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Abstract: Viscoelastic material can significantly reduce the vibration energy and radiated noise
of a structure, so it is widely used in lightweight sandwich structures. The accurate and efficient
determination of the frequency-dependent complex modulus of viscoelastic material is the basis for
the correct analysis of the vibro-acoustic behavior of sandwich structures. Based on the behavior of a
sandwich beam whose core is a viscoelastic layer, a combined theoretical and experimental study is
proposed to characterize the properties of the viscoelastic layer constituting the core. In this method,
the viscoelastic layer is bonded between two constraining layers. Then, a genetic algorithm is used
to fit the analytical solution of the frequency¬ response function of the free–free constrained beam
to the measured result, and then the frequency-dependent complex modulus is estimated for the
viscoelastic layer. Moreover, by varying the length of the beams, it is possible to characterize the
frequency-dependent complex modulus of the viscoelastic material over a wide frequency range.
Finally, the characterized frequency-dependent complex modulus is imported into a finite element
model to compute the complex natural frequencies of a sandwich beam, and a comparison of the
simulated and measured results displays that the errors in the real parts are within 2.33% and the
errors in the imaginary parts are within 3.31%. It is confirmed that the proposed method is feasible,
accurate, and reliable. This provides essential technical support for improving the acoustic vibration
characteristics of sandwich panels by introducing viscoelastic materials.

Keywords: viscoelastic material; frequency-dependent; complex shear modulus; frequency response
function

1. Introduction

Viscoelastic materials can effectively suppress vibration and noise in engineering
structures [1,2]. However, the elastic modulus of a viscoelastic material is too small to be
used as a component alone, and it is usually embedded between elastic layers to form a
viscoelastic sandwich structure, which may be a sandwich beam, plate, or shell. These
structures, having attractive properties in terms of strength, stiffness, lightness, and energy
dissipation, are widely used in engineering fields, such as aerospace, automobile, marine
and biomedical. It is of great importance to develop a method for the easy and reliable
identification of the frequency-dependent shear modulus of viscoelastic materials, and this
is the aim of the present work. Such a method is essential for an accurate study of the
vibro-acoustic properties of a sandwich panel [3].

Nowadays, the most popular technique used to characterize the modulus of vis-
coelastic materials is dynamic mechanical analysis (DMA) [4,5], which allows for the
measurement of a modulus depending on the frequency and temperature. Nevertheless,
the experimental procedure of this technique exhibits different limits (e.g., high-frequency
characterization is considerably difficult [6]) and requires expensive test equipment. Other
methods, such as the creep or relaxation tests, can be used to determine the parameters of
a linear viscoelastic model, but they are usually time-consuming and require strict tem-
perature and loading control [7]. Four methods, i.e., half-bandwidth, reverberation time,
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power injection, and Nyquist plot, are used to measure the loss factor of a mechanical
system [8]. The experimental characterization of the dynamic properties of composites is
still far from standardized. Moreover, the results seem to depend on the setup because
traditional methods introduce non-negligible sources of damping, such as air damping,
friction at the clamps, and the mass effects of the contact excitation and measurement
device [9,10]. The improvement of existing techniques or new approaches is, therefore,
needed to address these drawbacks.

