions which were not captured by simulations
in other publications [45]. First of all, we are interested in the pulsatile mode of injection of
particles, while other authors study stationary regimes. The next question concerns particle
density. Our method is suitable for both heavy and light particles. All known calculations
of flows in the branching channels concern neutrally buoyant particles. We fill this gap.

Figure 7. Calculated correlation between f = M f
out/M f

in and p = Mp
out/Mp

in for the bifurcation angle
α = 90◦.

Within our model, the principle polymer parameters are the viscosity and the yield
stress of the solid phase since we treat this phase as a viscoplastic Bingham fluid. Calcu-
lations for α = 90◦ reveal that pressure can be assumed constant along any cross-section
of every branch. Hence, the pressure gradient can be measured along the center line of
the branch, |∇ p| ' |∂p/∂s|, with s standing for the branch-length reckoning from the
bifurcation point (L for the side branch and N for the main branch on Figure 1). On the
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other hand, it follows from Figure 8 that pressure decreases in s at any time instant. Let
|∇br p| and |∇out p| stand for the pressure drop along the side and main branches:

|∇br p| = p|FE − p|LN
lbr

, |∇out p| = p|NM − p|DL
lout

, (49)

where lbr = LF and lout = |ND| are the branch lengths. One can see that lout < lbr since
|LN|+ |ND| = l/2 (see Figure 1).

We introduce the following dimensionless branch characteristic in dimension variables:

bn =
τ0√

2|∇ p|Wk
, k = br, out, (50)

Passing to dimensionless variables and omitting the prime indexes, we obtain that

bn = Re−1Fr−1bN , bN =
τ̃∗√

2|∇k p|wk
, k = br, out. (51)

where wk is the branch width in dimensionless variables. The parameter bn coincides with
the Bingham number Bn for the pressure driven flows in a simple channel [46]. This is why
we also call here bN the reduced branch Bingham number.

Figure 8. Pressure p versus s, where s is the distance from the bifurcation point, with α = 90◦. Green
lines are for the side branch and blue lines are for the main branch. The left column corresponds
to wbr = 0.5 and the right column is for wbr = 0.2. The pictures from top down correspond to
t = 100, 200, 300, respectively.
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The reduced branch Bingham number bN depends on the branch width and the
pressure drop along the branch. Let us consider variation of wbr for α = 90◦, keeping wout
constant and equal to 1. One can see from Figure 8 that a change in the side branch width
implies a change in the pressure drop along the branch. Since both the branches have
almost the same lengths, one can also conclude from Figure 8 that the pressure drops |∇br p|
and |∇out p| in both the branches are almost equal and do not depend on the variation
of the side branch width. Thus, the branch Bingham number depends mainly on the
branch width.

Let us perform the results of the calculations of the time-average values 〈bN〉 of the
reduced Bingham number, Table 1. We remark that the pulsation interval 0 < t < T is
chosen in such a way that all the channel is filled with pure fluid, at t = T. Calculations
reveal that T = 400 if wbr = wout = win = 1. The terminal value T increases if wbr decreases.

When we address the particles partitioning in relation to the change in wbr, as in Table 1,
we arrive at the results depicted in Figures 9 and 10. One can see that the concentration
wave becomes slower when we reduce wbr from 0.5 to 0.2. The total particle mass flux also
reduces. As far as the polymer particles are concerned in the pulsatile injection mode, we
arrive at the following conclusion: more particles fall into the branch with lower mean
Bingham number. One of the implications of this result is the stoppage effect. It implies
that there is no flow in the branch if the pressure gradient along the branch is small enough
or the channel is very narrow. Indeed, Figure 11 shows that the solid phase velocity in
the side branch is two orders of magnitude less than the solid phase velocity in the main
branch in the case when the side branch is five times narrower than the main branch. Due
to the regularization of Equation (7), the velocity of the solid phase in the side branch
can be considered zero. The stoppage effect is well known in the Bingham fluid theory
in more general context. If the pressure gradient applied in fully-developed Newtonian
Poiseuille flow is suddenly set to zero, the velocity decays to zero exponentially, i.e., the
theoretical stopping time is infinite [47]. This is not the case for viscoplastic or yield-stress
materials [48]. The stopping time is finite.

Table 1. Mean Bingham numbers in branches versus the width of the side branch.

wbr 1 0.5 0.2

〈bin
N 〉 3.953 4.053 4.062

〈bout
N 〉 7.068 4.719 4.387

〈bbr
N 〉 8.062 10.006 22.324

Figures 11 and 12 show the phase velocity profiles at different cross-sections of both
the branches at the terminal time instant T. One can see that there is a correlation between
the Bingham number and velocity. For wbr = 0.5 and wbr = 0.2, both the solid and fluid
phases flow slower in the side branch than in the main branch of the width w = 1. The
side branch velocity decreases significantly if the width of this branch decreases. One more
observation is that the velocities of both phases are almost equal due to the interphase-
resistivity effect. Note, that the velocity in the main branch is indifferent to a decrease in
width of the side branch. It is well known that non-Newtonian fluids in channels have a
blunt Poiseuille profile [47]. The calculation results concerning the velocity field are shown
in Figures 11 and 12. Thus, calculated profiles are consistent with the Poiseuille-like flows
and validate the numerical scheme developed in the present paper.

