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Abstract: Maintaining dental pulp vitality and preventing tooth loss are two challenges in endodontic
treatment. A tooth lacking a viable pulp loses its defense mechanism and regenerative ability, making
it more vulnerable to severe damage and eventually necessitating extraction. The tissue engineering
approach has drawn attention as an alternative therapy as it can regenerate dentin-pulp complex
structures and functions. Stem cells or progenitor cells, extracellular matrix, and signaling molecules
are triad components of this approach. Stem cells from human exfoliated deciduous teeth (SHED) are
a promising, noninvasive source of stem cells for tissue regeneration. Not only can SHEDs regenerate
dentin-pulp tissues (comprised of fibroblasts, odontoblasts, endothelial cells, and nerve cells), but
SHEDs also possess immunomodulatory and immunosuppressive properties. The collagen matrix is
a material of choice to provide structural and microenvironmental support for SHED-to-dentin pulp
tissue differentiation. Growth factors regulate cell proliferation, migration, and differentiation into
specific phenotypes via signal-transduction pathways. This review provides current concepts and
applications of the tissue engineering approach, especially SHEDs, in endodontic treatment.

Keywords: dentin-pulp complex regeneration; signalling molecules; stem cell from human exfoliated
deciduous teeth (SHED); tissue engineering

1. Introduction

Tissue injury can occur when tissue is exposed to various stimuli, including microbial
infections, mechanical damage (fractures, cracks, thermal factors), and chemical damage.
This condition can cause cell apoptosis or necrosis, as well as microvasculature and stroma
damage, leading to the activation of inflammation and wound healing mechanisms. During
wound healing, mesenchymal stem cells are recruited to the site of injury to differentiate
into stromal cells and replace damaged cells. However, if severe inflammation occurs in
the dental pulp, the damaged cells cannot be effectively replaced or healed, a condition
called irreversible pulpitis. In this condition, endodontic treatment must be carried out to
remove the damaged pulp and prevent the spread of the damage [1–4].

Endodontic treatment involves partial or complete pulp removal (pulp extirpation)
and filling the empty root canal with artificial material. Even so, the endodontic treatment
causes the tooth to become more fragile, susceptible to caries and periapical infection and
more likely to fracture as the tooth losses its vitality due to the absence of blood supply
and innervation [5–11].
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Therefore, it is crucial to maintain the vitality of the pulp. A tooth without a viable
pulp loses its defense mechanism and regenerative ability, making it more prone to severe
damage and ultimately leading to extraction. Dentin-pulp complex reconstruction is an
ideal approach to restoring pulp vitality by using mesenchymal stem cell or progenitor
cells and signalling molecules added to the extracellular matrix to recover fibroblasts,
odontoblasts, endothelial cells and nerve fiber functions [8,10–14]. Stem cells can be
obtained from various tissues, including teeth, buccal mucosa, skin, fat, and bone [15,16].
The pulp of deciduous teeth, rich in stem cells known as stem cells from human exfoliated
deciduous teeth (SHED), is a promising, easy-to-get, and noninvasive source of stem cells
for tissue regeneration [17–21]. Not only do they have the regenerative ability to generate
dentin-pulp tissues but SHEDs also possess immunomodulatory and immunosuppressive
properties [20,22].

Scaffolds are 3-dimensional microstructural materials that provide a biological envi-
ronment and structural support to facilitate cell growth, desirable interactions, and the
formation of functional tissues [8,23,24]. One popular scaffold material is collagen. Col-
lagen is a natural extracellular matrix built from protein and abundant in hard and soft
tissues [23]. Collagen is biocompatible, permeable, and biodegradable, so it can function in
helping migration, adhesion, proliferation, and cell differentiation [8,12].

Growth factors are polypeptides that play a very important role in the signaling
process that occurs during tissue formation and regeneration of the dentin-pulp com-
plex [25,26]. In the dentin-pulp complex regeneration, several growth factors work together
through different signalling mechanisms, including Transforming Growth Factor-β (TGFβ),
Vascular Endothelial Growth Factor (VEGF),Bone Morphogenic Protein (BMP), Fibroblast
Growth Factor (FGF),Platelet-Derived Growth Factor (PDGF), and Nerve Growth Fac-
tor(NGF) [25,27,28]. Growth factors will bind to cell surface receptors that subsequently
induce cellular processes such as cell proliferation, angiogenesis, neovascularization, and
all important steps in the regeneration process [28,29].