Over the decades, several methods have been proposed to estimate the parameters
(such as Young’s modulus, shear modulus, and loss factor) of a viscoelastic material.
Pritz [11] showed that the dynamic modulus obeys the same type of power law versus
frequency as the loss modulus in a finite frequency range, and defined the interdependence
between the dynamic modulus and loss modulus through the Kramers–Kronig dispersion
relations. The validity of this method was limited within a finite bandwidth, and under
these conditions, most materials exhibit a nearly constant loss factor. Bayesian approaches
were proposed by Mahata et al. [12] for estimating the complex modulus of a viscoelas-
tic material through wave propagation experiments. Bonfiglio et al. [13] determined the
values of the storage and loss moduli of viscoelastic materials in a wide frequency range
(100 Hz~1500 Hz) by measuring the time-domain accelerations and computing wave propa-
gations with the transfer matrix approach. Nevertheless, this time-domain method requires
a minimization procedure to determine the frequency-dependent complex modulus. To
extend the work presented in Ref. [13], Bonfiglio et al. [14] presented a simplified transfer
matrix approach for determining the complex modulus as a function of the frequency for
homogeneous and isotropic viscoelastic materials. The setup is simplified since a top plate
is not required during the test, and the complex modulus is determined directly because an
analytical model is used for the measured velocity transfer function. In addition, the method
allows for a narrowband measurement of the complex modulus in an extended frequency
range. Adessina et al. [15] presented a finite element model based on first-order shear
theory to compute the damping characteristics of sandwich structures with multi-layered
frequency-dependent viscoelastic cores. Hamdaoui et al. [16] used an adjoint method to
identify frequency-dependent viscoelastic damped structures. Roozen et al. [17] presented
a complex wavenumber-based fitting procedure to estimate the frequency-dependent mate-
rial properties of thin plates using Hankel’s functions and the image source method, and
this procedure outperforms the classical approach of the spatial Fourier transform, in terms
of wavenumber resolution, by a factor of 50. Wassereau et al. [18] characterized composite
beams using an inverse vibratory method based on the local verification of the equation of
motion applied to the Timoshenko beam. The presented method considers the composite
material as a homogeneous one, and then the equivalent viscoelastic parameters can be
obtained. Ablitzer et al. [19] developed an adaptation of the force analysis technique to
identify the stiffness and damping properties of plates using the local equation of motion.
The proposed approach is independent of the boundary conditions and may be applied at
any frequency, but not necessarily a resonance. It is also valid in the mid-frequency domain,
where the modal overlap is high. Pierro et al. [20] characterized the complex modulus of a
viscoelastic material by fitting the measured response to an accurate analytical model based
on beam dynamics, which takes into account multiple relaxation times of the material.

Another group of feasible methods determine the parameters of a viscoelastic material
by analyzing the vibration properties of construction composed of the viscoelastic material
bonded between two constraining layers. Pioneering work in the analysis of the free
vibration of a sandwich beam with a viscoelastic layer was conducted by Ross et al. [21],
who proposed a method to determine the composite loss factor. Since then, many authors
have investigated the forced vibration response of sandwich beams. Kerwin [22] firstly used
the complex stiffness method to model and analyze the damping of a sandwich panel with
a constrained damping layer. Mead and Markus [23] derived the sixth-order differential
governing equation of a three-layer sandwich beam and studied the forced vibration of the
beam using the method proposed by Ditaranto [24]. They found that boundary conditions
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are commonly recognized as a sensitive factor, especially in the experimental evaluation
of damping properties. A general equation of the motion of a damped sandwich beam
with multiple viscoelastic layers was derived by Bae et al. [25] based on the theory of Mead
and Markus.

In this paper, we present a rigorous easy-to-use approach to determine the frequency-
dependent shear modulus of the viscoelastic layer constrained in a beam. A theoretical
model is derived to compute the forced vibration response of a free–free constrained beam
under excitation at a point. The reasons for selecting this specific system are that it is
easy to set up such a freely suspended condition for conducting experiments, and the
concentrated force is the most fundamental load. Based on the theoretical and experimental
results of the frequency response functions (FRFs) for the constrained beam, a genetic
algorithm is used to determine the frequency-dependent shear modulus of the viscoelastic
material. This method can characterize the parameters over a wide frequency range by
varying the length of the beam. To verify the accuracy of the frequency-dependent complex
modulus determined by the proposed method, a sandwich beam consisting of the upper
and lower face sheets made of aluminum (Al), a core layer of polymethacrylimide (PMI)
foam and a middle layer of rubber were prepared manually for natural frequency testing.
By bringing the determined modulus into the finite element model, the natural frequencies
of the sandwich beam were also calculated and compared with the measured values, and
the result of the comparison was satisfactory.

