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Abstract: The accumulation of toxic heavy metal ions continues to be a global concern due to their
adverse effects on the health of human beings and animals. Adsorption technology has always been
a preferred method for the removal of these pollutants from wastewater due to its cost-effectiveness
and simplicity. Hence, the development of highly efficient adsorbents as a result of the advent
of novel materials with interesting structural properties remains to be the ultimate objective to
improve the adsorption efficiencies of this method. As such, advanced materials such as metal–
organic frameworks (MOFs) that are highly porous crystalline materials have been explored as
potential adsorbents for capturing metal ions. However, due to their diverse structures and tuneable
surface functionalities, there is a need to find efficient characterization techniques to study their
atomic arrangements for a better understanding of their adsorption capabilities on heavy metal ions.
Moreover, the existence of various species of heavy metal ions and their ability to form complexes
have triggered the need to qualitatively and quantitatively determine their concentrations in the
environment. Hence, it is crucial to employ techniques that can provide insight into the structural
arrangements in MOF composites as well as their possible interactions with heavy metal ions, to
achieve high removal efficiency and adsorption capacities. Thus, this work provides an extensive
review and discussion of various techniques such as X-ray diffraction, Brunauer–Emmett–Teller
theory, scanning electron microscopy and transmission electron microscopy coupled with energy
dispersive spectroscopy, and X-ray photoelectron spectroscopy employed for the characterization of
MOF composites before and after their interaction with toxic metal ions. The review further looks
into the analytical methods (i.e., inductively coupled plasma mass spectroscopy, ultraviolet-visible
spectroscopy, and atomic absorption spectroscopy) used for the quantification of heavy metal ions
present in wastewater treatment.

Keywords: adsorption; analytical techniques; heavy metals; metal–organic frameworks

1. Introduction

Fresh water is one of the vital needs that is required for life on Earth. Unfortunately,
due to the contamination of fresh water by several industrialized activities, water scarcity
is a challenge across the globe [1,2]. Predictions have shown that there are possibilities that
some areas will have serious water shortages by 2025 [3]. To overcome this challenge, the
reusability of wastewater has become the ideal way to conserve and increase the availability
of water in their reserves. The advantages of using recycled wastewater include irrigating
agricultural soil, aquaculture, manufacturing consumption, recreational and environmental
practices, as well as artificial groundwater recharge [1,2]. In general, recycled wastewater
can be utilized in these processes and replace fresh water, provided a suitable purification
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procedure is implemented to acquire the desired water quality for the specified applica-
tion [2]. Various water pollutants that are found in water bodies are classified according to
their origin, with the main classifications being organic, biological, and inorganic [2,4,5].
Heavy metals (which form part of the inorganic pollutants) are the most investigated due
to their persistence and non-biodegradable nature. Many of these types of contaminants
are found to be toxic and carcinogenic, and can accumulate through food chains causing
very serious health hazards to living organisms [6,7]. Furthermore, some heavy metals
are of economic importance such as platinum group metals (PGMs), and therefore, their
conservation and recycling have become important in order to meet future demands [8,9].
In an attempt to find solutions to these problems, scientists have investigated and de-
veloped several technologies including chemical precipitation, flocculation/coagulation,
reverse osmosis, membrane filtration, and adsorption [6]. Due to the cost-effectiveness
and simplicity of the adsorption method, in this review, we focus more on this method to
narrate the instrumental techniques used to understand the structural effects of MOFs in
wastewater treatment.

Adsorption is the process by which mass transfer occurs between substances at the
interface of two phases. The phases in adsorption can either be liquid–solid, liquid–liquid,
gas–liquid, or gas–solid. The solutes of gas or liquid (referred to as adsorbate) accumulate
on the surface of an adsorbent (either solid or liquid) [10]. Depending on the properties
and the constituents of the adsorbate and the adsorbent, there are two possibilities for the
adsorption process that can take place. The first one is physisorption (adsorptive adsorption),
which occurs when there is a physical adsorbate–adsorbent contact either through van der
Waals, London, or dipole–dipole interactions [11,12]. These types of interactions are weak
and can be reversed. Secondly, an interaction can occur between an adsorbent and an
adsorbate which can result in the formation of a chemical bond referred to as chemisorption
(reactive adsorption) [10,13,14]. Chemisorption takes place only on monolayers and the
adsorbate–adsorbent interaction cannot be easily broken due to strong forces acting between
them [10,11]. Factors that contribute to the type of adsorption process taking place are
chemical structures such as functional groups and physical structures including specific
surface area and pore size [15]. Generally, the adsorption process takes place naturally in
many physical, biological, and chemical systems. Furthermore, this process is applicable in
numerous industrial applications such as separation, purification of gases, [16,17], isolation
of biological compounds [18], drug delivery [19] as well as in wastewater treatment [14,20].