Growth Factorplays a role in various stages of the healing process and tissue re-
generation, including cell migration, angiogenesis, and neurogenesis [26]. It can also
induce odontogenic differentiation through ALK5/Smad2/3, TAK1, p38, and MEK/ERK
signalling pathways, supporting cell proliferation and collagen formation [30,31].Tissue
engineering applications in endodontic treatment are expected to replace damaged or lost
tissue with new natural pulp tissue and reduce the use of artificial materials, making teeth
fully functional again [14].

2. Tissue Engineering (TE) in Endodontic Treatment

As mentioned before, one challenge in endodontic treatment is maintaining dental
pulp vitality and preventing tooth loss. Regenerative endodontics can overcome this hur-
dle [32]. According to the American Association of Endodontists, regenerative endodontics
is a procedure designed based on biological principles to physiologically replace damaged
tooth structures, including root and dentin structures, as well as cells in the pulp-dentin
complex [10,32–34].

There are two concepts in regenerative endodontics, namely [35]:(1) guided tissue
regeneration (GTR), also known as the revascularization or revitalization approach, and
(2) tissue engineering (TE), an interdisciplinary approach to repairing damaged tissue using
by combining three components: (1) cells (especially stem cells) capable of forming pulp
tissue, root dentin, and tooth-supporting tissues, (2) scaffolds to facilitate cell proliferation
and differentiation, and (3) bioactive molecules (generally growth factors) as shown in
Figure 1 [28,35–38].



Polymers 2022, 14, 3712 3 of 13
Polymers 2022, 14, x FOR PEER REVIEW 3 of 14 
 

 

 
Figure 1. Tissue engineering technology in dental pulp regeneration. 

3. Stem Cells 
Stem cells are unique cells that possess self-renewal and differentiation properties 

into another cell type. Based on their differentiation potency, stem cells are divided into 
the following groups [39–42]. 

3.1. Totipotent Stem Cells 
Totipotent stem cells are stem cells that can generate all types of cells and tissues that 

exist in organisms and can usually be obtained from embryonic stem cells (from embryos 
1–3 days old). Totipotent cells have the highest differentiation potential and allow cells to 
form embryonic and extra-embryonic structures. An example of a totipotent cell is the 
zygote, formed after a sperm fertilizes an egg. These cells can later develop into one of the 
three germ layers or form the placenta. After about four days, the cell mass in the blas-
tocyst becomes pluripotent. This structure is a source of pluripotent cells [35,43]. 

3.2. Pluripotent Stem Cells 
Pluripotent stem cells are stem cells that can generate most cell types (over 200) and 

tissues found in organisms and have the ability to differentiate into cells of ectodermal, 
mesodermal, and endodermal origin. They can be obtained from a 5–14 day old blasto-
cyst [35,44,45]. 

3.3. Multipotent Stem Cells 

Figure 1. Tissue engineering technology in dental pulp regeneration.

3. Stem Cells

Stem cells are unique cells that possess self-renewal and differentiation properties into
another cell type. Based on their differentiation potency, stem cells are divided into the
following groups [39–42].

3.1. Totipotent Stem Cells

Totipotent stem cells are stem cells that can generate all types of cells and tissues that
exist in organisms and can usually be obtained from embryonic stem cells (from embryos
1–3 days old). Totipotent cells have the highest differentiation potential and allow cells
to form embryonic and extra-embryonic structures. An example of a totipotent cell is the
zygote, formed after a sperm fertilizes an egg. These cells can later develop into one of the
three germ layers or form the placenta. After about four days, the cell mass in the blastocyst
becomes pluripotent. This structure is a source of pluripotent cells [35,43].

3.2. Pluripotent Stem Cells

Pluripotent stem cells are stem cells that can generate most cell types (over 200) and
tissues found in organisms and have the ability to differentiate into cells of ectodermal,
mesodermal, and endodermal origin. They can be obtained from a 5–14 day old blasto-
cyst [35,44,45].
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3.3. Multipotent Stem Cells

Multipotent stem cells are stem cells that can generate a limited number of cell and
tissue types depending on their origin. These cells can be obtained from cord blood, fetal
tissue and postnatal stem cells, including dental pulp stem cells [35,45,46].