2. Theoretical Model of Forced Vibration of a Free–Free Constrained Beam

A constrained beam composed of a viscoelastic layer bonded between two constraining
layers is shown in Figure 1. The thicknesses of the upper and lower constraining layers
and the viscoelastic layer are h1, h3 and h2, respectively; their densities are ρ1, ρ3 and
ρ2, respectively; the Young’s modulus of the upper and lower constraining layers are E1
and E3, respectively; the frequency-dependent complex shear modulus of the viscoelastic
material is G(ω) = G0(ω)[1 + iη(ω)], where G0(ω) and η(ω) are the real part and loss
factor, respectively; L is the length and W is the width of the beam, and L/W ≥ 10.
The differential equation for the forced vibratory motion of a constrained beam with a
viscoelastic core is given by [23]

∂6w
∂x6 − g(1 + Y)

∂4w
∂x4 +

mω2

Dt
(

∂2w
∂x2 − gw) =

1
Dt

(
∂2q
∂x2 − gq

)
; (1)

where the shear parameter g is

g =
G(ω)

h2

(
1

E1h1
+

1
E3h3

)
; (2)

the geometric parameter Y is

Y =
(2h2 + h1 + h3)

2

4Dt

(
E1h1E3h3

E1h1 + E3h3

)
; (3)

and the bending stiffness of the face sheets is

Dt =
E1h3

1
12

+
E3h3

3
12

. (4)

The transverse displacement of the constrained beam is written in the term of a modal
shape function as:

w =
∞

∑
m=1

AmΦm(x) (5)
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where Am is the displacement amplitude of the m-th order mode. The eigenfunction
describing the displacement of a free–free beam is assumed as [26]
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Φm(x) = cos
mπ

L
x + cosh

mπ

L
x− cos mπ − cosh mπ

sin mπ − sinhmπ
(sin

mπ

L
x + sinh

mπ

L
x) (6)

Applying a point force excitation q at x = x f :

q = F0δ(x− x f ) (7)

Inserting Equations (6) and (7) into Equation (1) yields

∞
∑

m=1
AmΦ(6)

m (x)− g(1 + Y)
∞
∑

m=1
AmΦ(4)

m (x)− mω2

Dt

[
∞
∑

m=1
AmΦ(2)

m (x)− g
∞
∑

m=1
AmΦm(x)

]
= 1

Dt

[
−gFδ(x− x f )

] (8)

Employing the orthogonal property of eigenfunctions yields the following relation:

1
L

∫ L

0
Φm(x)Φn(x)dx = δmn (9)

where the delta function δ has the following property [20]:∫ L

0
F0δ(x− x f )Φn(x)dx = F0δ(x f ) (10)

Both sides of Equation (9) are then multiplied by Φn(x) and integrated in [0, L], yielding

AmL
{(mπ

L

)6
−g(1 + Y)

(mπ

L

)4
− mω2

Dt

[(mπ

L

)2
− g
]}

= − g
Dt

F0Φm(x f ) (11)

The displacement amplitude of the m-th order mode Am is obtained:

Am =
− g

LDt
F0Φm(x f )(mπ

L
)6−g(1 + Y)

(mπ
L
)4 − mω2

Dt

[(mπ
L
)2 − g

] (12)

The frequency response function (FRF) can be defined as

H(x, x f , ω) = a(x)
F0

= ω2 g
LDt

∞
∑

m=1

Φm(x f )

(mπ
L )

6−g(1+Y)(mπ
L )

4−mω2
Dt

[
(mπ

L )
2−g

]Φm(x)
(13)

where the acceleration is a(x) = (jω)2w(x).
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3. Sample Preparation and Experimental Setup

Two constrained beams with a viscoelastic core were prepared manually, and both
possessed the same material parameters as shown in Table 1, where B is the width of the
beams. The beam layers were bonded together by an adhesive. The surfaces of the rubber
layer had been roughened before all the surfaces were cleaned and dried for easier bonding.
After bonding, the constrained beams were placed between stiff plates and pressed evenly
with 12 clamps along the length direction for 24 h, as shown in Figure 2a,b. The prepared
constrained beams are shown in Figure 2c.

Table 1. Parameters of the viscoelastic layer and the constraining layers.

B (mm) h1 (mm) h2 (mm) h3 (mm) ρ1&ρ3
(kg/m3) ρ2 (kg/m3) E1&E3 (Pa)

40 2 2 2 2700 1100 7 × 1010
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Figure 2. (a) Specimen clamping device; (b) detail enlargement; (c) the cross-section of prepared beam.

