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Abstract: Biopolymers-based composite edible films are gaining interest in the food packaging
industry due to their sustainable nature and diverse biological activities. In the current study, we
used sodium alginate (SA) and casein (CA) for the fabrication of composite film using the casting
method. We also added orange oil to the edible film and assessed its impact on the biological,
chemical, physical, and barrier properties of the films. The fabricated films were analyzed using
X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM),
and Fourier transform infrared spectroscopy (FTIR). It was observed that CA–SA films loaded with
1.5% OEO had better visual attributes, and a further increase in oil concentration was not found to be
as favorable. Mechanical assessment of the films revealed that CA–SA-OEO (1.5%) film showed lower
puncture deformation and higher puncture force values. XRD data showed that all samples exhibited
peaks at similar positions (21◦ of 2θ) with different intensities. In FTIR analysis, characteristic peaks
of the film components (sodium alginate, casein, and orange oil) were reported at corresponding
positions. The thermal stability of films was enhanced after the addition of the OEO (1.5%), however,
a greater increase in OEO caused a decrease in the thermal stability, observed during TGA analysis.
Moreover, the surface of the blank CA–SA film (FL1) was found to be rough (with cracks) compared
to CA–SA films (FL2) containing 1.5% OEO. Additionally, FL2 was found to be relatively better
than the other samples in terms of swelling degree (SD), thickness, water solubility (WS), oxygen
permeability (OP), water vapor permeability (WVP), moisture content (MC), and transparency (T).

Keywords: casein; sodium alginate; edible films; essential oil; polymers

1. Introduction

Recent research trends in biopolymer-based materials have shown a growing interest
in food packaging [1]. Single polymer-based films often face challenges such as poor barrier
and mechanical properties, whereas composite films can be designed to overcome these
challenges. Composite films for food packaging are often prepared by coalescing similar or
different biomacromolecules such as polysaccharides, proteins, and lipids. The majority of
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edible food packaging materials have been fabricated using one or multiple polysaccha-
rides, and fewer protein–lipid, polysaccharide–protein, and polysaccharide–lipid based
composite films are fabricated. Films made from protein often provide an improved oxygen
barrier and mechanical properties over the films made up of polysaccharides [2,3], and
that is why there is a growing interest in the protein-based composite films. However,
protein based films exhibit less resistance against carbon dioxide permeability [4]. Both
polysaccharides and proteins are hydrophilic macromolecules and, therefore, they have
little resistance against water vapors [5]. Its physical, chemical, as well as mechanical
properties are highly influenced by moisture content, which impacts the integrity and func-
tionality of the films made of these macromolecules. Therefore, loading polysaccharides’
and proteins’ composite films with a hydrophobic material such as essential oil could be an
excellent approach to improve the optical, physical, chemical, barrier, antioxidant, and an-
timicrobial properties. Therefore, several recent studies have reported on polysaccharides
and protein based composite films that were loaded with essential oils such as ginger oil [6],
cinnamon oil [7], oregano, rosemary, garlic essential oil, etc., [8] for enhancing the cohesive
network and biological properties of the films [9,10]. Several approaches have been used
for the fabrication of edible films including two methods casting and extrusion. Moreover,
for surface coating procedures such as pan-ning, spraying, dipping, and fluidized-bed
methods are used [11,12].

In recent studies, the use of several animal proteins (gelatin, casein, and whey) and
plant proteins (zein, gluten, and soy proteins) was explored for food packaging [13,14] and
other biomedical applications [15], with the aim of sustainability and promotion of a greener
approach [3]. Due to their nutritious nature and film forming potential, casein-based films
are of great importance in the food packaging industry [16–18]. Films fabricated from
casein are usually thin and transparent as well as possess good thermal stability, strength,
and have low oxygen permeability. However, their high hydrophilicity and low elasticity
affect their mechanical and barrier properties [19]. Casein-based films form a cohesive film
matrix, and this matrix shrinks during the drying process and, subsequently, it becomes
brittle. This cohesive matrix formed by the nonpolar and polar amino acids of the casein
limits its use in food packaging applications [20].