To show the role of the yield stress, we performed calculations with τ∗ = 0, Figures 13 and 14.
One can see that under the conditions (43), velocities in the side branch are doubled but
velocities in the main branch are unchanged.
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Figure 9. Concentration c versus s where s is the distance from the bifurcation point along the midline
of the side branch with the bifurcation angle α = 90◦. The left and right pictures correspond to
wbr = 0.5 and wbr = 0.2, respectively. The pictures from top down correspond to t = 100, 200, 300,
respectively.

Figure 10. Partitioning of particles for the bifurcation angle α = 90◦. The mass of particles Mp that
passed through the branch during the period of pulsation. The left and right pictures correspond to
wbr = 0.5 and wbr = 0.2, respectively.
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Figure 11. Solid phase velocity profiles in a branch for the bifurcation angle α = 90◦ at the terminal
time instant. Projection vs of the solid phase velocity on the midline of the branch versus x, where x
is a transversal variable in the branch. The side branch and the main branch are from top down, the
values wbr = 0.5 and wbr = 0.2 are from left to right. The solid, dashed and dotted lines correspond
to the branch locations 0.25 l, 0.5 l and 0.75 l reckoned from the bifurcation point.

Figure 12. Fluid velocity profiles in a branch for the bifurcation angle α = 90◦ at the terminal
time instant. Projection v f of the fluid velocity on the midline of the branch versus x, where x is a
transversal variable in the branch. The side branch and the main branch are from top down, the
values wbr = 0.5 and wbr = 0.2 are from left to right. The solid, dashed and dotted lines correspond
to the branch locations 0.25 l, 0.5 l and 0.75 l reckoned from the bifurcation point.



Polymers 2022, 14, 3880 20 of 24

Figure 13. Fluid velocity profiles in a branch for the bifurcation angle α = 90◦ in the case of the zero
Bingham number bN . Projection v f of the fluid velocity on the midline of the branch versus x, where
x is a transversal variable in the branch. The side branch and the main branch are from top down, the
values wbr = 0.5 and wbr = 0.2 are from left to right. The solid, dashed and dotted lines correspond
to the branch locations 0.25 l, 0.5 l and 0.75 l reckoned from the bifurcation point.

Figure 14. Solid phase velocity profiles in a branch for the bifurcation angle α = 90◦ in the case of
the zero Bingham number bN . Projection vs of the solid phase velocity on the midline of the branch
versus x, where x is a transversal variable in the branch. The side branch and the main branch are
from top down, the values wbr = 0.5 and wbr = 0.2 are from left to right. The solid, dashed and dotted
lines correspond to the branch locations 0.25 l, 0.5 l and 0.75 l reckoned from the bifurcation point.

Remark 1. Let us comment on the validation of the numerical simulation performed in the present
paper. First of all, our calculations capture the benchmark experimental Zweifach–Fung effect,
stating that more particles fall into the branch where more fluid enters. A qualitative agreement
with 3D experiment data on the particles partitioning is established (see Figure 7 and [43,44]) by
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calculations relative to the 2D branching tube. We use the same numerical algorithm as in the
recent work on sedimentation [33]. The difference is only in the boundary conditions. As applied
to sedimentation, our calculations also explain the Boycott effect, amounting to the fact that an
inclination of a vertical vessel enhances the sedimentation of particles in suspension. It is well
known that non-Newtonian fluids in channels have a blunt Poiseuille profile. Figures 11 and 12
agree with such a flow property.

In order to illustrate the convergence of the method, we performed a series of calcu-
lations for different meshes with n vertices on the border AB, 4n, vertices on the borders
LF, NE, BL, ND, and 8n vertices on the border AC for n = 8, 16, 32 and 64.

This gives meshes with a total number of N = 952, 3448, 15,058 and 56,544 vertices,
respectively.

We denote the numerical solution f = (vs, v f , p, c) corresponding to n by f n. Conver-
gence manifests itself through the following estimates

sup
tm

|| f2n(t)− f4n(t)||L2(Ω)

|| fn(t)− f2n(t)||L2(Ω)
≤ 2−rn , (52)

where rn = 1.6, 1.99 for n = 8, 16, respectively. This estimate indicates that the solution is
grid-independent. To guarantee convergence and an acceptable computation time, we use
the mesh with at least 103 triangular elements.