The setup used to measure the FRF of the constrained beam with a viscoelastic layer
is shown in Figure 3a, and the two beams with different lengths are shown in Figure 3b.
The suspension of the tested beam was made through a thin nylon wire in order to be as
close as possible to the free–free boundary conditions. Impact excitation was applied at
the beam section “xf = 0.4 × L”, and the acceleration was acquired at “x = 0.6 × L”. The
model of the hammer’s tip was 086C01 (PCB), and the sensitivity was 50 mV/lbf. The
model of the acceleration was 352C33 (PCB), and the sensitivity was 10.29 mV/m/s2. The
frequency response between the hammer and the accelerometer was tested directly by the
FFT module within PULSE, which was provided by B&K. The average mode of the FFT
module was set to ‘Peak’. Excitation perpendicular to the surface of the constrained beam
was applied with a force hammer, and the excitation point was along the centerline of the
constrained beam to exclude the twisting motion. A PULSE signal acquisition system was
used to simultaneously acquire and process two input signals: an acceleration signal and a
force signal.
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4. Determination of Viscoelastic Parameters

The theoretical FRF “Hth(x, x f , ω)” defined in Equation (13) has two unknown pa-
rameters in the expression of viscoelastic modulus G(ω) = G0(ω)[1 + iη(ω)]. They are
determined by fitting the theoretical FRF to the experimental FRF “Hexp(x, x f , ω)”. The
convergence rate of this mixed theoretical¬–experimental identification process and the
resulting residual errors depend directly on the effectiveness of the optimization step, so
the minimization algorithm has to be selected carefully.

In solving combinatorial optimization problems, especially multi-objective parametric
optimization problems, the genetic algorithm (GA) is usually able to obtain fast opti-
mization results compared to some conventional optimization algorithms. To ensure the
robustness, validity, and accuracy of the inverse technique, in this section we use the genetic
algorithm “GA” command in the optimization algorithm toolbox of MATLAB to find the
minimum value of the objective function for determining the complex modulus of the
viscoelastic layer. The objective function is defined as:

y =
n
∑

i=1
[(Re[Hexp(x, x f , ω)]− Re[Hth(x, x f , ω)])2 + (Im[Hexp(x, x f , ω)]− Im[Hth(x, x f , ω)])2]

n = 1, 2, 3, . . . , n
(14)

where Re[Hexp(x, x f , ω)] and Re[Hth(x, x f , ω)] are the real parts of the theoretical and
experimental FRF, respectively. Im[Hexp(x, x f , ω)] and Im[Hth(x, x f , ω)] are the imaginary
parts of the theoretical FRF and experimental FRF, respectively. The number of variables is
two, and [G0(ω), η(ω)] is the target variable vector. The bounds of the variables are{

G0(ω) ∈ [1.0× 106 1.0× 109] mm
η(ω) ∈ [1 50] %

(15)

It is worth noting that the target variable varies with the frequency; however, if the
optimization is calculated directly based on the experimental data in the whole frequency
range, the optimization result obtained is a constant. The processing method in this paper
is to divide the tested FRFs into five groups of data and obtain an estimate based on each
group of data, and the corresponding frequency is the central frequency of each group.