Sodium alginate is a hydrophilic pH-responsive polymer that usually provides a
strong film structure. Casein and sodium alginate are food grade edible macromolecules
and can be combined to fabricate films with the best characteristics [21]. Further, the partial
replacement of casein with sodium alginate will also help in lowering the cost of production
of composite biodegradable films.

Due to their hydrophilic nature, a film forming solution of both polymers (casein and
sodium alginate) can be easily mixed to make films with good barrier and mechanical
properties [22]. However, the resultant films have a poor barrier for moisture loss. Adding
essential oil to the edible films enhances the biological and barrier properties as well as
improves other parameters including water solubility, swelling degree, moisture content,
etc. [10]. Thus, the incorporation of optimum levels of essential oil (EO) could be an
approach to impart hydrophobic character to casein–sodium alginate films. Citrus aurantium
L., (bitter orange) oil contains high levels of D-limonene and myrcene that are known to
have important biological properties, such as antimicrobial and antioxidant potential [23].
The use of orange essential (OEO) and its impact on casein–sodium alginate films has not
been reported, therefore, it is important to analyze its impact and evaluate its potential use.

Similarly, the present study was designed to assess the impact of various dilutions
of orange EO on the surface morphology physiochemical, mechanical, and barrier prop-
erties of casein–sodium alginate (CA–SA) composite films. The casting method was used
for edible film making, and then the prepared samples were examined using various
characterization techniques.
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2. Materials and Methods

Casein (fat free ultra-purified) as well as sodium alginate (pure) were supplied by
Sisco Research Laboratories Pvt Ltd., Mumbai (India). The OEO was purchased from
Nature Natural India (Batch No.: NNIGIEO/104/0821). Acetic acid (98.8% pure) used in
the experiment was acquired from Sigma-Aldrich, and the glycerol (99.0% pure) used in
film preparation was purchased from BDH Laboratory Supplies, London (UK).

2.1. Preparation of Casein–Sodium Alginate–Orange Essential Oil (CA–SA–OEO) Loaded Films

The casting method was used to prepare casein (CA) and sodium alginate-based (SA)
composite edible films loaded with orange oil (OEO). Initially, the CA solution (3% w/v)
was made by mixing 3 g in 100 mL of distilled water (30 ◦C). The pH of the CA solution
was adjusted to 5.6 using sodium hydroxide solution (2 N), and then it was stirred and
heated at 85 ◦C for 10 min on a hot plate. The sodium alginate solution (3% w/v) was made
by dissolving the SA in distilled water followed by heating (at 80 ◦C) and stirring for one
hour. Both solutions (CA:SA) with a ratio of 10:1 were mixed for one hour at 80 ◦C, and the
glycerol (2.5% w/v) was added. After this, the homogenous solution was mixed with OEO
at 1.5, 2.0, and 2.5% concentration (v/v), followed by stirring (300 rpm) for one hour. The
OEO loaded solution was kept at 25 ◦C for one hour to eliminate air bubbles [7]. After the
formulation of a film-forming solution, it was cast in plastic Petri plates (90 × 15 mm) and
dried at 25 ◦C for 48 h [4]. The films were peeled off from the surface of the Petri plates and
stored in desiccators at 25 ◦C and 87% relative humidity. Before characterization, films were
stored under the above-mentioned conditions for 12 h [9]. Table 1 shows the composition
of the fabricated films. The experiment was repeated three times for the consistency of
the results.

Table 1. Composition of the OEO-loaded CA–SA-based composite films.

Codes Film Composition

FL1 CA+SA

FL2 CA + SA + OEO (1.5% v/v)

FL3 CA + SA + OEO (2% v/v)

FL4 CA + SA + OEO (2.5% v/v)
CA: casein; SA: sodium alginate; OEO: orange essential oil.

