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Abstract: The main aim of this paper is to investigate the solvability of the steady-state flow model
for low-concentrated aqueous polymer solutions with a damping term in a bounded domain under
the no-slip boundary condition. Mathematically, the model under consideration is a boundary value
problem for the system of strongly nonlinear partial differential equations of third order with the
zero Dirichlet boundary condition. We propose the concept of a full weak solution (velocity–pressure
pair) in the distributions sense. Using the method of introduction of auxiliary viscosity, the acute
angle theorem for generalized monotone nonlinear operators, and the Krasnoselskii theorem on
the continuity of the superposition operator in Lebesgue spaces, we obtain sufficient conditions for
the existence of a full weak solution satisfying some energy inequality. Moreover, it is shown that
the obtained solutions of the original problem converge to a solution of the steady-state damped
Navier–Stokes system as the relaxation viscosity tends to zero.

Keywords: non-Newtonian fluid; aqueous polymer solutions; relaxation viscosity; damping; nonlinear
partial differential equations; full weak solution; existence theorem; monotonicity; compactness; acute
angle theorem

1. Introduction

Many real fluids and fluid-like materials cannot be adequately modeled by the classical
Navier–Stokes equations [1–4]. Such fluids are said to be non-Newtonian. Examples are
polymeric liquids, oil, blood, cements, bitumen, concrete, and suspension of river sand, as
well as some liquids arising in food processing. The mathematical study of flow models
for non-Newtonian fluids is very important in various scientific and technological appli-
cations. It is well known that most non-Newtonian materials have a complex (sometimes
unpredictable) nature of behavior, and their models often produce significant difficulties in
mathematical handling. One such model is the model for the motion of low-concentrated
aqueous polymer solutions [5–8]: ρ

(
∂t~v + (~v · ∇)~v

)
− div

[
µD~v + α∂tD~v + α(~v · ∇)D~v

]
+∇p = ρ~F + γ|~v|β−2~v,

div~v = 0,
(1)

where, to fix the notation,

• t denotes time;
• ρ is the fluid density, ρ > 0;
• ~v is the flow velocity;
• p is the pressure;
• the symbol∇ denotes the gradient with respect to the space variables x1, . . . , xd, that is,

∇ def
=
(

∂
∂x1

, . . . , ∂
∂xd

)
, where d = 2 or 3;
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• D~v = (Dij~v) is the strain rate tensor corresponding to the vector field ~v,

Dij~v
def
=

1
2

(
∂vi
∂xj

+
∂vj

∂xi

)
, i, j = 1, . . . , d;

• the operator div is defined as follows:

div~v def
=

d

∑
i=1

∂vi
∂xi

, divM def
=

( d

∑
i=1

∂Mi1
∂xi

, . . . ,
d

∑
i=1

∂Mid
∂xi

)
,

for a vector function ~v = (v1, . . . , vd) and a matrix-valued function M = (Mij);
• µ and α denote the dynamic viscosity and the relaxation viscosity, respectively (µ > 0

and α ≥ 0);
• ~F is the external forces field;
• the nonlinear damping term γ|~v|β−2~v in the balance of linear momentum realizes an

absorption if γ < 0, and a nonlinear source if γ > 0 (see [9,10]);
• β is the damping exponent, β > 1.

The mathematical model (1) has been confirmed by experimental studies; in par-
ticular, it is considered as an appropriate model for the motion of aqueous solutions of
polyethylenoxide, polyacrylamide, and guar gum [11,12]. Note that the limit case α = 0
corresponds to the incompressible Navier–Stokes equations with damping (in the literature,
these equations are often called the convective Brinkman–Forchheimer equations), which
describe a Newtonian fluid flow through a porous medium [13,14].

There is extensive literature devoted to the analysis of the well-posedness of the aque-
ous polymer solutions model and its modifications (see, e.g., [6,15–20] and the references
therein). However, all results are obtained for the case γ = 0, and the main questions
concerning the solvability and properties of solutions to system (1) are still open.

Some researchers have considered a simplified version of model (1), assuming that

div[(~v · ∇)D~v] ≡~0. (2)

In this case, system (1) reduces to the so-called damped Kelvin–Voigt equations ρ
(
∂t~v + (~v · ∇)~v

)
− div

[
µD~v + α∂tD~v

]
+∇p = ρ~F + γ|~v|β−2~v,

div~v = 0,
(3)

which have more “good” mathematical properties in comparison with (1). Korpusov and
Sveshnikov [21] proved the local-in-time unique solvability of an initial boundary value
problem for system (3) with γ = −1 and β = 4 (a cubic source) in the weak formulation.
They also obtained some conditions on the initial velocity field, which ensure that the
solution blows up in finite time. These results were extended and improved by Antontsev
and Khompysh in [9]. The next investigation of this model was connected with the consid-
eration of the situation when both the viscous and relaxation parts of the stress tensor are
given by distinct power-laws, and the momentum equation is perturbed by an anisotropic
damping term ∑d

i=1 γi|~v|βi−2~v (see [22]). Let us mention also the paper [23], in which, by
using the m-accretive quantization of linear and nonlinear operators, the existence and
uniqueness of a strong solution to (3) was established under the condition that γ < 0 and
β ≥ 2. Moreover, in this work, global and exponential attractors were studied for the
corresponding dynamical system.

The passing from the original system (1) to (3) solves the main mathematical difficulties
in studying the damped model for aqueous polymer solutions, but, from the physical point
of view, it would be more interesting not to use the simplifying assumption (2) and keep
all nonlinear terms in the motion equations. Motivated by this, in the present paper,
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we investigate the steady-state version (that is, the flow velocity ~v, the pressure p, and
the external force ~F are assumed to be time-independent) of model (1) in a bounded
domain Ω ⊂ Rd, d = 2, 3, under the no-slip condition on the boundary ∂Ω:

ρ(~v · ∇)~v− div
[
µD~v + α(~v · ∇)D~v

]
+∇p = ρ~F + γ|~v|β−2~v in Ω,

div~v = 0 in Ω,

~v =~0 on ∂Ω.