3.4. Unipotent Stem Cell

Unipotent stem cells are stem cells that have the narrowest differentiation ability; the
can only differentiate into one cell type but are able to divide repeatedly [43,45].

3.5. Induced Pluripotent Cells

Induced Pluripotent Cells are pluripotent stem cells formed by the induction of multi-
potent cells or adult somatic cells with pluripotent factors such as Oct4, Nanog, Sox2, Klf4,
and C-myc [45,47].

There are two approaches to delivering stem cells into the root canal. The first approach
is cell transplantation, where autologous or allologous stem cells are applied directly to
the root canal. The major obstacle to this process is the immune rejection of allologous
stem cells. The second obstacle is cell homing, where stem cells are sent to the injured area;
this process is influenced by many factors, such as age, cell number, culture conditions,
and method of application. This condition involves the use of chemotactic factors such as
stromal cell-derived factor (SDF)-1 are injected into the site of injury to induce stem cell
migration from the periapical area to the root canal [27,48].

Based on their stage of development and origin, stem cells can be broadly classified
into [32,35,41,47]: (1) embryonic stem cells, which are stem cells derived from embryos,
mainly from blastocysts. These cells are capable of dividing and renewing themselves over
a long period; (2) adult stem cells, which are stem cells derived from postnatal tissue, can
be isolated from various body tissues, such as bone marrow, adipose tissue, encephalon,
epithelium, dental pulp, etc.

Tissue injury is always associated with the activation of the immune system or inflam-
matory cells, including macrophages, neutrophils, CD4+ T cells, CD8+ T cells, and B cells,
triggered by cell apoptosis, necrotic cells, microvascular damage, and stroma [40,49–51].
Mesenchymal stem cells can regulate specific and non-specific immune systems by sup-
pressing T cells and dendritic cell maturation, decreasing B cell proliferation and activation,
inhibiting NK cell proliferation and cytotoxicity, and increasing T regulatory (Treg) cell
formation [49,50].

There are two mechanisms of stem cell immunomodulation: soluble factor secretion
and cell-to-cell direct contact. Prostaglandin E2 (PGE2), indoleamine 2,3-dioxygenase (IDO),
nitric oxide (NO), interleukin-10 (IL-10), hepatocyte growth factor (HGF), and transforming
growth factor 1 (TGFβ1) are secreted factors that have immunomodulatory properties. The
cell-to-cell direct contact mechanism involves CD274 (programmed dead ligand 1), vascular
cell adhesion molecule-1, and galectin-1 expression. These molecules reduce effector T cell
proliferation and increase the proportion of regulatory T cells (Treg) [49,50,52].

Various stem cells can be found in teeth and their associate tissues, such as stem cells
from human exfoliated deciduous teeth (SHED), dental pulp stem cells (DPSC), stem cells
from the apical papilla (SCAP), periodontal ligament stem cells (PDLC), dental follicle
precursor cells (DFPC), dental papilla cells (DPC), dental mesenchymal stem cells (DMSCs),
and dental epithelial stem cells (DESCs). For pulp regeneration purposes, SHED, DPSC,
and SCAP have strong potential [35,41,53–55].

4. Stem Cells from Human Exfoliated Deciduous Teeth (SHED)

Stem cells from human exfoliated deciduous teeth (SHED) were first obtained by
Miura et al. in 2003. SHED expresses cell surface markers STRO-1, CD10, CD29, CD 31,
CD44, CD73, CD90, CD105, CD146, CD13, CD166, Nestin, DCX, -tubulin, NeuN, GFAP,
S-100, A2B5, CNPaseNanog, Oct3/4 and SSEAs (-3, -4) and does not express CD14, CD15,
CD19, CD34, CD45, and CD43 [41,56–59].
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SHEDs have two major advantages compared to other stem cells derived from dental
tissue: they are easier to gain through noninvasive procedures and have a high proliferation
rate [34,41,56,60,61]. SHEDs exhibit higher proliferation rates compared to dental pulp stem
cells (DPSCs) and bone marrow-derived mesenchymal stem cells (BMMSCs) [41,45,58,62–64].