The utilization of adsorption technology in the remediation of polluted water is con-
sidered to be a feasible way to recycle wastewater by removing pollutants. The adsorption
technique has enjoyed widespread attention in wastewater treatment due to the following
advantages: cost-effectiveness, ease of implementation and operation, high efficiency, and
the possibility to regenerate the adsorbent material since it is reversible [3,6]. Moreover,
it allows for the use of a wide range of adsorbent materials and generates less harmful
secondary products, which can be used for other applications. The process operates in the
liquid phase where the dissolved pollutants (adsorbates) are transferred from the liquid
state (wastewater) to the surface of an adsorbent, which, in many cases, is a solid material.
The result of this mass transfer produces clean water which can be reused for other suitable
applications [3]. For wastewater treatment through adsorption, the parameters that are
taken into consideration include the properties (chemical and physical) of the character-
istics of the adsorbent and adsorbate, effects of temperature, interaction time, solution
pH, amount of adsorbent, the initial concentration of adsorbate in liquid, as well as the
effect of competing ions [21]. These parameters are the ones used when determining the
adsorption capacities of adsorbent materials toward the targeted pollutant. In addition,
the effectiveness of this method is deduced from the ability of the adsorbent to selectively
target certain molecules, its reusability, and regeneration [3,15,22].

Metal–organic frameworks (MOFs) are currently in the spotlight of research due to
their intrinsic properties that make them suitable for use in various applications. These ma-
terials are composed of metal ion centers that are connected to one another by organic link-
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ers to achieve a variety of structural geometries [23,24]. Owing to the intriguing properties
(i.e., high specific surface area, tunable pore size, high porosity, and crystalline structure),
MOFs have been explored in various applications such as gas sensors, energy storage, drug
delivery, and water purification [25–27]. Furthermore, their surface functionality allows
the incorporation of other functional materials to form composites. Recently, MOFs have
attained great attention as suitable adsorbents for the recognition and elimination of heavy
metal ions in wastewater treatment [23,28]. The presence of heavy metal ions in wastewater
poses serious health threats to living organisms, even at low concentrations. One of the
major steps in treating water that is contaminated with heavy metal ions is to determine
and measure the initial concentrations of the pollutants that are present in the water. After
the adsorption process has taken place, the efficiency/adsorption capacity of the adsorbent
(i.e., MOFs) is obtained by measuring the remaining concentrations of heavy metal ions
after separating the adsorbent from the adsorbate aqueous solution. The heavy metals that
have been widely studied using MOFs and their composites as adsorbents include lead
(Pb), chromium (Cr), rare earth elements (REE), mercury (Hg), arsenic (As), copper (Cu),
cobalt (Co), nickel (Ni), and platinum group metals (PGMs). Analytical methods can be
employed to determine the concentrations of heavy metals before and after adsorption. In
addition, the adsorption mechanism can also be revealed by characterization of the MOF
adsorbent material before and after adsorption using spectroscopic, morphological and
physical techniques. However, the poor solubility of MOFs in most organic solvents hinders
the characterizations of MOF using some spectroscopic techniques. MOFs can easily be
damaged by high energy electron irradiation using transmission electron microscopy. The
most primitive MOFs have the inherent defects of poor electrical conductivity and low
structural stability, which impact their practical performance.

In this review paper, we present some of the literature on the analytical techniques
employed in studying and better understanding the adsorption behavior of MOFs toward
the removal of heavy metal ions in wastewater. Initially, a brief background on water
pollution by heavy metal ions as well as MOFs as possible adsorbents is introduced in
relation to the adsorption technology in wastewater treatment. This is followed by a
discussion and comparison of different techniques such as UV-Vis, ICP-MS, ICP-OES,
and FAAS to analyze and to determine the remaining concentration of the heavy metals
before and after adsorption. Furthermore, various methods of characterization that assist in
deducing the structures of MOF composites/nanocomposites and their possible interactions
with heavy metals in the adsorption process are discussed.

2. Analytical Methods for Heavy Metal Analysis
2.1. Inductively Coupled Plasma Mass Spectrometry

Inductively coupled plasma mass spectrometry (ICP-MS) is a powerful technique
that combines both the advantages of ICP and a mass spectrometer to give elemental
analysis data [29]. The incredible properties of this instrument include multiple elemental
analysis ability, adequate precision, and lower detection limits. Furthermore, ICP-MS has a
longer linear dynamic range, uncomplicated spectra, and the capability to rapidly analyze
isotopes [29–31].