5. Conclusions

As in a number of studies, we consider a dense suspension of polymer particles to
be a non-Newtonian fluid. Since we assume that the particles and the carrier fluid have
different densities and velocities, we use a two-continuum model. The first phase of solid
particles is described by the rheology of the Bingham fluid and the second phase is a viscous
Newtonian fluid. There is one more rheological feature of the solid phase of particles which
is associated with the generalized Fick’s law for the particle concentration flux vector. The
fact is that in the full model, in addition to ordinary diffusion, barodiffusion and thermal
diffusion are taken into account. In addition, the concentration flux vector also takes into
account a component that depends on the gradient of the modulus of differences in phase
velocities. The model agrees with the basic principles of thermodynamics and is validated
through capturing the Boycott sedimentation effect. Starting from the chosen model, we
address flows in a branching channel with the rather arbitrary bifurcation angle, which is
reckoned from the inlet direction. We study the issue of flow partitioning and estimate the
loss of particles into the side branch during the pulsatile injection of particles. We prove
that the greater the bifurcation angle, the smaller the loss of particles. Our calculation of the
loss agrees qualitatively with experiment data. We prove that the partitioning of particles
occurs in agreement with the Zweifach–Fung effect, stating that particles prefer the branch
with a higher fluid flow rate. We establish that more particles fall into the branch with a
lower mean Bingham number. The results are applicable to the technology of producing
microfluidic devices consisting of tubes with branches. One more application concerns the
simulation of the proppant particle loss in perforations during the proppant delivery to
a hydro-fracture. Now that the model has been tested on the Zweifach–Fung benchmark
effect, it becomes possible to use it to study the flows of suspensions of polymer particles
in confluences.
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Abbreviations

V arbitrary volume of suspension, [m3]
Vf volume of fluid part in arbitrary volume V, [m3]
Vp volume of dry particles in arbitrary volume V, [m3]
VM volume of mud in arbitrary volume V, [m3]
Vs = Vp + VM volume of solid phase in arbitrary volume V, [m3]
m f mass of fluid in arbitrary volume V, [kg]
mp mass of dry particles in arbitrary volume V, [kg]
mM mass of mud in arbitrary volume V, [kg]
ms = mp + mM mass of solid phase in arbitrary volume V, [kg]
m = m f + mp + mM mass of arbitrary suspension volume V, [kg]
c =

mp
m mass concentration of particles, dimensionless

ρ̄ f fluid density,
[

kg
m3

]
ρ̄p density of dry particles,

[
kg
m3

]
ρ̄M mud density,

[
kg
m3

]
φ f volume fraction of fluid, dimensionless
φp volume fraction of dry particles, dimensionless
φM volume fraction of mud, dimensionless
φs = φp + φM volume fraction of solid phase, dimensionless
ρ f =φ f ρ̄ f partial fluid density,

[
kg
m3

]
ρp = φpρ̄p partial particle density,

[
kg
m3

]
ρM = φM ρ̄M partial mud density,

[
kg
m3

]
ρs = ρp + ρM partial density of solid phase,

[
kg
m3

]
ρ = ρ f + ρp + ρM total density

[
kg
m3

]
ρ̄s = ρs

φs
, density of the solid phase,

[
kg
m3

]
R0 = ρ̄s

ρ̄ f
, ratio of densities, dimensionless

g gravitational acceleration, 980
[

cm
s2

]
p pressure, [Pa]
v f velocity of fluid phase,

[m
s
]

vs velocity of solid phase,
[m

s
]

u = vs − v f difference of velocities,
[m

s
]

v = φ f v f + φsvs mean volume velocity,
[m

s
]

ṽ = (1− c)v f + cvs mean mass velocity,
[m

s
]

Tf viscous part of stress tensor of fluid phase, [Pa]
Ts viscous part of stress tensor of solid phase, [Pa]
D rate of strain tensor, [s−1]
Dd deviatoric part of D, [s−1]
I identity matrix, dimensionless
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j total momentum,
[

kg
m2·s

]
l flux of mass concentration of particles,

[
kg

m2·s

]
η f dynamic viscosity of fluid phase, [cp]
ηs dynamic viscosity of solid phase, [cp]
η0

s consistency of solid phase, [cp]
τ yield stress of the solid phase, [cp/s]
k interphase friction,

[
kg

m3·s

]
B gravitation mobility, [s]
ds
dt differential operator of material derivative related to velocity vs
d f
dt differential operator of material derivative related to velocity v f
d
dt differential operator of material derivative related to mean mass velocity ṽ
r f = ρ f /ρ̄ f , dimensionless density of fluid phase
rs = ρs/ρ̄ f , dimensionless density of solid phase
〈 f 〉 time-average value of quantity f
bN reduced Bingham number, dimensionless
l dimensionless length of channel
w dimensionless width of channel
|∇br p| dimensionless pressure drop along channel branch
Re Reynolds number, dimensionless
Fr Froude number, dimensionless
Mp dimensionless mass of particles that passed through the branch
M f dimensionless mass of fluid that passed through the branch
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