(4)

The main aim of our work is to prove the solvability of problem (4) in the weak
formulation. We introduce the concept of a full weak solution, which is defined as a
pair (~v, p) satisfying the governing equations in the distributions sense. Moreover, we
derive energy estimates for solutions and study the behavior of the flow velocity as α→ 0.
Namely, using an energy inequality independent of α, we show the convergence of the
weak solutions of (4) to a weak solution of the damped Navier–Stokes system

ρ(~v · ∇)~v− µ

2
∇2~v +∇p = ρ~F + γ|~v|β−2~v in Ω,

div~v = 0 in Ω,

~v =~0 on ∂Ω,

(5)

when the relaxation viscosity α tends to zero.
To overcome the difficulties in the mathematical handling of the boundary value prob-

lems for the aqueous polymer solutions model, one can use the following two approaches:

(i) The method of introduction of auxiliary viscosity [6] (see also [24,25]), which involves
a regularization of the original equations by extra terms with a small parameter ε and
solving the regularized problem with the consequent passing to the limit as ε→ 0.

(ii) The modified Faedo–Galerkin scheme with a special basis [19,26].

The first approach is suitable only for solving problems with the zero Dirichlet bound-
ary condition, while the second one is more universal and can be applied to slip problems
too. Since in this paper we deal with the no-slip condition on solid walls of the flow domain,
the method of introduction of auxiliary viscosity will be used to construct a solution of
system (4). In order to establish the solvability of the corresponding regularized problem,
we interpret it as an operator equation with a so-called (S)+-operator [27,28] and apply the
acute angle theorem (Proposition 3).

The outline of the paper is as follows. In the next section, we introduce the notation
and function spaces. In Section 3, the concept of full weak solutions of problem (4) is given
(Definition 1). Here, we also formulate our main results (Theorem 1). Section 4 is devoted
to obtaining auxiliary results, which are needed for proving Theorem 1. Finally, in Section 5,
we prove the main results of this work.

2. Preliminaries: Notation and Function Spaces

For vectors~a,~b ∈ Rd and matrices A,B ∈ Rd×d, by~a ·~b and A : B we denote the scalar
products, respectively:

~a ·~b def
=

d

∑
i=1

aibi, A : B def
=

d

∑
i,j=1

AijBij.

The Euclidean norm | · | is defined as follows:

|~a| def
= (~a ·~a)1/2, |A| def

= (A : A)1/2.

Let E1 and E2 be Banach spaces. By L(E1, E2) we denote the space of all bounded
linear mappings from E1 into E2.
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As usual, the strong (weak) convergence in a Banach space is denoted by→ (⇀).
We use the standard notation for the Lebesgue spaces Ls(Ω), s ∈ [1, ∞) and the Sobolev

spaces Hk(Ω)
def
= Wk,2(Ω), k ∈ N (see [29,30] for details).

Let

D(Ω)
def
= {~φ : Ω→ R : ~φ ∈ C∞(Ω), supp~φ ⊂ Ω},

D′(Ω)
def
= the dual space of D(Ω), i. e., the space of distributions in Ω,

H1
0(Ω)

def
= the closure of D(Ω) in the Sobolev space H1(Ω),

H−1(Ω)
def
= the dual space of H1

0(Ω).

Let X(Ω) denote any of the classes introduced above (D(Ω), Ls(Ω), Hk(Ω), etc.). We
shall use the notation X(Ω)n for the Cartesian product of n spaces X(Ω).

The symbol ↪→ denotes a continuous imbedding, while ↪→↪→ denotes a compact
imbedding.

Note that the following imbeddings hold (see, e.g., [29], Chapter VI):

H1(Ω) ↪→↪→ Ls(Ω), ∀ s ∈ S(d), (6)

H2(Ω) ↪→↪→ C(Ω), (7)

H3(Ω) ↪→↪→ H2(Ω), (8)

where the set-valued map S : {2, 3}( R is defined as follows:

S(d) def
=

{
[1,+∞) if d = 2,
[1, 6) if d = 3.

Assuming that

Dsol(Ω)d def
= {~φ ∈ D(Ω)d : div~φ = 0},

we define spaces of solenoidal vector functions:

V0(Ω)
def
= the closure of the set Dsol(Ω)d in the Lebesgue space L2(Ω)d,

Vk(Ω)
def
= the closure of the set Dsol(Ω)d in the Sobolev space Hk(Ω)d, k ∈ N.

Sometimes it will be helpful to use the Helmholtz–Weyl decomposition for vector
functions from L2(Ω)d into a divergence-free part and a gradient part (see [30], Chapter IV):

L2(Ω)d = V0(Ω)⊕∇H1(Ω),

where the symbol ⊕ denotes the orthogonal sum and

∇H1(Ω)
def
= {∇ξ : ξ ∈ H1(Ω)}.

The orthogonal projection PV0(Ω) from the space L2(Ω)d into the subspace V0(Ω) is
known as the Leray projection.

We introduce the scalar product on the space V1(Ω) and the associated norm as follows:

(~v, ~w)V1(Ω)
def
=
∫

Ω
D~v : D~w dx, ‖~v‖V1(Ω)

def
= (~v,~v)1/2

V1(Ω)
.

By using Korn’s inequality

‖~v‖H1(Ω)d ≤ C(Ω)‖D~v‖L2(Ω)d×d , ∀~v ∈ H1
0(Ω)d,
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where C(Ω) is a positive constant (see, e.g., [31], Chapter I, Section 2.2), it is easily shown
that the norm ‖ · ‖V1(Ω) is equivalent to the standard H1(Ω)d-norm.