SHEDs possess higher potential in forming dentin-pulp complex cells, namely osteoblasts,
chondroblasts, adipocytes, endothelial cells, nerve cells, and odontoblasts [57,58,65–67]. The
ability of SHEDs to differentiate into odontoblasts is characterized by the expression of
dentin matrix protein-1 (DMP-1) and dentin sialophosphoprotein (DSPP) [45,58]. DSPP
induces stem cells to odontoblast differentiation through SMAD 1/5/8 phosphorylation
and nuclear translocation via the P38 and ERK1/2 pathways. DMP-1 involves maintaining
dentin mineralization [68,69].

As for the potential for neural regeneration, SHEDs show more intensive expression
of neural differentiation markers than DPSCs, such as b-III-tubulin, and nestin, in neural
induction cell culture [37]. SHEDs are also able to increase the angiogenesis process by form-
ing vascular connective tissue structures and expressing and synthesizing VEGF [70].This
ability is crucial to maintaining pulp viability as it can supply oxygen and nutrients needed
for cell metabolism for tissue regeneration [71].

SHED also functioned as an immunomodulator by suppressing T helper 17 (Th17) cell
function and upregulating CD206+ M2 macrophages [57,62]. SHEDs are able to induce
the secretion of proinflammatory cytokines, such as interleukin 1b (IL-1b), interleukin
6 (IL-6), interleukin 10 (IL-10), and tumor necrosis factor- a. SHEDs are also capable of
inhibiting lymphocyte CD178 expression, suppressing the proliferation of lymphocytes,
and decreasing the secretion of IL-4 and IFN-g while sequentially increasing the number of
T-reg cells [37,72,73].

5. Collagen Scaffold

Scaffolds are required for regeneration or tissue engineering to facilitate cell growth
and functions in the transplanted area [74–76]. Interaction of the cell with the extracellular
matrix influences many signalling pathways that change cell behaviours, i.e., adhesion, pro-
liferation, and differentiation [76,77]. Scaffolds can be made of both natural and synthetic
materials. Nanoscale proteins are the primary natural scaffolding materials. Nanoscale
proteins include collagen, fibronectin, and vitronectin. Synthetic polymers are popular
materials because they are biocompatible, biodegradable, mechanically stable, and can be
designed in a variety of compositions and shapes [77,78]. These properties enable polymers
to biologically affiliate and mimic the natural cell-extracellular matrix [76,79]. Natural
scaffolds, such as collagen, have better biocompatibility, whereas synthetic polymers can
be controlled for their physicochemical properties, such as their solubility, microstructure,
and mechanical strength [76,79].

Nanofibrous scaffolds are more popular than microfiber scaffolds due to their high
surface area, interconnected porosity, and positively stimulating extracellular cell-matrix
interactions [76]. Nanofibrous scaffolds are made by three methods, namely electrospin-
ning, self-assembly, and separation phase [77]. Electrospinning is the tissue engineering
application method most frequently used to synthesize collagen or synthetic scaffolds
and/or transport systems for drugs [76].

Collagen is a hydrogel material with high biocompatibility, viscoelasticy similar to soft
connective tissue, the ability to transport nutrients and waste, uniform cell encapsulation, in
situ gelation ability, and compatibility to be modified by biofunctional molecules or growth
factors [80]. Collagen contains arginine-glycine-aspartic acid (RGD) adhesion ligands,
which enable cell-biomaterial interactions, leading to cell adhesion [75]. Collagen matrices
are compatible with dental pulp stem cell proliferation, adhesion, and differentiation, as
shown by the formation of capillary-like microvessels [76,81,82]. Two commercial injectable
scaffolds, self-assembling peptide hydrogel and rHCollagen type I, were evaluated. It was
found that both of those scaffolds promote SHED cell survival, and when injected into the
root canal, these materials promoted odontoblast putative marker expression [83].
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Different collagen materials have been compared, such as collagen type I and III,
alginate, and chitosan, generating a good result in the proliferative and mineralizing
activity of type I collagen. After implanting these cells, the formation of vascularized
pulp-like tissue, odontoblast-like cells, and new dentin is produced. SHEDs adhere to PLA
cells in dentinal discs [80].