2.2. Thickness

Film thickness greatly impacts the thermal, mechanical, barrier, and optical proper-
ties of the films. This parameter was assessed (in mm) by a hand-operated micrometer
(Mitutoyo 2046F, Kawasaki, Japan) with an accuracy of ±0.001 mm. The thickness of the
film was determined at five randomly selected points before mechanical testing using the
ASTM (1997) standard operating procedure [24].

2.3. Mechanical Properties

For determining fabricated material characteristics such as elongation at break (EAB),
tensile strength (TS), as well as Young’s modulus (Ym), the texture analyzer (Stable Micro
Systems Ltd., Godalming, UK) was used. The mechanical testing was conducted using
ASTM standard operating procedures [25]. The samples were sliced into strips with a
dimension of 40 × 10 mm and were kept at a relative humidity of 50% for a duration of
72 h. The films were held between the grips of the machine and extended at 0.75 mm/s
until the break point. Distance and force values were determined. Tensile strength (TS)
was evaluated using maximum force at the break point by the initial cross-sectional area
(m2), while the elongation at the break point was measured by dividing the elongation at
the break point by preliminary gauge calculation and multiplying the value by 100 [26].
The analysis was carried out in triplicate, the findings were expressed in MPa units, and
the mean values were taken for statistical analysis.



Polymers 2022, 14, 3855 4 of 15

2.4. Puncture Strength

The texture analyzer, Stable Micro Systems, Godalming, Surrey, UK (TA. XT Plus), was
used to assess the puncture strength. For this measurement, a disc-shaped piece of film
was placed in an annular ring clamp (3 cm diameter). The method of Lagos et al. [27] was
followed for determination of deformation (mm) and puncture strength (N) of the film.

2.5. Water Vapor Permeability

For Water Vapor Permeability (WVP) analysis, prepared samples were sliced uniformly
into a round shape having a diameter of 20 mm. Glass cups containing silica gels were
sealed by the films, and then the cups were kept in the desiccator having distilled water
(RH 100%) at 25 ◦C and weighted after a 60 min interval for 10 h. The analysis was carried
out in triplicate following the ASTM (2003) guidelines. The following equation was used
for the estimation of WVP:

WVP = w/t × t/(∆P × A2) (1)

where the w/t is the weight loss per unit time (gs−1) measured (using linear regression
where R2 was >0.99) from the water absorbed by the system until a stable state was
achieved. A2 is the film area subjected to the transfer of moisture (1.539 × 10−4 m2); the
film thickness is denoted by t, and ∆P represents the variation in the pressure exerted by
water vapors between the two sides of the film at 25 ◦C (kPa).

2.6. Oxygen Gas Transmission Assessment

The overall resistance of the fabricated packaging material to oxygen permeability
was assessed using Kurt et al.’s [28] method. This standard test is a standard sodium
thiosulphate-based titration that is used to measure the oxidation of camellia oil as an
indication of oxygen availability.

2.7. Moisture Content

Moisture content (MC) was measured from the weight variation in the samples after
being dried at 105 ◦C. The average time duration for processing each sample was about
3–4 min. This analysis was repeated three times, and then the mean value was used
for analysis.

2.8. Water Solubility (WS)

Water solubility (WS) of the film samples was evaluated using Singh et al.’s method [29],
with some modifications. WS of the films was measured as the quantity of dry weight dissolved
after 24 h of soaking in water. To determine WS, 250 mg of film sample was measured and
placed in 25 mL of water for 24 h (at 25 ± 1 ◦C) followed by stirring (300 rpm). Afterward, the
residual insoluble matter of the films was dried in an oven until a constant weight was achieved.
Percent solubility (S%) was measured using the following equation:

S (%) = [(W1 − W2)/W2] × 100. (2)

W1 represents the weight of the initial dry film, whereas W2 represents the weight of
undissolved films.