For any integer m ≥ 1, one can define the operator ∇ to the power of 2m and 2m + 1
as follows:

∇2m def
= ∇2m−1 · ∇, ∇2m+1 def

= ∇(∇2m).

We introduce the scalar product on the space V3(Ω) and the associated norm by
the formulas:

(~v,~u)V3(Ω)
def
=
∫

Ω
∇3~v : ∇3~u dx +

∫
Ω
∇2~v · ∇2~u dx, ‖~v‖V3(Ω)

def
= (~v,~v)1/2

V3(Ω)
.

Lemma 1. Let ∂Ω ∈ C3. Then the norms ‖ · ‖V3(Ω) and ‖ · ‖H3(Ω)d are equivalent; that is, there
exist positive constants C1(Ω) and C2(Ω) such that

C1(Ω)‖~v‖H3(Ω)d ≤ ‖~v‖V3(Ω) ≤ C2(Ω)‖~v‖H3(Ω)d , ∀~v ∈ V3(Ω). (9)

Proof. The right inequality in the chain (9) immediately follows from the definition of the
H3(Ω)d-norm.

Using the well-known results concerning the properties of solutions to the Stokes
equations with the zero Dirichlet boundary condition (see, e.g., [32], Chapter I, Section 2),
it is easily shown that

‖~v‖H3(Ω)d ≤ C̃1(Ω)‖PV0(Ω)(∇2~v)‖H1(Ω)d , ∀~v ∈ V3(Ω), (10)

with a positive constant C̃1(Ω).
Taking into account (10) and the following equality

PV0(Ω)(∇2~φ) = ∇2~φ, ∀~φ ∈ Dsol(Ω)d,

we obtain
‖~φ‖H3(Ω)d ≤ C̃1(Ω)‖∇2~φ‖H1(Ω)d , ∀~φ ∈ Dsol(Ω)d.

Moreover, since the set Dsol(Ω)d is dense in the space V3(Ω), the last equality remains
valid if we replace ~φ by an arbitrary vector function ~v belonging to V3(Ω):

‖~v‖H3(Ω)d ≤ C̃1(Ω)‖∇2~v‖H1(Ω)d , ∀~v ∈ V3(Ω).

This implies the left inequality in (9) with C1(Ω) = 1/C̃1(Ω). Thus, Lemma 1 is proved.

Remark 1. In view of (8), we have V3(Ω) ↪→↪→ V2(Ω).

3. Definition of Full Weak Solutions and Main Results

Using arguments similar to the ones in the proof of Lemma 2 from [33], it can easily
be checked that the following statement is true.

Proposition 1 (Energy equality). If a pair (~v, p) is a classical solution of problem (4), then

µ
∫

Ω
|D~v|2 dx = ρ

∫
Ω
~F ·~v dx + γ

∫
Ω
|~v|β dx.

The question of the existence of classical solutions to problem (4) is delicate, especially
in the case when the forcing term ~F is non-smooth and/or has a large norm. Therefore, it is
reasonable to move from classical solutions to weak solutions, which can be constructed
for model data from a wide class. Proposition 1 prompts how to define a weak solution
without losing the energy estimate.
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Let us introduce the set-valued map B : {2, 3} ×R ( R by the formula

B(d, γ)
def
=


(1,+∞) if d = 2 and γ ≤ 0,
(1, 2) if d = 2 and γ > 0,
(1, 7/2) if d = 3 and γ ≤ 0,
(1, 2) if d = 3 and γ > 0

and assume that 
∂Ω ∈ C3,
~F ∈ H−1(Ω)d,
β ∈ B(d, γ).

(11)

Definition 1 (Full weak solution). We say that a pair (~v, p) ∈ V1(Ω)×D′(Ω) is a full weak
solution of problem (4) if

− ρ
d

∑
i=1

∫
Ω

vi~v ·
∂~ϕ

∂xi
dx + µ

∫
Ω
D~v : D~ϕ dx− α

d

∑
i=1

∫
Ω

viD~v :
∂D~ϕ
∂xi

dx

− 〈p, div~ϕ〉D′(Ω)×D(Ω) = ρ〈~F, ~ϕ〉H−1(Ω)d×H1
0 (Ω)d + γ

∫
Ω
|~v|β−2~v · ~ϕ dx,

(12)

for any vector function ~ϕ ∈ D(Ω)d, and the following inequality is valid:

µ
∫

Ω
|D~v|2 dx ≤ ρ〈~F, ~v〉H−1(Ω)d×H1

0 (Ω)d + γ
∫

Ω
|~v|β dx (the energy estimate). (13)

Remark 2. We use the terminology “full weak solution” to emphasize that the definition of a
weak solution contains a velocity–pressure pair, not just the velocity field (cf. [34], Page 234,
Definition IV.1.1).

Theorem 1 (Main results). Suppose that (11) holds. Then:

(a) problem (4) has at least one full weak solution (~v, p) ∈ V1(Ω)×D′(Ω);
(b) if (~v∗, p∗) is a full weak solution of problem (4) and ~v∗ ∈ H2(Ω)d, then

µ
∫

Ω
|D~v∗|2 dx = ρ〈~F, ~v∗〉H−1(Ω)d×H1

0 (Ω)d + γ
∫

Ω
|~v∗|β dx; (14)

(c) if {(~vαn , pαn)}∞
n=1 is a sequence such that, for any n ∈ N, the pair (~vαn , pαn) is a full weak

solution of problem (4) with α = αn and limn→∞ αn = 0, then one can extract a subsequence
(still denoted by n) such that

lim
n→∞

~vαn = ~v0 weakly in the space V1(Ω)d,

where ~v0 is a weak solution of the damped Navier–Stokes system (5).

The proof of this theorem is given in Section 5.