System Operation

The working principle of the ICP-MS is based on three main components:

Sample Introduction and Conversion to Ions

In this step, the analyte (in liquid form) is introduced into the system through suction
by a peristaltic pump which provides a constant uptake flow rate. In this case, an autosam-
pler is used to optimize the analysis time and to reduce the consumption of reagents. The
sample is pumped into the nebulization chamber, where it gets converted from a liquid
solution to aerosol. The smallest droplets are carried to the plasma by the help of argon
gas, whereas the larger droplets are drained out of the system.
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ICP Compartment

Initially, the analyte aerosol is filtered prior to being introduced into the plasma to prevent
overloading the solvent which may result in plasma extinction. The argon plasma interacts
with the electromagnetic field provided by the radiofrequency source and it becomes gen-
erated on top of a torch. Once the aerosol is injected into the plasma, it instantaneously
dissolves, vaporizes, atomizes, and subsequently ionizes depending on the ionization po-
tential of the individual elements. The argon plasma provides heat with high temperatures
from 6000 to 10,000 K. Due to its chemical inertness and higher ionization energy that emit
a simple spectrum, argon gas is widely used in ICP. It is capable of ionizing or exciting
many elements of the periodic table without the formation of a stable compound with the
analyte [32].

Mass Spectrometer and Detection System

The vaporized ions and atoms are then carried by argon gas from the ICP torch to
the interface. The compartment of the interface is composed of two subsequent cones
(skimmer and sampler) which permit the ions to focalize into a smaller volume. Followed
by their introduction into the mass spectrometer, either a quadrupole or hexapole, they are
separated based on their mass to charge ratio and then move to the detector. In ICP-MS, a
detector is mostly an electron multiplier that works by converting ion signals to electric
pulses [29,31–34]. The ICP-MS technique is adequate to quantitatively identify metal ions
present in natural and drinking waters at trace levels, which are of particular relevance
for toxicity control regions that may have been contaminated by toxic metals. ICP-MS has
been recognized as a suitable method for adsorption/water treatment as it provides good
sensitivity, requires minimal sample size, affords minimal elemental interferences, and
readily provides a means to perform rapid and automated multi-elemental analyses. For
example, an ICP-MS analytical instrument was employed in the work reported by Alqadami
and colleagues [35]. The authors synthesized a nanocomposite of Fe3O4@AMCA-MIL53(Al)
for the adsorption of thorium Th(IV) and uranium U(IV) ions from simulated wastewater.
Adsorption experiments were carried out by mixing 0.02 g of Fe3O4@AMCA-MIL53(Al)
with 25 mL of Th(IV) and U(VI) solutions containing 20 mg L−1 for 24 h. For determining
the maximum adsorption capacity, the initial concentrations of Th(IV) and U(VI) ranged
between 20 and 400 mg L−1 with the optimum solution pH of 4.7 and 5.5 for Th(IV) and
U(VI), respectively. Different temperatures of 25, 35, and 45 ◦C were investigated at a
contact time of 300 min. The remaining concentrations of the analyte after adsorption
were obtained from the ICP-MS analysis and the data are represented in Figure 1. For
both Th(IV) and U(VI), the Fe3O4@AMCA-MIL53(Al) adsorbent showed increasing values
of equilibrium adsorption capacities (Qe) as the temperatures and initial concentrations
increased (see Figure 1a,b).

Furthermore, the regeneration studies of the prepared Fe3O4@AMCA-MIL53(Al) were
investigated by adsorption/desorption experiments and 25 mL of various acidic eluents of
0.01 M were used to regenerate the adsorbent material. The concentrations of Th(IV) and
U(VI) were determined using ICP-MS and calculated from Equation (1):

%adsorption =
Co − Ce

Co
× 100 (1)

The results obtained are represented in Figure 1c,d. On the basis of the data, the authors
were able to conclude that 0.01 M HCl provided more desorption efficiency for Th(IV)
and U(VI) as compared with HNO3 and H2SO4 of the same concentration. The use of ICP-
MS technique for adsorption studies provides the advantages of a smaller sample size,
element-specific information, quantitation, rapid sample throughput, and significantly
higher recovery of all elements of interest, especially the volatile elements. ICP-MS is
characterized by the following advantages such as high sensitivity analysis, lower detection
limits of most elements (ppt or ppq-range), simultaneous multi-element analysis; wide
dynamic range, and isotope composition. The disadvantages of ICP-MS are the high
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operational costs because of the high amount of argon used and the high susceptibility
to high salt concentrations present in digest solutions or in sweat and saliva extraction
solutions, resulting in interferences of the measurements.
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2.2. Inductively Coupled Plasma Optical Emission Spectroscopy