Collagen is a biocompatible material that can be degraded by enzymes; however,
natural polymers are difficult to produce and may transmit pathogens from animals (as they
are usually produced from animal products) or stimulate an immune response. No scaffold
materials have ideal structures and properties that totally resemble natural extracellular
matrix as natural ECM comprises complex architecture made up of structural proteins
(collagen and elastin), specialized proteins, and glycosaminoglycans. This architecture
provides not only structural support for tissue but also a selective dynamic environment
that is remodeled via biochemical signals to direct cellular responses [84]. A scaffold
should combine the best properties of biomaterials and be as close to the physiological
environment of the ECM as possible [80].

6. Growth Factor as Regulator

Regulating molecules are required for SHED to generate endothelial cells, odontoblasts,
and neurons that will form the dentin-pulp complex architecture [71,85,86]. They work in
signal transduction pathways to regulate cell proliferation, migration, and differentiation
into specific phenotypes. BMPs, PDGF, FGF, TGF, EGF, and IGFs are the most common
WNT proteins [87–89].

VEGF stimulates SHEDs to undergo endothelial cell differentiation. In an experiment
described by Annibali (2014), SHED was incubated in an endothelial cell growth medium
(EGM-2MV). This medium contains ascorbic acid, hydrocortisone, rhEGF, FBS, R3-IGF-1,
rhbFGF, rhVEGF, and VEGF [71,85]. MEK1/VEGF/ErK, Wnt/VEGF/-catenin, and Notch-
EphrinB2/VEGF-DLL4 signaling pathway regulation in response to VEGF stimulation
and the expression of VE-Cadherin (endothelial markers), VEGFR2, and CD31 increased
dramatically [71,85]. Furthermore, the endothelial-like cells generated by SHEDs could
anastomose with the host vascular network, which was demonstrated by an experiment
using LacZ tags and galactosidase staining [85].

Odontoblast differentiation was observed after BMP-2 stimulation. This regulatory
molecule involves the production of tubular dentin, odontogenesis and morphogenesis.
Dentin sialophosphoprotein (DSPP) marker will be abundantly expressed for this dis-
tinction [85,90–92]. The production of DSPP is also influenced by two catalytic subunit
signaling complexes that target rapamycin complexes 1 and 2 (TORC1 and TORC2). TORC1,
which is also required for protein synthesis and translation, regulates and directs cell cycle,
growth, and proliferation. Suppression of TORC1 prevented mineralized matrix deposition,
which also severely limited the synthesis of DSPP. TORC2 influences both cell survival and
cytoskeleton rearrangement. Inhibition of TORC2 promoted mineralization [85,93].

SHED culture in DMEM supplemented with vitamin D3, ascorbic 2-phosphate, dexam-
ethasone, and glycerol phosphate resulted in the expression of odontoblast-specific genes,
DMP1 and DSPP. Culture also showed mineralized matrix as visualized using Alizarin
red [85,94].

Different techniques for isolating SHEDs revealed various traits for odontoblast differ-
entiation. Despite having functioning odontoblast phenotypes, SHEDs isolated by direct
outgrowth showed a decreased rate of mineralization and abnormal cell elongation and
polarization due to the vertical orientation of the cell body alongside the dentin-like matrix.
SHEDs isolated using enzymatic dissociation quickly formed mineralized tissue and kept
their spindle-shaped morphology [85,90]

In immunocompromised mice, the ability of SHEDs to develop into odontoblasts was
examined. The dorsum of subcutaneous tissue was implanted with ceramic tricalcium
phosphate/hydroxyapatite (TCP/HA) powder and SHED combinations [85].
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This resulted in the formation of dentin-like structures. However, the transplant could
not form a complete dentin-pulp-like complex. Only 25% of the clones from one of the
colony-derived SHED strains transplanted were found to produce ectopic dentin [85].

In another study, slices of extracted third molar teeth were used. To create a porous
biodegradable scaffold, poly-L-lactic acid was used to fill the pulp chamber, which was
in close contact with the predentin layer. After 1428 days, cells adjacent to the predentin
exhibited an active dentin-secreting odontoblast. DSP was also expressed. The cell nuclear
location is thought to be polarized eccentrically. The cells displayed cell-cell gap junctions,
a well-developed rough endoplasmic reticulum, the Golgi complex, and a large number of
vesicles [85].