2.9. Transparency

A UV-Visible spectrophotometer (UV160U-Shimadzu, Kyoto, Japan) was used (range
of 200–800 nm) for assessment of transparency. Samples with dimensions of 3 × 15 mm
were placed into cuvettes and compared with a blank film (cuvette with no film). Each
sample was measured in triplicate as described by Shiku et al. (2004) [30].
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2.10. X-ray Diffraction (XRD) Studies

For analyzing the XRD pattern of fabricated edible films, a Bruker D8 Discover instru-
ment was used. The samples were examined at a 2θ diffraction angle and 40 kV voltage
and a current in the range of 5–50◦ at a rate of 0.500 s/point, and the Scherrer constant (K)
was 1.5418 Å).

2.11. Microscope Observations

SEM studies were performed (JSM6510LA, SEM, Jeol, Japan) to visualize the mi-
crostructure for evaluation of features such as uniformity, compactness, pores, roughness,
ridges, bulges, and particles or granules at surface or cross-section level. The analysis was
carried out at an acceleration voltage of 20 kV under high vacuum mode. The samples
were placed on an aluminum stub covered with adhesive tapes and gold sputtered coated.

2.12. FTIR Spectra Analysis

Fourier transform infrared spectra (FTIR) of the samples were carried out with an
InfraRed Bruker instrument (Tensor 37, Ettlingen, Germany). The analysis was carried out
at 25 ± 1 ◦C and the range of the wavenumber was between 400 and 4000 cm−1 with an
average of 32 scans with a resolution of 4 cm−1 (data spacing 0.5 cm−1).

2.13. Thermogravimetric (TGA) Analysis

Thermal stability analysis was performed under a nitrogen atmosphere with a thermal
gravimetric (TG) analyzer (TA instrument, SDT-Q600, New Castle, DE, USA). Samples were
studied in a nitrogen atmosphere and scanned at a gas flow of 40 mL/min and temperature
range of 25–600 ◦C with a ramp of 10 ◦C/min. A 5 mg of sample mass was used for
the experiments.

2.14. Statistical Analysis

For all results, the mean and standard deviation (SD) values of the three indepen-
dently performed experimental replicates were considered for statistical analysis. One-way
ANOVA and Duncan’s test was used for the assessment of significant variations amongst
mean values at 5%.

3. Results and Discussion
3.1. Visual Assessment

The samples were visually screened, which revealed that CA–SA films loaded with
1.5% OEO had better visual attributes and were easier to peel from the petri plates. In addi-
tion, it was observed that CA–SA films with 1.5% OEO showed relatively better attributes
in terms of transparency, brittleness, stiffness, flexibility, stickiness, and rigidness. Films
with 2.5% OEO presented low transparency and flexibility with high stiffness, stickiness,
and rigidity (Figure 1). Moreover, CA–SA film with 2.5% OEO was found to be more
fragile than other films. The ratio of protein and added concentration level of OEO (1.5%)
is optimum for the stability of the emulsion and the structural attributes of the film.

3.2. Mechanical Characteristics

Mechanical features of the food packaging material are critical to measure the struc-
tural integrity of the film and are considered as an indicator of the cohesion and durability
of films. The mechanical characteristics of composite films are directed by the interaction
between the molecules, which is influenced by the composition and processing methods.

Findings obtained from the elongation at break (EAB) assessment of the film containing
1.5% of OEO showed a significant (p < 0.05) increase, while Young’s modulus (Ym) and
tensile strength (TS) decreased significantly (p < 0.05) (Table 2). The reduction in TS and Ym
could be because of the OEO presence in the film matrix, resulting in a decrease in the inter-
and intra-molecular interactions. This weakened the uniform film matrix, leading to the
domination of weaker polymer–oil interactions over stronger intermolecular interactions
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in the film matrix [31,32] and leading to the prevention of the formation of rigid structure.
Furthermore, due to the strong plasticizing effect of OEO, the plasticity was increased,
which resulted in the EAB value increasing significantly (p < 0.05) [33]. However, films
containing 2–2.5% OEO were not considerably distinct from each other in the case of
mechanical properties.
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Table 2. Mechanical properties of CA–SA and CA–SA–OEO films.