4. Auxiliary Results
4.1. Continuity of Superposition Operator (Nemytskii Operator) in Lebesgue Spaces

Proposition 2 (Krasnoselskii theorem). Let O be a bounded domain in space Rn. Suppose that
ω : O ×Rk → R is a function satisfying the following conditions:

• the function ω(·,~y) : O → R is measurable for any vector ~y ∈ Rk;
• the function ω(~x, ·) : Rk → R is continuous for almost all ~x ∈ O;



Polymers 2022, 14, 3789 7 of 17

• there exist constants ν, λ0, λ1, . . . , λk and a function ω0 : O → R such that

ν > 0, λi ≥ 1, i = 0, . . . , k, ω0 ∈ Lλ0(O)

|ω(~x,~y)| ≤ ν
k

∑
i=1
|yi|λi/λ0 + ω0(~x)

for any ~y ∈ Rk and almost all ~x ∈ O.

Then the superposition operator Nω : Lλ1(O)× · · · × Lλk (O)→ Lλ0(O) defined as

Nω [u1, . . . , uk](~x)
def
= ω

(
~x, u1(~x), . . . , uk(~x)

)
is a bounded continuous mapping.

The proof of this proposition can be found in [35].

4.2. Solvability of Equations Involving (S)+-Operators

Suppose E is a separable reflexive Banach space and E∗ is the dual space of E.

Definition 2 (Demicontinuous operator). We shall say that an operator A : E→ E∗ is demi-
continuous if, for any sequence {uk}∞

k=1 ⊂ E, the strong convergence uk → u0 in E implies the
weak convergence A (uk) ⇀ A (u0) in E∗.

Definition 3 (Weak-to-strong continuous operator). We shall say that an operator B : E→ E∗

is weak-to-strong continuous if, for any sequence {uk}∞
k=1 ⊂ E, the weak convergence uk ⇀ u0

in E implies the strong convergence B(uk)→ B(u0) in E∗.

Definition 4 (Monotone and strongly monotone operators). An operator M : E→ E∗ is said
to be monotone if

〈M (u)−M (v), u− v〉E∗×E ≥ 0, ∀ u, v ∈ E.

Moreover, if there exists a positive constant σ such that

〈M (u)−M (v), u− v〉E∗×E ≥ σ‖u− v‖2
E, ∀ u, v ∈ E,

then the operator M is said to be strongly monotone.

Now we recall the concept of the (S)+-property [27,28], which is closely related to the
monotonicity and compactness properties and is widely used in the analysis of boundary
value problems for nonlinear partial differential equations.

Definition 5 (Operator of the class (S)+). An operator A : E→ E∗ is called an (S)+-operator
if, for any sequence {uk}∞

k=1 ⊂ E, from the two conditions:

uk ⇀ u0 weakly in E as k→ ∞,

lim sup
k→∞

〈A (uk), uk − u0〉E∗×E ≤ 0

it follows that
uk → u0 strongly in E as k→ ∞.

Lemma 2 (see [36]). If M : E→ E∗ is strongly monotone, then M is an (S)+-operator.

Lemma 3 (see [36]). If A : E→ E∗ is an (S)+-operator, and B : E→ E∗ is a weak-to-strong
continuous operator, then the sum A +B is an (S)+-operator.
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Proposition 3 (Acute angle theorem). Let U be an open bounded set in E and 0 ∈ U. Suppose
A : E→ E∗ is a demicontinuous bounded (S)+-operator such that

〈A (u)− g, u〉E∗×E > 0, ∀u ∈ ∂U,

for some functional g ∈ E∗. Then the equation A (u) = g has at least one solution ug ∈ U.

The proof of Proposition 3 is based on the methods of topological degree theory for
(S)+-operators (for details, see [28], Chapter II).

4.3. Solvability of One-Parameter Family of Regularized Problems

Following the approach proposed by Oskolkov [6], we consider an one-parameter

family of regularized problems with a small parameter εm
def
= 1/m:

For given m ∈ N, find a vector function ~vm ∈ V3(Ω) such that

εm

∫
Ω
∇3~vm : ∇3~w dx + εm

∫
Ω
∇2~vm · ∇2~w dx− ρ

d

∑
i=1

∫
Ω

vmi~vm ·
∂~w
∂xi

dx

+ µ
∫

Ω
D~vm : D~w dx− α

d

∑
i=1

∫
Ω

vmiD~vm :
∂D~w
∂xi

dx

= ρ〈~F, ~w〉H−1(Ω)d×H1
0 (Ω)d + γ

∫
Ω
|~vm|β−2~vm · ~w dx

(15)

for any vector function ~w ∈ V3(Ω).

Lemma 4 (Solvability of the regularized problem). Suppose that (11) holds. Then problem (15)
has at least one solution ~vm ∈ V3(Ω) such that

εm‖~vm‖2
V3(Ω) + µ‖~vm‖2

V1(Ω) ≤ ρ〈~F,~vm〉H−1(Ω)d×H1
0 (Ω)d + γ‖~vm‖β

Lβ(Ω)d . (16)

Proof. We derive the proof of this lemma in eight steps.
Step 1. Let us consider the following operators:

Am : V3(Ω)→ [V3(Ω)]∗,

〈Am(~v), ~w〉[V3(Ω)]∗×V3(Ω)
def
= εm

∫
Ω
∇3~v : ∇3~w dx + εm

∫
Ω
∇2~v · ∇2~w dx,

K1 : V2(Ω)→ [V3(Ω)]∗, 〈K1(~v), ~w〉[V3(Ω)]∗×V3(Ω)
def
= −ρ

d

∑
i=1

∫
Ω

vi~v ·
∂~w
∂xi

dx,

K2 : V2(Ω)→ [V3(Ω)]∗, 〈K2(~v), ~w〉[V3(Ω)]∗×V3(Ω)
def
= µ

∫
Ω
D~v : D~w dx,

K3 : V2(Ω)→ [V3(Ω)]∗, 〈K3(~v), ~w〉[V3(Ω)]∗×V3(Ω)
def
= −α

d

∑
i=1

∫
Ω

viD~v :
∂D~w
∂xi

dx,

K4 : V2(Ω)→ [V3(Ω)]∗, 〈K4(~v), ~w〉[V3(Ω)]∗×V3(Ω)
def
= −γ

∫
Ω
|~v|β−2~v · ~w dx,

K : V2(Ω)→ [V3(Ω)]∗, K
def
=

4

∑
i=1

Ki,

I : V3(Ω)→ V2(Ω), I (~v) def
= ~v

and rewrite problem (15) in the operator form:

Am(~vm) +K ◦I (~vm) = f (17)
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with the functional f ∈ [V3(Ω)]∗ that is defined by the formula

〈 f , ~w〉[V3(Ω)]∗×V3(Ω)
def
= ρ〈~F, ~w〉H−1(Ω)d×H1

0 (Ω)d .

Step 2. Clearly, the operator Am is continuous, and

〈Am(~v)−Am(~u),~v− ~u〉[V3(Ω)]∗×V3(Ω)

= εm

∫
Ω
|∇3(~v− ~u)|2 dx + εm

∫
Ω
|∇2(~v− ~u)|2 dx

= εm‖~v− ~u‖2
V3(Ω), ∀~v,~u ∈ V3(Ω).

Therefore, Am is strongly monotone. Moreover, in view of Lemma 2, this operator belongs
to the class (S)+.

Step 3. We claim that the operator I is weak-to-strong continuous. Indeed, this follows
from the compactness of the imbedding V3(Ω) into V2(Ω) (see Remark 1).

Step 4. Let us prove the operator K is continuous. To begin with, we consider the first
term K1. Let {~un}∞

n=1 be an arbitrary sequence from the space V2(Ω) such that

~un → ~u0 strongly in V2(Ω) as n→ ∞.

We must show that

K1(~un)→ K1(~u0) strongly in [V3(Ω)]∗ as n→ ∞. (18)

In view of (7), we have

~un → ~u0 strongly in C(Ω)d as n→ ∞. (19)

Let ~w be an arbitrary vector function from the space V3(Ω). We observe that

〈K1(~un)−K1(~u0), ~w〉[V3(Ω)]∗×V3(Ω)

= −ρ
d

∑
i=1

∫
Ω

uni~un ·
∂~w
∂xi

dx + ρ
d

∑
i=1

∫
Ω

u0i~u0 ·
∂~w
∂xi

dx

= ρ
d

∑
i=1

∫
Ω
(u0i − uni)~un ·

∂~w
∂xi

dx + ρ
d

∑
i=1

∫
Ω

u0i(~u0 − ~un) ·
∂~w
∂xi

dx.

An application of Hölder’s inequality then implies that

|〈K1(~un)−K1(~u0), ~w〉[V3(Ω)]∗×V3(Ω)|
≤ Cρ‖~un − ~u0‖L4(Ω)d sup

k∈N∪{0}
‖~uk‖L4(Ω)d‖~w‖V3(Ω),

with a constant C independent of n. Hence, we have

‖K1(~un)−K1(~u0)‖[V3(Ω)]∗ ≤ Cρ‖~un − ~u0‖L4(Ω)d sup
k∈N∪{0}

‖~uk‖L4(Ω)d .

Taking into account (19), we pass to the limit n→ ∞ in the last inequality and obtain

lim
n→∞

‖K1(~un)−K1(~u0)‖[V3(Ω)]∗ = 0.

This means that (18) holds.
By similar arguments, one can show the continuity of the operators K2, K3, and K4.

Thus, the sum K = ∑4
i=1 Ki is continuous, while the operator K ◦I is weak-to-strong

continuous.
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Step 5. Applying Lemma 3, we deduce that Am +K ◦I is an (S)+-operator.
Step 6. Note that

〈Am(~v),~v〉[V3(Ω)]∗×V3(Ω) = εm‖~v‖2
V3(Ω), (20)

〈K2 ◦I (~v),~v〉[V3(Ω)]∗×V3(Ω) = µ‖~v‖2
V1(Ω), (21)

〈K4 ◦I (~v),~v〉[V3(Ω)]∗×V3(Ω) = −γ‖~v‖β

Lβ(Ω)d , (22)

for any ~v ∈ V3(Ω). Moreover, integrating by parts, we obtain

〈K1 ◦I (~v),~v〉[V3(Ω)]∗×V3(Ω) =
ρ

2

d

∑
i=1

∫
Ω

vi
∂|~v|2
∂xi

dx

=
ρ

2

∫
∂Ω

(~v ·~n)|~v|2︸ ︷︷ ︸
=0

dx− ρ

2

∫
Ω
(div~v)︸ ︷︷ ︸

=0

|~v|2 dx

=0

(23)

and

〈K3 ◦I (~v),~v〉[V3(Ω)]∗×V3(Ω) =
α

2

d

∑
i=1

∫
Ω

vi
∂|D~v|2

∂xi
dx

=
α

2

∫
∂Ω

(~v ·~n)︸ ︷︷ ︸
=0

|D~v|2 dx− α

2

∫
Ω
(div~v)︸ ︷︷ ︸

=0

|D~v|2 dx

=0,

(24)

where~n = ~n(~x) is the unit outward normal vector to the surface ∂Ω.
From (20)–(24) it follows that

〈Am(~v) +K ◦I (~v)− f ,~v〉[V3(Ω)]∗×V3(Ω)

= εm‖~v‖2
V3(Ω) + µ‖~v‖2

V1(Ω) − γ‖~v‖β

Lβ(Ω)d − ρ〈~F, ~w〉H−1(Ω)d×H1
0 (Ω)d .