Inductively coupled plasma optical emission spectroscopy (ICP-OES) was developed
in the 1960s and first commercialized in the mid-1970s [33]. The sample introduction process
in ICP-OES is analogous to one of the ICP-MS instruments. However, in ICP-OES, once the
plasma has ionized, the analyte atoms move to the excited state and emit light energy upon
their return to the ground state [33]. This light energy, which is emitted by metal atoms/ions, is
transformed into an electrical signal followed by detection and quantitative measurements
from a photoelectron multiplier tube (PMT). ICP-OES has advantages for the detection of
heavy metals in water; however, this technique is limited by the need to transform a solid
sample into a solution which is time consuming as it requires over 60% of the total time to
complete the analysis. Thus, considerable improvement is required in this regard as there
is a weak link in heavy metal analysis to ensure that the analytes are completely released
and solubilized, i.e., total decomposition of the sample is achieved.

The recent work reported by Tang et al. [36] showed that pre-modification of Zr-based
MOF with 4-amino-3-hydroxybenzoic acid and p-phthalaldehyde (AHPP) was effective in
removing Pd(II) pollutants in simulated wastewater. They conducted their batch adsorption
experiments by contacting 0.01 g of AHPP-MOF with 10 mL of 100 mg L−1 Pd(II) solution
at a pH of 4. The samples were centrifuged for 24 h at a speed of 280 rpm. The remaining
concentrations of the Pd(II) ion were determined from the ICP-AES, Leeman Prodigy7,
United States. The effects of initial concentration ranging from 100 to 600 mg L−1 and
temperatures of 298, 308, and 318 K were used to determine the adsorption capacity. As
shown in Figure 2a, their results showed that the adsorption capacity increased as both the
temperature and original concentration increased.
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Furthermore, the data obtained were fit to four different isotherm models (Langmuir,
Freundlich, Temkin, and D-R), for the determination of maximum adsorption capacity
(Qmax), as shown in Figure 2b–d. The data fit the Langmuir more than others with Qmax
values of 241.6, 288.48, and 293.65 mg g−1 at 298, 308, and 318 K, respectively. Therefore, the
advantages of ICP-OES over an atomic absorption spectrometer and UV-VIS are that both
simultaneous and sequential analyses of multiple elements is possible, the calibration func-
tion is spread over a wide dynamic range, and the number of measurable elements is high.
However, one of the disadvantages of the ICP-OES method is the high argon consumption.

2.3. Flame Atomic Absorption Spectrometer

The spectroscopy of flame atomic absorption (FAAS) is one of the popular techniques
that is utilized when determining the metal element concentrations present in particular
analytes. The method was initially developed in 1952 and only became commercialized as
an analytical technique in the 1960s [37] The FAAS technique was directly developed from
atomic absorption spectroscopy (AAS) which is based on the theory of atoms/ions having
the ability to absorb light at a particular wavelength that is unique [38].

The main principle in FAAS involves the atomization of a solution containing the
analyte using a flame. Firstly, the analyte (in solution form) is introduced into the system
through an inlet tube into the nebulizer where the liquid is converted into small droplets
(aerosol mist), followed by introduction into the flame [39,40]. Then, the flame atomizes
the sample elements to their ground state atoms that are free and prone to excitation.
A hollow cathode lamp provides pure light with a specific wavelength and energy which
passes through the flame, and is absorbed by atoms/ions of the element of interest. Upon
absorption of the light energy, the electrons in the atoms become excited and jump to
higher energy levels. The radiation leaves the sample cell and goes to the monochromator
where it is separated into wavelengths that are detected by a PMT. This is followed by
intensification and conversion of the photon signals to electrons, which is quantified as
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electric current [41,42]. In AAS, these measurements assist in calculating the amount of
the element present in an analyte in terms of absorbance and/or concentration [43]. The
relationship between light absorption and the concentration of the element is described by
the Beer–Lambert law, which assumes direct proportionality between them under certain
conditions. To determine the unknown concentration of an analyte, a calibration curve is
required which is obtained from the standard of a known concentration and more than
62 metal element concentrations can be obtained [39,44,45].