Sample Codes EAB (%) TS (MPa) Ym PF (N) PD (%)

FL1 7.21 ± 0.12 c 8.21 ± 0.02 a 98.34 ± 3.14 a 4.87 ± 0.07 b 78.21 ± 3.78 a

FL2 19.22 ± 1.37 b 6.22 ± 0.01 b 45.13 ± 1.77 b 6.71 ± 0.01 a 23.89 ± 1.31 c

FL3 20.11 ± 0.78 a 5.42 ± 0.04 c 43.17 ± 2.36 b 4.82 ± 0.02 b 54.32 ± 0.67 b

FL4 20.32 ± 0.63 a 4.91 ± 0.03 d 42.21 ± 4.15 b 3.77 ± 0.18 c 75.62 ± 2.24 a

Composite films samples: control or FL1 (CA + SA); FL2: CA + SA + OEO (1.5% v/v); FL3: CA + SA + OEO
(2% v/v); FL4: CA + SA + OEO (2.5% v/v). EB: elongation at break, Ym: Young’s modulus; TS: tensile strength,
PD: puncture deformation; PF: puncture force. Findings are stated as means ± standard deviation. The letters a–d
(superscript) represents the difference between the mean values (p < 0.05).

3.3. Puncture Strength

Lower puncture distortion (PD) and higher puncture force (PF) are favorable attributes
of the food packaging material that suggest high film endurance against puncture and
physical handling. Films containing 1.5% OEO, relatively, showed lower puncture deforma-
tion and higher puncture force values (Table 2). However, the films containing 2–2.5% of
OEO showed lesser values of films breaking force and more puncture deformation values.
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This suggests the concentration-dependent effect of OEO over crosslinking between the
film components, as 1.5% OEO increased the crosslinking whereas higher concentration
reduced intermolecular interactions, which could have made the film brittle and fragile [34].
Thus, OEO at 1.5% enhances the crosslinking between CA and SA, thereby enhancing the
strength of the film, allowing for film distortion and decreasing the level of post-puncture
deformation. Previously, it was observed that an increase in film thickness resulted in an
increase in puncture deformation [35]. In the present study, film thickness significantly
increased in FL3 to FL4 (Table 2). Thus, an increase in puncture deformation among the
films (FL3 and FL4) could be ascribed to an increase in thickness [36].

3.4. X-ray Diffraction (XRD)

XRD offers chemical information for elemental analysis and phase analysis. For
polymeric films, XRD is generally performed to determine film structure by assessing the
crystal structure, degree of crystallinity, and crystallite size of the polymer [37,38]. The
overlay of XRD diffraction patterns and intensities is shown in Figure 2. XRD results
showed that all samples are showing peaks at similar positions with different intensities.
The characteristic peaks of CA–SA and OEO loaded CA–SA based films were recorded at
21◦ of the 2θ position. The small characteristic peaks observed at the 14◦ and 29◦ positions
could be attributed to the OEO in the respective samples. The change in peak intensity could
be due to the difference in concentration of OEO added to the films. In addition, changes
in mechanical characteristics of the films could also be correlated with the change in peak
intensity conferred by the change in the composition of film components. Moreover, from
the pattern of the peaks, it was observed that all samples had a high semi-crystalline phase.
The current findings suggest that the chemical interactions among the film components
are better. Previous studies have also reported a similar XRD pattern of casein–sodium
alginate-based films [21,39,40].
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3.5. FTIR Analysis