(25)

Taking into account the relations:

‖~v‖Lβ(Ω)d ≤ ‖Id‖L(V3(Ω),Lβ(Ω)d)‖~v‖V3(Ω)

and
|〈~F, ~w〉H−1(Ω)d×H1

0 (Ω)d | ≤‖~F‖H−1(Ω)d‖~w‖H1
0 (Ω)d

≤‖~F‖H−1(Ω)d‖Id‖L(V3(Ω),H1
0 (Ω)d)‖~v‖V3(Ω),

we derive from (25) the estimate

〈Am(~v) +K ◦I (~v)− f ,~v〉[V3(Ω)]∗×V3(Ω)

≥ εm‖~v‖2
V3(Ω) + µ‖~v‖2

V1(Ω) − γ1[0,+∞)(γ)‖Id‖
β

L(V3(Ω),Lβ(Ω)d)
‖~v‖β

V3(Ω)

− ρ‖~F‖H−1(Ω)d‖Id‖L(V3(Ω),H1
0 (Ω)d)‖~v‖V3(Ω),

(26)

where 1[0,+∞) is the characteristic (indicator) function of the set [0,+∞) as a subset of R.
Let us introduce the function Φ[Ω, m, γ, β, ρ,~F] : [0,+∞)→ R by the formula

Φ[Ω, m, γ, β, ρ,~F](r) def
=

1
m

r2 − γ1[0,∞)(γ)‖Id‖
β

L(V3(Ω),Lβ(Ω)d)
rβ

− ρ‖~F‖H−1(Ω)d‖Id‖L(V3(Ω),H1
0 (Ω)d)r
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and rewrite (26) as

〈Am(~v) +K ◦I (~v)− f ,~v〉[V3(Ω)]∗×V3(Ω)

≥ µ‖~v‖2
V1(Ω) + Φ[Ω, m, γ, β, ρ,~F](‖~v‖V3(Ω)).

Since β ∈ B(d, γ), we see that

lim
r→+∞

Φ[Ω, m, γ, β, ρ,~F](r) = +∞.

Hence, there exists a positive number R0[Ω, m, γ, β, ρ,~F] such that

〈Am(~v) +K ◦I (~v)− f ,~v〉[V3(Ω)]∗×V3(Ω) > 0,

for any vector function ~v ∈ V3(Ω) satisfying the inequality

‖~v‖V3(Ω) ≥ R0[Ω, m, γ, β, ρ,~F].

Step 7. Let

BR0[Ω,m,γ,β,ρ,~F](
~0) def

=
{
~w ∈ V3(Ω) : ‖~w‖V3(Ω) < R0[Ω, m, γ, β, ρ,~F]

}
.

Applying Proposition 3 to (17), we conclude that, for any m ∈ N, problem (15) has a
solution ~vm in the ball BR0[Ω,m,γ,β,ρ,~F](

~0).
Step 8. Estimate (16) is obtained by substituting ~w = ~vm into (15) and taking into

account relations (20)–(24) with ~v = ~vm. Thus, Lemma 4 is proved.

5. Proof of Main Results

First we establish the existence result (a).
In view of Lemma 4, regularized problem (15) is solvable for any m ∈ N. Consider a

sequence {~vm}∞
m=1 such that the vector function ~vm ∈ V3(Ω) is a solution of (15) satisfying

inequality (16).
Let us show that the sequence {~vm}∞

m=1 is bounded in the space V1(Ω). From (16) it
follows that

µ‖~vm‖2
V1(Ω) ≤ ρ〈~F,~vm〉H−1(Ω)d×H1

0 (Ω)d + γ‖~vm‖β

Lβ(Ω)d , (27)

for any m ∈ N. Moreover, we have

〈~F,~vm〉H−1(Ω)d×H1
0 (Ω)d ≤‖~F‖H−1(Ω)d‖~vm‖H1

0 (Ω)d

≤‖~F‖H−1(Ω)d‖Id‖L(V1(Ω),H1
0 (Ω)d)‖~vm‖V1(Ω).

(28)

Combining (27) and (28), we obtain

µ‖~vm‖2
V1(Ω) ≤ ρ‖~F‖H−1(Ω)d‖Id‖L(V1(Ω),H1

0 (Ω)d)‖~vm‖V1(Ω) + γ‖~vm‖β

Lβ(Ω)d . (29)

If γ ≤ 0, then we obviously have

µ‖~vm‖2
V1(Ω) ≤ ρ‖~F‖H−1(Ω)d‖Id‖L(V1(Ω),H1

0 (Ω)d)‖~vm‖V1(Ω),

whence

‖~vm‖V1(Ω) ≤
ρ‖~F‖H−1(Ω)d‖Id‖L(V1(Ω),H1

0 (Ω)d)

µ
. (30)

Now, consider the case when γ > 0. We rewrite (29) as follows:

µ‖~vm‖2
V1(Ω) − γ‖~vm‖β

Lβ(Ω)d ≤ ρ‖~F‖H−1(Ω)d‖Id‖L(V1(Ω),H1
0 (Ω)d)‖~vm‖V1(Ω). (31)
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Noticing that
‖~vm‖β

Lβ(Ω)d ≤ ‖Id‖
β

L(V1(Ω),Lβ(Ω)d)
‖~vm‖β

V1(Ω)
,

one can derive from (31) the inequality

µ‖~vm‖2
V1(Ω) − γ‖Id‖β

L(V1(Ω),Lβ(Ω)d)
‖~vm‖β

V1(Ω)

≤ ρ‖~F‖H−1(Ω)d‖Id‖L(V1(Ω),H1
0 (Ω)d)‖~vm‖V1(Ω),

whence

µ‖~vm‖V1(Ω) − γ‖Id‖β

L(V1(Ω),Lβ(Ω)d)
‖~vm‖β−1

V1(Ω)
≤ ρ‖~F‖H−1(Ω)d‖Id‖L(V1(Ω),H1

0 (Ω)d). (32)