FAAS is preferred for determining trace levels of metal ions in environmental samples
due to its simplicity and cost-effectiveness as compared with other instrumental techniques,
such as ICP-OES and ICP-MS. However, analytes at lower levels than the detection limit
of AAS and large amounts of salt in the real samples are the two primary limitations in
determining metal ion levels though AAS. Such techniques are not sufficiently sensitive
and selective for certain analyses. Thus, methods for separating or preconcentrating
trace elements may be necessary before spectrometric analysis. In the work reported by
Soltani and colleagues [46], a nanocomposite of layer-double hydroxide LDH/MOF was
synthesized and employed in the adsorption of divalent mercury, Hg(II), and nickel, Ni(II)
ions. For the adsorption experiments, they used a constant amount of 2.0 mg of LDH/MOF
nanocomposite, which was contacted with 20 mL of Hg(II) and Ni(II) at a temperature of
22 ± 3 ◦C and 200 rpm shaking speed. The main adsorption variables investigated were
(see Figure 3): (a) solution pH, (b) primary metal ions concentration, and (c) the interaction
time. After the adsorption process took place, the LDH/MOF nanocomposite was separated
from the Hg(II) and Ni(II) ions solutions by centrifuging at a speed of 5000 rpm. Then, the
filtrates were analyzed using a spectrometer (FAAS, PerkinElmer Model A300, Norwalk,
USA) to determine the remaining concentrations of Hg(II) and Ni(II) in solution.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 33 
 

 

 

Figure 3. (a) Solution pH influence; (b) original Hg(II) and Ni(II) concentration with isotherm mod-

els fit; (c) interaction time with kinetic models fit [46]. 

From the pH studies, the authors observed an optimum removal percentage of 99% 

for Hg(II) at a pH of 3.0 and 96% for Ni(II) at a pH 8.0. As shown in Figure 3b, there was 

an increase in the Qe with increases in the original concentration. The data was also used 

to calculate the Qmax value of LDH/MOF by fitting it to the nonlinear isotherm models of 

Langmuir, Freundlich, and Redlich–Peterson. From their conclusions, the data fitted the 

Langmuir more than the other models with Qmax values of 509.8 mg g−1 for Hg(II) and 441.0 

mg g−1 for Ni(II). Furthermore, the kinetic data, as presented in Figure 3c, showed that the 

LDH/MOF nanocomposite had fast kinetics for Hg(II) and Ni(II) and obeyed the Avrami 

kinetic model. Hence, AAS is appropriate for monitoring studies of a certain element. It is 

a fully automated procedure, and thus, a less labor-intensive method. The advantage is 

that this analytical method allows the determination of elements in very low mass con-

centrations (µg/L range), however, its disadvantage is the long analysis time per sample 

due to three or four replicates. 

2.4. Ultraviolet-Visible Spectroscopy 

The ultraviolet-visible (UV-Vis) spectroscopy is employed in studying the properties 

of samples by analyzing the amount of light they can absorb or reflect [47]. The light that 

is used in the instrument is in the wavelengths of UV and the visible region of the electro-

magnetic spectrum [47,48]. In principle, the light of a suitable wavelength is irradiated 

onto the molecule and absorbed by the π-electrons or non-bonding electrons within the 

molecule, and then detected and displayed as an absorbance peak. The absorbed wave-

lengths have energy associated with them and are responsible for the transition of elec-

trons from the ground state to the excited state [49-56]. Depending on the composition of 

the sample that is being analyzed, quantitative and qualitative measurements can both be 

obtained by comparing the analyte with a reference sample. The absorbed energy pro-

vides information about the components that are present in the sample, and therefore, 

their concentrations can be determined. This energy is determined from Equation (2) us-

ing the energy difference between the lower and higher energy levels: 

𝐸 = ℎ𝑣 (2) 

where E, h, and v represent the amount of energy absorbed, Planck constant, and the fre-

quency, respectively. Then, Equation (2) is expanded into Equation (3), due to the wave-

length associated with the light that is absorbed by molecules in spectroscopic studies 

[50,51]: 