FTIR depicts the interactions between functional groups of compounds by passing
an infrared wave across the material to investigate the structural changes of materials
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on the molecular levels. FTIR analysis revealed the characteristic peaks due to the cross-
linking between sodium alginate and casein. These peaks formed owing to the N-H
stretching vibration of the primary amine (3309 cm−1), C-H stretching of the alkane groups
(2925, 2852 cm−1), stretching of the C=C group (1643 cm−1), O-H bending of carboxylic
(1400 cm−1), strong stretching of C-O group (1101 cm−1), strong stretching of S=O group
(1031), and C=C bending at 837 cm−1. Detailed FTIR information of CA–SA and OEO added
CA–SA film can be seen in Figure 3. Previously, it was reported that OEO loaded films
exhibited a characteristic peak at the 1644 cm−1 wavelength during the FTIR analysis [41].
The small shift in wavenumber (1643 to 1644 cm−1) could be due to the difference in
concentration of the oil used. This bandwidth confirms the existence of OEO in the films,
which is identified as the stretch of the C=C bond. The increase in peak intensity reflects
the rise in the amount of oil. Characteristic peaks reported at the 3309 and 1031–1001 cm−1

positions could be attributed to the presence of casein [22,42], while peaks at 2852, 2925,
and 1400 cm−1 positions could be attributed to the presence of sodium alginate [43]. FTIR
analysis revealed the interaction of casein, sodium alginate, and OEO indicated from
corresponding peak positions.
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3.6. Thermogravimetric Analysis

Thermogravimetric (TGA) analysis was carried out to evaluate the thermal stability of
the fabricated edible films. All the samples showed similar thermal decomposition patterns,
with multiple stages of thermal decomposition in the temperature range of 25–600 ◦C
(Figure 4). Better thermal stability up to 200 ◦C was demonstrated by all the fabricated
films. Thermal degradation was initiated at 175 ◦C, and the highest weight loss was
seen between 200 and 250 ◦C. The initial phase (50–120 ◦C) could be attributed to the
evaporation of bound water and OEO evaporation from the films. The next phase of
thermal loss (120 to around 200 ◦C) could be associated with the glycerol loss [44]. CA–SA
film decomposition could be ascribed to the subsequent stages (approximately 65% weight
loss was observed), which occurred at 310–350 ◦C, indicating two types of chain structures
with distinct thermal stabilities. The thermal stability of CA–SA film improved after the
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addition of the OEO (1.5%), though a greater increase in the OEO concentration caused a
decline in thermal stability.
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3.7. Microstructure of CA–SA and OEO–CA–SA Films

Surface morphology is based on the chemical interaction between film components,
which considerably impacts the overall properties of the film [45]. Thus, to establish a
relationship between morphological features and the performance of the film, an SEM
investigation was conducted. Surface as well as cross-section images of CA–SA and OEO–
CA–SA films are illustrated in Figure 5. The surface of the CA–SA films (FL1) was rough
and uneven with cracks, whereas CA–SA films (FL2) containing 1.5% OEO have smooth
surfaces with few particles. However, CA–SA films containing 2–2.5% OEO (FL2, FL3)
present large size holes, possibly due to the volatilization of free OEO. Additionally, the
films containing 2–2.5% OEO revealed a rough surface with minor fractures and wrinkles as
well as big holes. These defects at the films’ surface could be ascribed to the emulsification,
flocculation, and coalescence of OEO in the fabricated material during drying, leading to
droplet formation and volatilization of OEO [46]. On other hand, CA–SA films containing
1.5% OEO (FL2) showed uniform and compact structure with a smooth surface and without
any cracks and pores. It was assumed that OEO addition (1.5%) caused a modification in
the structural organization of the film, which could be associated with changes in WVP
and TS values.



Polymers 2022, 14, 3855 10 of 15

Figure 5. SEM analysis of FL1–FL4 composite films samples: control or FL1 (CA + SA); FL2: CA + SA
+ OEO (1.5% v/v); FL3: CA + SA + OEO (2% v/v); FL4: CA + SA + OEO (2.5% v/v).