SHEDs have also been confirmed to be able to develop into neurons. Several neu-
ronal markers, including glutamic acid decarboxylase (GAD), III-tubulin, nestin, 2′,3′-
cyclic nucleotide-3′phosphodiesterase (CNPase), tyrosine-hydroxylase (TH), polysialylated-
neural cell adhesion molecule (PSA-NCAM), and glial fibrillary acidic protein (GFAP) were
expressed by SHED-derived neurons.10–12 Several cytokines, including FGF8, SHH, bFGF,
and GDNF, influence SHED neuronal regeneration [86,95,96].

FGF8 is responsible for the dorsalization of the anterior neural tube [96]. The notochord
secretes SHH during development to induce a general ventral cell destiny in order to
generate floor plate and motor neurons. bFGF acts as a proliferation and differentiation
regulator. After five days of culture on poly-L-lysine coated dishes without serum, the
cells rapidly lost their mesenchymal appearance and took on a more neuronal appearance,
including neurite-like outgrowth. Continued injection of SHH/FGF8 generated neurons
with developed and extended axon- or dendrite-like structures [85,96].

Upregulation of lncRNA C21orf121 and the downregulation of miR140-5p aid in the
differentiation of SHEDs into neuronal cells. lncRNA C21orf121 prevents BMP2 from
binding to miR140-5p, which subsequently increases BMP2 production and promotes
SHED neurogenesis [86,97]. Table 1 shown several researches that have been conducted
using tissue engineering technology in pulp regeneration.

Table 1. Stem cells for dental pulp regeneration [83,98–110].

Article
(Author, Year) Type of Stem Cell Type of Scaffold Types of Studies Evaluation

Technique Outcome

Cordeiro, 2008 [98] SHED Poly-L-lactic acid
(PLLA) In-vivo (mice)

Transmission electron
microscopy and im-

munohistochemistry

Odontoblast and endothelial-like
cells can be differentiated

from SHED

Demarco, 2010 [99] DPSC Poly-L-lactic acid
(PLLA) In-vivo (mice) Immunohistochemistry

Differentiation was determined by
evaluation of

three putative odontoblastic
markers (DSPP, DMP1, and MEPE)

Kodonas, 2012 [100] DPSCs

- Type I atelocollagen
honeycomb sponge
(organic)
- PLGA (synthetic)

In vivo (mini-pigs) Histological and im-
munohistochemistry

The formation of new organic
matrix deposits and
odontoblast-like cell

differentiation occurred.

Rosa, 2013 [83] SHED
- Self-assembling
peptide hydrogel
- rhCollagen type I

In vivo (mice) Histological and im-
munohistochemistry

Differentiation and proliferative
activity to form microvessels and

cellular density, expressed
odontoblastic differentiation

markers(DSPP, DMP-1, MEPE).

Wang Y, 2013 [101] DPSC Gelfoam In vivo (dog) Radiographic and
histologic analyses

Generating pulp-like tissues
containing dentin-like tissue and

blood vessels.

Iohara K, 2014 [102] DPSC Atelocollagen In vivo (dog) Immunohistochemically
evaluated

Regenerated pulp-like loose
connective tissue with vasculature.

Odontoblastlike
cells attached to the dentinal wall,
angiogenesis and re-innervation
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Table 1. Cont.

Article
(Author, Year) Type of Stem Cell Type of Scaffold Types of Studies Evaluation

Technique Outcome

Qu, 2014 [103] DPSC
- NF-gelatin/MgP
- NF-gelatin

In vitro
In vivo (mice)

Immunohistochemical
X-ray
SEM

ALP activity

NF-gelatin/MgP act better as
scaffold than Nf-gelatin

Murakami, 2015 [104] DPSCs/BMMSCs/
ADSCs Atelocollagen In-vivo (dog) Immunohistochemistry

Neovascularization occurs, and
nerve fibers form in the regenerated

pulp tissue. The MDPSC
transplantation showed a higher

area of vascularization and
innervation compared to the

MBMSC and MADSC.

Y. S. Kwon, 2015 [105] DPSC
Collagen hydrogel

scaffold cross-linked with
cinnamaldehyde (CA)

In vitro

Real-time polymerase
chain reaction

(PCR) gene
expression analysis

Cross-linking of collagen scaffolds
with CA is a new strategy for

regenerative endodontic therapy
regarding hDPC attachment,

proliferation and differentiation.