𝐸 =
ℎ𝑐

𝜆
 (3) 

where the speed of light is denoted by c and λ is the maximum wavelength of light ab-

sorbed by the analyte sample. The UV-Vis instrument estimates the intensity of absorbed 
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From the pH studies, the authors observed an optimum removal percentage of 99%
for Hg(II) at a pH of 3.0 and 96% for Ni(II) at a pH 8.0. As shown in Figure 3b, there was an
increase in the Qe with increases in the original concentration. The data was also used to
calculate the Qmax value of LDH/MOF by fitting it to the nonlinear isotherm models of
Langmuir, Freundlich, and Redlich–Peterson. From their conclusions, the data fitted the
Langmuir more than the other models with Qmax values of 509.8 mg g−1 for Hg(II) and
441.0 mg g−1 for Ni(II). Furthermore, the kinetic data, as presented in Figure 3c, showed
that the LDH/MOF nanocomposite had fast kinetics for Hg(II) and Ni(II) and obeyed
the Avrami kinetic model. Hence, AAS is appropriate for monitoring studies of a certain
element. It is a fully automated procedure, and thus, a less labor-intensive method. The
advantage is that this analytical method allows the determination of elements in very low
mass concentrations (µg/L range), however, its disadvantage is the long analysis time per
sample due to three or four replicates.
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2.4. Ultraviolet-Visible Spectroscopy

The ultraviolet-visible (UV-Vis) spectroscopy is employed in studying the properties
of samples by analyzing the amount of light they can absorb or reflect [47]. The light that is
used in the instrument is in the wavelengths of UV and the visible region of the electromag-
netic spectrum [47,48]. In principle, the light of a suitable wavelength is irradiated onto the
molecule and absorbed by the π-electrons or non-bonding electrons within the molecule,
and then detected and displayed as an absorbance peak. The absorbed wavelengths have
energy associated with them and are responsible for the transition of electrons from the
ground state to the excited state [49–56]. Depending on the composition of the sample
that is being analyzed, quantitative and qualitative measurements can both be obtained by
comparing the analyte with a reference sample. The absorbed energy provides information
about the components that are present in the sample, and therefore, their concentrations can
be determined. This energy is determined from Equation (2) using the energy difference
between the lower and higher energy levels:

E = hv (2)

where E, h, and v represent the amount of energy absorbed, Planck constant, and the
frequency, respectively. Then, Equation (2) is expanded into Equation (3), due to the
wavelength associated with the light that is absorbed by molecules in spectroscopic stud-
ies [50,51]:

E =
hc
λ

(3)

where the speed of light is denoted by c and λ is the maximum wavelength of light absorbed
by the analyte sample. The UV-Vis instrument estimates the intensity of absorbed light as a
function of absorbance (A) or transmittance (T), which are related by Equation (4):

A = − log T (4)

The interaction between electromagnetic radiation and molecules can be defined
using Beer’s law, which describes proportionality between the incident radiation and
the concentration of the absorbing molecule with the rate of the monochromatic beam.
Mathematically, Beer’s law is expressed as Equation (5) [50]:

A = abc (5)

where A, c, a, and b representing the absorbance, concentration of the analyte, absorptivity
constant, and path length of a cell, respectively. Due to the unit of concentration being
molar (M), Beer’s law is expressed as Equation (6):

A = εbc (6)

where ε denotes the molar absorptivity of the sample [47–52].
Daliran et al. [57] functionalized Zr-MOF with pyridyltriazol (Pyta) to selectively

adsorb Pd(II) ions from an aqueous environment. For batch adsorption experiments, a
25 mL solution having 1 mg L−1 of Pd (II) at a pH of 4.5 was contacted with 0.01 g of
UiO-66-Pyta for approximately 2−30 min. After adsorption, the authors separated the UiO-
66-Pyta adsorbent from the Pd(II) ion solution by centrifuging at a speed of 5000 rpm and
analyzed the supernatant with a UV−Vis instrument at a wavelength of 410 nm. Figure 4a
presents the results obtained after studying the influence of the original concentration of
Pd(II) ions on the Qe value of UiO-66-Pyta. The data showed that Qe increased as the
original concentration increased, and the Qmax value was deduced from the Langmuir
isotherm as 294.1 mg g−1.
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Pd(II) ions adsorption [57].

The authors further conducted adsorption/desorption trials to explore the potential
reusability of the UiO−66−Pyta composite for the adsorption of Pd(II) ions, and the results
are shown in Figure 4b. The plotted data depicted that 96.9% was reduced to 81.7% after
5 consecutive cycles. The analysis conducted to determine the remaining concentrations
of various metal ion pollutants in wastewater was shown to be effective using various
detection techniques. Although some techniques have limited detection of other metal ion
species, the obtained results display some potential utilization of the prepared MOF-based
adsorbent material. Table 1 presents some of the studies wherein different metal ions
have been analyzed by the chosen technique following adsorption with MOF composites.
Therefore, there are several advantages of UV-Vis such as a broad area of applicability, high
sensitivity with a limit of detection (LOD) in the mg/L range, high selectivity, and a simple
and rapid automatic method. However, there are some disadvantages including time-
intensive sample preparation and measuring procedure (binding to complexes, adjusting
of the pH value, special extraction procedures) to obtain colored metal complexes which
can be determined using UV-Vis interferences of other colored substances in the sample.