Let us introduce the function Ψ[Ω, µ, γ, β] : [0,+∞)→ R by the formula

Ψ[Ω, µ, γ, β](r) def
= µr− γ‖Id‖β

L(V1(Ω),Lβ(Ω)d)
rβ−1

and rewrite (32) in the form

Ψ[Ω, µ, γ, β](‖~vm‖V1(Ω)) ≤ ρ‖~F‖H−1(Ω)d‖Id‖L(V1(Ω),H1
0 (Ω)d). (33)

Since β ∈ B(d, γ), we see that β ∈ (0, 1). Therefore,

lim
r→+∞

Ψ[Ω, µ, γ, β](r) = +∞,

and there exists a positive number R1[Ω, µ, γ, β, ρ,~F] such that

Ψ[Ω, µ, γ, β](r) > ρ‖~F‖H−1(Ω)d‖Id‖L(V1(Ω),H1
0 (Ω)d),

for any r satisfying the following inequality

r ≥ R1[Ω, µ, γ, β, ρ,~F].

Then, in view of (33), we arrive at the estimate

‖~vm‖V1(Ω) ≤ R1[Ω, µ, γ, β, ρ,~F]. (34)

Taking into account inequalities (30) and (34), we deduce that, in both cases: γ ≤ 0
and γ > 0, the sequence {~vm}∞

m=1 is bounded in the space V1(Ω). Therefore, without loss
of generality it can be assumed that

~vm ⇀~v weakly in V1(Ω) as m→ ∞, (35)

~vm → ~v strongly in Ls(Ω)d, s ∈ S(d), as m→ ∞, (36)

for some vector function ~v from the space V1(Ω).
Moreover, using (6), (35), and the inclusion β ∈ B(d, γ), we obtain

~vm → ~v strongly in L2β−1(Ω)d as m→ ∞. (37)

Let us show that

|~vm|β−2~vm → |~v|β−2~v strongly in L2(Ω)d as m→ ∞. (38)

Consider the real-valued functions hi, i = 1, . . . , d, defined as follows:

hi : Rd → R, hi(~y)
def
= |~y|β−2yi.
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Using the following inequality∣∣∣∣∣ d

∑
j=1

aj

∣∣∣∣∣
q

≤ 2(d−1)q
d

∑
j=1
|aj|q, ∀ a1, . . . , ad ∈ R, q > 0, d = 2, 3,

we derive

|hi(~y)| =
( d

∑
j=1

y2
j

)(β−2)/2

|yi|

≤
( d

∑
j=1

y2
j

)(β−1)/2

≤2(d−1)(β−1)/2
d

∑
j=1
|yj|β−1, ∀ i = 1, . . . , d.

(39)

Moreover, by applying Young’s inequality, we obtain

|yi|β−1 ≤ 2β− 2
2β− 1

|yi|(2β−1)/2 +
1

2β− 1
, ∀ i = 1, . . . , d. (40)

Combining (39) and (40), we arrive at the estimate

|hi(~y)| ≤ ζ1(d, β)
d

∑
j=1
|yj|(2β−1)/2 + ζ2(d, β), ∀ i = 1, . . . , d, (41)

with

ζ1(d, β)
def
=

2(d−1)(β−1)/2(2β− 2)
2β− 1

,

ζ2(d, β)
def
=

2(d−1)(β−1)/2d
2β− 1

.

Let us consider the operator H given by

H : L2β−1(Ω)d → L2(Ω)d, H (~v) def
= (h1(~v), . . . , hd(~v)).

Using Proposition 2 and estimate (41), we deduce that the operator H is well defined and
continuous. Therefore, from (37) it follows that

H (~vm)→H (~v) strongly in L2(Ω)d as m→ ∞,

and hence, (38) holds.
Let ~ψ be an arbitrary vector function from the set Dsol(Ω)d. Since ~vm is a solution

to (15), we have

εm

∫
Ω
∇3~vm : ∇3~ψ dx + εm

∫
Ω
∇2~vm · ∇2~ψ dx− ρ

d

∑
i=1

∫
Ω

vmi~vm ·
∂~ψ

∂xi
dx

+ µ
∫

Ω
D~vm : D~ψ dx− α

d

∑
i=1

∫
Ω

vmiD~vm :
∂D~ψ
∂xi

dx

= ρ〈~F, ~ψ〉H−1(Ω)d×H1
0 (Ω)d + γ

∫
Ω
|~vm|β−2~vm · ~ψ dx.

After integration by parts in the first and second terms in the left-hand side of the last
equality, we obtain
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− εm

∫
Ω
~vm · ∇6~ψ dx + εm

∫
Ω
~vm · ∇4~ψ dx− ρ

d

∑
i=1

∫
Ω

vmi~vm ·
∂~ψ

∂xi
dx

+ µ
∫

Ω
D~vm : D~ψ dx− α

d

∑
i=1

∫
Ω

vmiD~vm :
∂D~ψ
∂xi

dx

= ρ〈~F, ~ψ〉H−1(Ω)d×H1
0 (Ω)d + γ

∫
Ω
|~vm|β−2~vm · ~ψ dx.

(42)

Taking into account (35)–(38), we pass to the limit m→ ∞ in equality (42); this gives

− ρ
d

∑
i=1

∫
Ω

vi~v ·
∂~ψ

∂xi
dx + µ

∫
Ω
D~v : D~ψ dx− α

d

∑
i=1

∫
Ω

viD~v :
∂D~ψ
∂xi

dx

= ρ〈~F, ~ψ〉H−1(Ω)d×H1
0 (Ω)d + γ

∫
Ω
|~v|β−2~v · ~ψ dx.

(43)

Using the De Rham theorem (see, e. g., [32], Chapter I, Section 1.4, Proposition 1.1)
and equality (43), we deduce that there exists p ∈ D′(Ω) such that the pair (~v, p) satisfies
the first equality of system (4) in the distributions sense. This implies equality (12).