Figure 4a,b show the estimated results of G0(ω) and η(ω), respectively, for the vis-
coelastic material in the constrained beam with a length of “L = 1.5 m”. The scattered
points are the estimation directly from the grouped samples, and the red solid line is the
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fitted curve. From 10 Hz to 250 Hz, the scattered points are compactly distributed around
the fitted curve, while from 250 Hz to 500 Hz, the dispersion of the scattered points in-
creases. Interestingly, all the points are still distributed around the fitted curve. The results
show that the proposed approach proves to be very suitable for the characterization of
viscoelastic material.
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In Figure 5, we compare the absolute values of the experimental FRF and theoretical
FRF. At 27.5 Hz, 55 Hz, 67.5 Hz, 150 Hz, 207.5 Hz, and 470 Hz, the theoretical FRF
accords with the experimental result very well. The presence of individual non-coincident
peaks or valleys may be the result of unavoidable errors in the experiment. The most
important reason is the deviation in the position of the excitation point or the position
of the acceleration test point. Additionally, some other possible error sources include the
influence of the mass added by the accelerometer, a low signal-to-noise ratio owing to a low
excitation force impulse, or possible nonlinear behavior brought by a high excitation force
impulse, and non-ideal boundary conditions if the accelerometer was close to a node point.
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Similar reasonings can be made for the results obtained from the beam with a smaller
length (i.e., L = 1.0 m). Figure 6a,b show the optimization results of G0(ω) and η(ω) for
the viscoelastic material in the constrained beam, respectively. The scattered points are
compactly distributed around the fitted curve in the frequency range of 200 Hz~500 Hz,
while the dispersion of the scattered points is relatively large at low frequencies (about
10 Hz~200 Hz), especially the estimated G0(ω) of the viscoelastic material shown in
Figure 6a, which may be caused by the low density of modes at lower frequencies.
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Figure 6. Real part of the complex shear modulus of viscoelastic core G0(ω); (a) the loss factor of
viscoelastic core η(ω); (b) the constrained beam with L = 1.0 m.

In Figure 7, a comparison is made between the absolute values of theoretical FRF
and experimental FRF of the constrained beam with the length “L = 1.0 m”. At 77.5 Hz,
92.5 Hz, 200 Hz, 275 Hz, and 485 Hz, the theoretical FRF agrees with the experimental
result very well. It can be observed that, as expected, the same resonance moves toward
higher frequencies with the decrease in beam length.
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From Figures 5 and 7, in higher frequencies, the agreement between the theoretical
and experimental FRFs is not very good. We believe that this may be due to the fact that as
the frequency increases, the effect of the added mass of the accelerometer becomes more
pronounced, and the accuracy of the accelerometer in collecting high-frequency signals
decreases. In subsequent studies, other forms of sensors, such as optical sensing, will be
considered as an alternative to conventional accelerometers to improve the accuracy of
testing in the high-frequency range.

The real part of the shear modulus G0(ω) and the loss factor η(ω) of the viscoelastic
core are shown in Figure 8, for the beams with different lengths. The results suggest that
it is reliable and robust to obtain the complex modulus of a viscoelastic material with the
proposed technique.
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Figure 8. Comparisons of G0(ω) and η(ω) of the viscoelastic material, obtained from the beams with
different lengths.

According to the results shown in Figures 4–7, the parameters determined based on
the longer beam (L = 1.5 m) are relatively accurate in the low-frequency range (from 20 Hz
to 200 Hz), while those determined based on the shorter beam (L = 1.0 m) are relatively
accurate in the high-frequency range (from 200 Hz to 500 Hz). Finally, it is determined
that the frequency-dependent shear modulus and the loss factor of the viscoelastic material
studied in this paper can be expressed as:

G0(ω) =

{
1.082× 107 × f 0.276 f or f< 200

8.907× 106 × f 0.307 f or f ≥ 200 (16)

η(ω) =

{
0.3303× exp(−0.0181× f ) + 0.0459× exp(6 .571× 10−4 × f

)
f or f< 200

0.2976× exp(−9 .638× 103 × f ) + 0.0111× exp(2 .887× 103 × f
)

f or f ≥ 200
(17)
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5. Verification

In this section, the natural frequencies of a sandwich beam with a viscoelastic layer
were calculated using the FEM based on COMSOL multiphysics, as shown in Figure 9.
To ensure the quality of the meshing of thin face sheets while reducing the number of
meshes, triangular unstructured meshes with a minimum size of 2.5 mm were created on
the upper boundary of the upper face sheet and scanned to the lower boundary of the lower
face sheet. The total number of hexahedral elements of this FEM model was 6800. The
material types of all the layers were assumed to be linear elastic materials. The parameters
of the viscoelastic layer were set to be the complex shear modulus determined above. The
sandwich beam consisted of an upper and a lower face sheet made of aluminum (Al), the
core layer was made of polymethacrylimide (PMI) foam, in which a middle layer of rubber
was inserted, and the parameters of each layer are listed in Table 2. The length-to-width
ratio of the beam was at least 10:1 so that the torsional effects were able to be neglected,
and the length and width of the beam were set to be 1450 mm and 100 mm, respectively.
A test sample of this sandwich beam was also prepared in the same way, as described in
Section 3, and the cross-section of the sandwich beam is shown in Figure 10.
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Figure 9. The FEM model of the beam for calculating natural frequencies.