3.8. Film Thickness

Film thickness increased 42.01–81.87 µm with the rise in the concentration of OEO
content (p < 0.05). This could be due to the entrapped micro-droplets formation of OEO in
the polymeric matrix and due to the interaction between the film components and OEO [47].
This finding is in line with the study based on the increase in thickness of films after the
supplementation of thyme essential oil to starch film [48].

3.9. Swelling Degree

Swelling is an unwanted attribute for a biopolymer-based film, mainly if meant for
packaging food with high MC [49]. In the present work, a significant increase in SD values
has been observed in films containing EO from 2% to 2.5%. However, films containing
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1.5% OEO have not shown an increase in SD values. This might be associated with the
surge in the availability of free OEO in films containing OEO of 2 to 2.5%. This unbound EO
might have possibly reduced cross-linking between CA–SA and, thus, decreased cohesion
forces of the polymeric chain causing the formation of a heterogeneous matrix with an
increase in SD values. However, unlike the effect of OEO (2–2.5%) over CA–SA films, 1.5%
of OEO film has not shown an increase in SD value. This behavior of OEO film at 1.5%
could be due to the boost in intermolecular interaction due to the participation of OEO
components in bridging the strong interaction between CA–SA.

3.10. Water Vapor Permeability and Water Solubility

The solubility of the films and their resistance against water vapors impact the physical
and chemical characteristics of the films specifically in an environment with high humidity.
In the present study, it was found that solubility declined significantly (p < 0.05) with
increasing OEO (Table 3). These findings suggested that the possible addition of OEO
improved the water resistance of the films. It could be due to the increase in hydrophobicity
of the films caused by the supplementation of the OEO. Additionally, chemical interaction
between hydroxyl groups of CA–SA and components of OEO decreased the interaction of
hydroxyl groups with water molecules, resulting in low solubility of the films [50].

Table 3. Thickness, water vapor permeability (WVP), oxygen barrier property (OBP), water solubility (WS),
swelling degree (SD), moisture content (MC), and transparency (T) of CA–SA and CA–SA–OEO films.

Sample Codes Thickness (µm) SD (%) WS (%) WVP (×10−12 g·cm/cm2·s·Pa) OP (g/100 g) MC (%) T

FL1 42.01 ± 2.4 c 77.1 ± 3.71 d 74 ± 2.14 a 2.71 ± 0.01 a 1.89 ± 0.1 c 16.12 ± 0.61 a 56.38 ± 2.38 a

FL2 46.32 ± 1.7 c 81.2 ± 2.78 c 32 ± 1.56 b 1.27 ± 0.03 b 1.45 ± 0.3 c 10.21 ± 0.34 b 31.23 ± 1.02 b

FL3 63.91 ± 2.6 b 132.4 ± 1.86 b 28 ± 2.33 c 1.58 ± 0.01 b 2.54 ± 0.1 b 9.63 ± 0.72 c 21.08 ± 1.33 c

FL4 81.87 ± 3.1 a 139.1 ± 3.41 a 29 ± 1.42 c 2.25 ± 0.04 a 3.81 ± 0.2 a 9.55 ± 0.24 c 18.11 ± 1.89 d

Composite films samples: control or FL1 (CA + SA); FL2: CA + SA + OEO (1.5% v/v); FL3: CA + SA + OEO
(2% v/v); FL4: CA + SA + OEO (2.5% v/v). Findings are stated as means ± standard deviation. The letters a–d
(superscript) represents the difference between the mean values (p < 0.05).

WVP is a crucial parameter of food packaging films that impacts product safety as
well as quality via moisture retention or loss. Water transmission usually arises through
the hydrophilic portion of the packaging material and is, therefore, dependent on the
hydrophilic/hydrophobic ratio of the film. As demonstrated in Table 3, since OEO is
hydrophobic, increasing the OEO level in the films resulted in a significant decrease in
WVP of films containing 1.5% of EO. This behavior could be due to the higher tortuosity
made within the CA–SA polymeric matrix as the water vapor molecules passes, resulting
in a reduction in permeation [51].