Further, we substitute ~vm for ~w in equality (15). Since the third and fifth terms in the
left-side of the resulting equality are equal to zero, we see that

µ
∫

Ω
|D~vm|2 dx ≤ ρ〈~F,~vm〉H−1(Ω)d×H1

0 (Ω)d + γ
∫

Ω
|~vm|β dx. (44)

From the imbedding L2β−1(Ω) ↪→ Lβ(Ω) and (37) it follows that

~vm → ~v strongly in Lβ(Ω)d as m→ ∞,

whence ∫
Ω
|~v|β dx = lim

m→∞

∫
Ω
|~vm|β dx. (45)

Moreover, taking into account (35), we obtain∫
Ω
|D~v|2 dx ≤ lim inf

m→∞

∫
Ω
|D~vm|2 dx, (46)

〈~F,~v〉H−1(Ω)d×H1
0 (Ω)d = lim

m→∞
〈~F,~vm〉H−1(Ω)d×H1

0 (Ω)d . (47)

Using (45)–(47), we pass to the inferior limit in both sides of inequality (44) and arrive
at estimate (13). Thus, we have established that the pair (~v, p) is a full weak solution of
problem (4).

Now, we prove the statement (b). Substituting ~v∗ for ~v and ~ψ for ~ϕ in (12), we get

− ρ
d

∑
i=1

∫
Ω

v∗i~v∗ ·
∂~ψ

∂xi
dx + µ

∫
Ω
D~v∗ : D~ψ dx− α

d

∑
i=1

∫
Ω

v∗iD~v∗ :
∂D~ψ
∂xi

dx

= ρ〈~F, ~ψ〉H−1(Ω)d×H1
0 (Ω)d + γ

∫
Ω
|~v∗|β−2~v∗ · ~ψ dx, ∀ ~ψ ∈ Dsol(Ω)d.

(48)

Since the set Dsol(Ω)d is dense in the space V2(Ω) and ~v∗ ∈ H2(Ω)d, equality (48)
remains valid if we replace ~ψ by an arbitrary vector function ~η from the space V2(Ω):

− ρ
d

∑
i=1

∫
Ω

v∗i~v∗ ·
∂~η

∂xi
dx + µ

∫
Ω
D~v∗ : D~η dx− α

d

∑
i=1

∫
Ω

v∗iD~v∗ :
∂D~η
∂xi

dx

= ρ〈~F, ~η〉H−1(Ω)d×H1
0 (Ω)d + γ

∫
Ω
|~v∗|β−2~v∗ ·~η dx.
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Setting ~η = ~v∗ in the last equality and applying integration by parts, we arrive at the
energy equality (14).

To finish the proof of Theorem 1, it remains only to show that the statement (c) is true.
Clearly, we have

− ρ
d

∑
i=1

∫
Ω

vαni~vαn ·
∂~ψ

∂xi
dx + µ

∫
Ω
D~vαn : D~ψ dx− αn

d

∑
i=1

∫
Ω

vαniD~vαn :
∂D~ψ
∂xi

dx

= ρ〈~F, ~ψ〉H−1(Ω)d×H1
0 (Ω)d + γ

∫
Ω
|~vαn |β−2~vαn · ~ψ dx, ∀ ~ψ ∈ Dsol(Ω)d,

(49)

µ
∫

Ω
|D~vαn |2 dx ≤ ρ〈~F, ~vαn〉H−1(Ω)d×H1

0 (Ω)d + γ
∫

Ω
|~vαn |β dx. (50)

Arguing as in the proof of the statement (a), we can derive from (50) the estimate

‖~vαn‖V1(Ω) ≤ C

with a constant C independent of αn. Moreover, without loss of generality it can be
assumed that

~vαn ⇀~v0 weakly in V1(Ω) as n→ ∞, (51)

~vαn → ~v0 strongly in Ls(Ω)d, s ∈ S(d), as n→ ∞, (52)

|~vαn |β−2~vαn → |~v0|β−2~v0 strongly in L2(Ω)d as n→ ∞, (53)

for some vector function ~v0 ∈ V1(Ω).
Using (51)–(53) and the equality limn→∞ αn = 0, we pass to the limit n→ ∞ in equal-

ity (49) and obtain:

− ρ
d

∑
i=1

∫
Ω

v0i~v0 ·
∂~ψ

∂xi
dx + µ

∫
Ω
D~v0 : D~ψ dx

= ρ〈~F, ~ψ〉H−1(Ω)d×H1
0 (Ω)d + γ

∫
Ω
|~v0|β−2~v0 · ~ψ dx, ∀ ~ψ ∈ Dsol(Ω)d.

This means that the vector function ~v0 is a weak solution of the steady Navier–Stokes
equations with the damping term γ|~v|β−2~v. Thus, Theorem 1 is completely proved.

6. Conclusions

In this paper, we studied the steady-state flow model for low-concentrated aqueous
polymer solutions with a damping term in a bounded domain Ω ⊂ Rd, d = 2, 3, subject
to the no-slip condition on the boundary ∂Ω. Sufficient conditions for the existence of
a full weak solution were established. Moreover, we derived the corresponding energy
inequality and showed that solutions of the original problem converge to a solution of the
steady-state damped Navier–Stokes system as the relaxation viscosity tends to zero. To
obtain these results, we used the method of introduction of auxiliary viscosity, the acute
angle theorem for (S)+-operators, and the Krasnoselskii theorem on the continuity of the
superposition operator in Lebesgue spaces. Note that all results were established for the
essentially nonlinear system of partial differential equations without any simplifications
of the flow model. The proposed approach is quite universal and provides ways for
new investigations of such type models. The plan for future investigations includes the
analysis of the well-posedness of nonlinear equations that describe time-dependent and/or
temperature-dependent flows of aqueous polymer solutions with damping.
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