Table 2. Parameters of the sandwich beam with viscoelastic layer.

Parameters Al PMI Rubber

Thickness (mm) 1.5 15 2
Density (kg/m3) 2700 75 1100
Young’s modulus (Pa) 70 × 109 / /
Shear modulus (Pa) / 42 × 106 G0 (ω)
Loss factor 0.01 0.02 η(ω)
Poisson’s ratio 0.346 0.42 0.49
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Figure 10. The cross-section of the beam used for the natural frequency testing.

The setup used to measure the natural frequencies of the sandwich beam is shown in
Figure 11. Unlike the test for FRF, an accelerometer was fixed to the lower end of the beam
to prevent the modal nodes. Excitation perpendicular to the surface of the sandwich beam
was applied with a force hammer, and the excitation point was along the centerline of the
sandwich beam to exclude a twisting motion. Attention was paid to the force and striking



Polymers 2022, 14, 3751 11 of 13

position of the hammer to avoid losing the relevant modes. A PULSE signal acquisition
system was used to acquire the acceleration signal.
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Figure 11. The beam setup during the test for the determination of the natural frequencies.

For a free–free sandwich beam, the natural frequencies obtained using the FEM, and
through experimental tests, are shown in Table 3, and it can be concluded that these
two methods give very consistent results, with relative errors of less than 2.33 % for the
real parts and less than 3.31% for the imaginary parts for the first nine complex natural
frequencies. Hence, it is verified that the proposed method is feasible, accurate, and reliable
in estimating the dynamic complex modulus of viscoelastic material.

Table 3. Predicted complex natural frequencies for laminated beams, L = 1450 mm, W = 100 mm.

Frequency FEM (Hz) Test (Hz) Error of Real
Part (%)

Error of Imaginary
Part (%)

f 1 95.6 + 3.56i 94.7 + 3.50i 0.95 1.71
f 2 195.0 + 12.16i 193.3 + 11.91i 0.88 2.09
f 3 295.3 + 20.4i 295.0 + 20.2i 0.10 0.99
f 4 390.0 + 29.78i 392.0 + 30.3i −0.51 −1.72
f 5 485.0 + 38.23i 488.0 + 39.54i −0.61 −3.31
f 6 579.4 + 49.05i 593.2 + 50.31i −2.33 −2.50
f 7 673.6 + 56.30i 680.1 + 58.03i −0.96 −2.98
f 8 767.8 + 62.37i 776.3 + 63.50i −1.09 −1.78
f 9 863.5 + 70.96i 880.2 + 73.25i −1.90 −3.12

6. Conclusions

A combination of analytical and experimental methods was proposed for determining
the complex parameters of a viscoelastic layer via sandwich beams in this paper. Based
on the genetic algorithm, a frequency-dependent complex shear modulus of the viscoelas-
tic core layer was characterized by fitting the analytical solutions of the forced vibration
responses of the free–free viscoelastic sandwich beams with different lengths to the ex-
perimental results. The instrumentation utilized in our experiments was inexpensive and
easy to use, consisting of an impact hammer, a suspended beam, and an accelerometer
connected to a data acquisition module. The natural frequencies of the sandwich beam
were also calculated by bringing the characterized viscoelastic material parameters into a
finite element model, and a comparison of the simulated result with the measured result
demonstrates that these two methods gave very consistent results, with relative errors of
less than 2.33% for the real parts and less than 3.31% for the imaginary parts for the first
nine complex natural frequencies. Hence, the feasibility, accuracy, and reliability were con-
firmed by the method proposed in this paper. In conclusion, the proposed method replaces
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the expensive DMA or other complex experimental methods and allows future studies
to obtain the parameters of viscoelastic materials with a simple and easy approach. This
provides essential technical support for improving the acoustic vibration characteristics of
sandwich panels by introducing viscoelastic materials.
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