Piva, 2017 [106] DPSC Medical-grade
poly(L-lactide) (PLLA) In vivo (mice) Histology and Im-

munohistochemistry
Capable of differentiating into

endothelial cells,

Widbiller, 2018 [107]
Extraction of
dentin matrix

protein (eDMP)

- Custom-made fibrin
from fibrinogen and
thrombin
- Fibrin sealant
- Self-assembling
peptide (SAP)
- Plasma rich in growth
factor (PRGF)

In vivo (mice) Histological and im-
munohistochemistry

eDMP + fibrin and fibrin sealant
increased tissue formation than

PRGF and SAP

Chang, 2020 [108] DPSC Autoclaved treated
dentin matrix (a-TDM)

In vivo (mice
and goats)

ALP activity
spectrophotometer

immunohistochemistry

a-TDM + DPSC effective in
proliferating and differentiate

Chen H, 2020 [109] DSC Matrigel In vivo (mice) H&E staining Microvessel formation, which
resembled the natural pulp tissue.

Jang JH, 2020 [110] DPSC

- Gelatin (GM)- based
hemostatic hydrogels
(GM)
- Fibrin-based
hemostatic hydrogels
(FM)

In vivo (mini- pig) Radiographic and
histologic

- GM: absence of periapical
inflammation and newly formed
tertiary dentin with apex
maturation
- FM: exhibited higher incidences of
inflammatory changes (periapical
radiolucency and internal root
resorption).
- Showed microvasculature and
odontoblastic layers

7. Dentin Pulp Regeneration

Dentin pulp regeneration aims to revitalize necrotic, infected, or lost pulp teeth by
restoring the morphology and function of the pulp. Ideal pulp regeneration should possess
natural structures such as nerve fibers and blood vessels, allowing nutritional, defense,
sensation, and immunological functions to be restored [10,111]. Growth factors, scaffolds,
plasma, or other associated cells such as dentin/odontoblasts, fibroblasts, or endothelial
cells may provide regenerative signals in this regeneration process, resulting in cell migra-
tion, proliferation, differentiation, angiogenesis and extracellular matrix deposition [28,112].

Endothelial cells differentiate into mesodermal precursor cells (angioblasts) during
vasculogenesis, whereas new blood vessels are formed from previously existing blood
vessels during angiogenesis. VEGF is the main regulator of angiogenesis and can also
increase vascular permeability [28,113]. FGF, another growth factor with an angiogenic
role, can attract DPSCs to migrate and proliferate [28]. PDGF can significantly boost cell
proliferation, angiogenesis, and odontoblast differentiation [114,115]. BMP7 promotes the
formation of dentin (dentinogenesis) [116].

Nerve growth factor (NGF) plays an important role in the nervous system’s growth,
differentiation, and defense mechanisms by preventing apoptosis and reducing neuronal
degradation. NGF expression is typically increased in damaged and developing teeth; this
growth factor promotes the proliferation of sensory and sympathetic nerve cells [28]. NGF is
also involved in the processes of angiogenesis by inducing VEGF upregulation. NGF binds
to tyrosine kinase receptor (TrkA) on the cell surface, resulting in TrkA phosphorylation
and activation of multiple signaling pathways, including PI3K/Akt, Ras/Raf/MEK/ERK
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1/2, and PLC/PKC. Activation of each of these pathways results in a variety of biological
functions, including the prevention of apoptosis [117–119].

In this review, we focus on regenerative endodontic treatment using SHED, collagen
scaffold, and growth factors to regenerate dental pulp tissue through tissue engineering
technology. The concept of tissue engineering is expected to answer the challenges in
dentistry in maintaining the vitality of the dental pulp. Various studies and research are
being continuously carried out in order to obtain the best strategy in tissue engineering
and regenerative endodontics. This is achieved by understanding the behavior of cells,
the suitability of the material with the scaffolds, as well as the growth supporting factors
for each specific tissue or organ to be created; these factors are the keys to the success of
tissue engineering.

8. Conclusions

In responding to the challenges in dentistry to maintain pulp tissue and prevent
tooth loss with irreversible or necrotic pulpitis, regenerative endodontics utilizing tissue
engineering technology can be developed. In this technology, the utilization of SHEDs,
which have excellent potential with high proliferation speed and ability to differentiate
into various cell-forming dental pulp cells, collagen scaffolds as a medium for cell growth
and function, and growth factor as a regulator can be utilized to repair and regenerate pulp
tissue by regenerating pulp tissue naturally to be fully functional again.
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