Table 1. Different heavy metal detection techniques after the adsorption of heavy metal ions using
MOF composites.

Prepared Adsorbent
Material Targeted Metal Ion Pollutant Analytical Technique

Used

Adsorption Capacity
Determined from the Isotherm

Model (mg g−1)
Ref.

Diaminomaleonitrile
(DAMN)/MIL-101(Cr) U(IV) ICP-AES and ICP-MS 601 [58]

MIL-125-HQ Pb(II), Cd(II), Cu(II), and Cr(III) AAS 262.1, 102.8, 66.9, and 53.9 [59]
MIL-

101(Cr)/Fe3O4@ADTC Se(IV) and Se(VI) Electrothermal (ET)-AAS 197 [60]

NH2-mSiO2@MIL-101(Cr)
The Cr(VI) and Pb(II) UV-Vis and ICP-OES 73.2 and 161.3 [61]

MIL-101-PMIDA Yttrium (Y) and lutetium (Lu) ICP-MS 25.3 and 63.4 [62]
ED-MIL-101(Cr) U(VI) Trace uranium analyzer 200 [63]

ED-MIL-101(Cr) Cu(II) and Cd(II) Optical emission
spectrometer 69.9 and 63.15 [64]

Ni0.6Fe2.4O4-UiO-66-PEI Pb(II) and Cr(VI) ICP-AES 273.2 and 428.6 [65]
SH@Cu-MOF Hg(II) FAAS 173 [66]

3. Characterization of MOF Composites for Heavy Metal Ions Adsorption
3.1. Physical Characterization

Physical methods are analytical techniques used to study and deduce information
about the physical properties of compounds. These techniques assist in obtaining informa-
tion about some of the phases that form part of the material structure, the potential surface
reactivity looking at the area on the surface, as well as the functionality and possible geom-
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etry and atomic arrangements. They combine the fundamentals of both spectroscopic and
microscopic techniques. Adsorption technology reveals information about the adsorption
behavior of MOF composites.

3.1.1. X-ray Diffraction

An X-ray diffraction (XRD) analytical instrument is mostly employed for determining
the different phases of crystalline materials and obtaining data about the dimensions of
the unit cell. The three major components of the XRD instrument are an X-ray tube, a
sample holder, and an X-ray detector. The idea of this method is mainly grounded on the
diffraction of light that is scattered by a periodic array of long-range order and results in
the production of constructive interference at certain angles [67]. A beam of X-ray photons
from the cathode ray tube passes through a slit where it is filtered to form monochromatic
radiation that collimates to directly focus on the sample. Then, atomic or molecular crystals
of powdered samples diffract the beam of X-ray photons, resulting in the scattering of
photons in all directions [67–69]. When incident rays interact with an analyte, they result in
a constructive interference obeying Bragg’s law which is presented by Equation (7) [70]:

nλ = 2d sin θ (7)

where λ and d denote the incident light wavelength and spacing of diffracting planes,
respectively. The angle associated with diffraction is represented by θ and n = 1 is an integer.