Further rise in WV transmittance in the films containing 2.0–2.5% of OEO could
be because of the adverse impact of OEO on the micro-structural features of fabricating
material and the creation of micropores (confirmed from SEM images, Figure 5) as well as
pores in the film structure, leading to movement of WV molecules [52]. An increase in water
vapor transmittance could be also attributed to discontinuation caused in the polymeric
matrix by the OEO droplets, resulting in the drop in the solidity and enhancement of the
transmission process of the films containing 2.5% OEO [53].

3.11. Oxygen Barrier Property

The oxygen barrier property (OBP) of edible films should be the minimum required to
protect the food from unfavorable oxidation reactions [54]. Casein-based films often possess
low OBP, however, its blend with SA and OEO has not been investigated yet [20]. As per a
previous report, structural changes in casein and type of plasticizer have a significant impact
on OP [55]. It was also found that lactic acid–casein EFs plasticized with sorbitol possessed
more effective oxygen barrier properties [56]. However, another report suggested lower
oxygen permeability of casein films than casein–whey protein composite films, irrespective
of the plasticizer used [57]. In the present study, initially, CA–SA-OEO (1.5%) possessed
lower OP than films containing 2–2.5% of OEO. An increase in OP could be because of
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using OEO as a plasticizer and swelling of films because of the volatilization of OEO.
Oxygen may pass via CA–SA interfaces, offering oxygen-penetration channels when higher
concertation of OEO is added to the films [58].

3.12. Moisture Content

Casein based films are extremely sensitive to moisture content. They readily absorb
and release water molecules, which act as a plasticizer and significantly impact the char-
acteristics of the films [20]. In the present work, OEO loaded CA–SA films presented less
moisture content than blank films (Table 3). This behavior could be due to the formation
of covalent bonding between the CA–SA chains and OEO, resulting in the reduction in
the accessibility of amine and hydroxyl groups in the film matrices. The covalent bonding
between OEO and the polymeric matrix decreased the hydrogen bonding between water
molecules and the functional groups of polymeric chains, ultimately leading to a decrease
in the moisture content of films loaded with OEO [59].

3.13. Transparency

Transparency is an important attribute of the films meant for food packaging material,
as this parameter impacts consumer acceptability and the transmission of radiations from
packaging material to food. Light transmittance of FL1–FL4 was shown in Table 3. FL1
without EO showed 56.38% light transmittance, which was the highest among all samples.
An increase in the concertation of OEO from 1.5 to 2.5% (w/v) significantly decreased the
films’ transmittance (p < 0.05). The decrease in transmission of light could be attributed to
the scattering of light at the interface of OEO droplets that were present in the polymeric
matrix of the film [52]. Moreover, color components present in OEO perhaps reduced the
transparency of the films. These findings are in line with findings reported by Pirouzifard
et al. [60]. These findings demonstrated that the OEO could effectively prevent the trans-
mission of UV rays across the film, and thus this packaging material can effectively prevent
food oxidation caused by UV rays, especially in light-sensitive food.

4. Conclusions

In the current study, we fabricated composite films containing casein and sodium
alginate that were supplemented with orange essential oil. We characterized the films using
different physiochemical techniques. It was concluded that the casein–sodium alginate
based edible film (FL2) containing 1.5% orange oil was comparatively better than the
other samples in terms of morphological characteristics, thermal stability, and mechanical
properties. In addition, FL2 also revealed better barrier properties, transparency, and water
vapor permeability compared to other films. To promote sustainability, the OEO loaded
biopolymer-based films could be used for food packaging applications. The current work
is limited to only the physiochemical characterization, mechanical, and barrier properties
of the fabricated films and lacks information related to the antibacterial and antioxidant
potential of OEO.
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