XRD is commonly employed for identifying unknown compounds and measuring
sample purity and crystallinity [67–69,71]. This technique is non-destructive to the sample
and can be used for quantitative analysis, in which the data presentation includes two theta
angles, peak intensity, and the amount of lattice constant. The data that are obtained for
qualitative analysis include phase analysis, whereby the type of phase can be identified;
phase composition; crystallite size; and orientation [68,72]. The XRD technique has been
used by many researchers for the physical characterization of MOFs and MOF composites
used in the adsorption of heavy metal ions. Moreover, after the adsorption process, the
effects of the adsorbed metal ions on the phases and the crystallite size of MOF adsorbents
have also been studied. From the obtained results, the crystallinity of the prepared materials
have been deduced and, in some cases, the incorporation and modification with other
functional components has been confirmed using this technique. For example, Yin and
co-workers [73] synthesized UiO-66 MOF which they modified with melamine for the
removal of Pb(II) ions. The diffraction patterns of UiO-66 and melamine-UiO-66 were
obtained using an X-ray diffractometer (BRUKER AXS, D8 Advance), and the results are
shown in Figure 5a. The patterns of the prepared UiO-66 and melamine-modified UiO-66
show some similarity with those of simulated UiO-66 from CCDC 837796. The authors
concluded that post-modification with melamine did not disrupt the crystal structure of
melamine-UiO-66. Moreover, the melamine-UiO-66 displayed higher peak intensities at
two theta values of 7.4◦ and 8.5◦, suggesting an increased degree of crystalline on the
MOF structure. The melamine peaks were also observed at 2θ = 26◦ and 30◦ to further
support the chemical interaction between melamine and the UiO-66. Quan et al. reported
on NH2-mSiO2@MIL-101(Cr) composite for adsorbing Pb(II) and Cr(VI) ions which were
characterized using a PANalytical Empyrean X-ray diffractometer operating at a scan rate
of 5◦ min−1. As presented in Figure 5b, MIL-101(Cr) was prepared and modified with
mSiO2 due to the appearance of a peak at 2θ = 2.5◦ on both the patterns of mSiO2@MIL-
101(Cr) and NH2-mSiO2@ MIL-101(Cr). The diffraction patterns for MIL-101(Cr) are also
visible in both composites indicating that the crystal phases are still intact, however, are
less intense on NH2-mSiO2@ MIL-101(Cr) nanoadsorbent, confirming the effective grafting
of amino groups.
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Figure 5. Diffractograms of: (a) MOFs and melamine-modified MOFs [73]; (b) pristine MIL-101(Cr),
mSiO2@MIL-101(Cr), and NH2-mSiO2@MIL-101(Cr) [61].

Other researchers have used the XRD technique to partially understand the mechanism
of adsorption taking place between MOFs and heavy metal ions. Lim and colleagues
studied the removal of Pd(II) and Pt(IV) ions using MIL-101(Cr)-NH2 which was prepared
by reducing MIL-101(Cr)-NO2 [74]. The patterns were measured between 3◦ < 2θ < 90◦

using a higher performance XRD, having a Cu-sealed tube of λ = 1.54178 Å. The XRD
patterns for the prepared materials were obtained before and after metal ion adsorption,
and are presented in Figure 6a. The authors concluded that the pristine MIL-101(Cr)-NH2
and MIL-101(Cr)-NO2 structures were stable in acidic media since they retained peaks that
were identical to those of the simulated MIL-101(Cr) before and after the adsorption of
Pd(II) and Pt(IV) ions.
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Tang and his colleagues characterized AHPP-MOF-Pd after adsorbing Pd(II) ions and
compared it with the diffraction peaks of AHPP and AHPP-MOF, as depicted in Figure 6b.
According to their observations, the diffractograms of AHPP and AHPP-MOF were quite
dissimilar. However, the peaks at 2θ = 6.0◦ and 8.09◦ for the AHPP-MOF corresponded
to the conventional patterns of UiO-66 reported in the literature, indicating the successful
combination of AHPP and ZrCl4. Furthermore, the diffraction peaks at 2θ = 22.3◦, 26.7◦,
and 82.8◦ for AHPP-MOF-Pd were attributed to PdCl2 and Pd2OCl2. The authors also
observed some peaks at 2θ = 40.061◦, 46.506◦, and 67.898◦ corresponding to the (111), (200),
and (220) planes of palladium, respectively (JCPDS no. 65–2867). They observed that
Pd(II) ions were interacting with some surface functional groups on the AHPP-MOF, which
resulted in the formation of Pd compounds including metallic Pd. Although the XRD
technique cannot provide information regarding the mechanism of interacting between
MOFs and heavy metal ions, it is still of significant importance, since MOF structures have
been shown to be very crystalline materials. Their successful composite formation with
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other compounds is most often confirmed by a reduction in crystallinity wherein some
shift or broadening of diffraction peaks is observed as well as the appearance of new peaks.
In addition, their interaction with heavy metal ions can also be confirmed by an increase
or decrease in crystallinity. Hence, the XRD patterns of the MOFs composites after the
adsorption of heavy metal ions should be obtained in order to confirm their interaction.

3.1.2. Thermal Gravimetric Analysis

A thermal analysis is a study conducted using a group of analytical techniques com-
bined to give important information about the physicochemical properties of a material as
a function of temperature. Thermogravimetry is one of the techniques of thermal analysis
used to study variations in the quantity and frequency of the weight of a sample against
temperature and time in a controlled atmosphere such as purged nitrogen gas [75–79].
The main components of a TGA instrument are the furnace, the microbalance, the tem-
perature controller, and a data acquisition system [80,81]. In principle, a sample with a
mass of 2–20 mg is inserted into a pan (crucible) of suitable size, followed by setting the
temperature variations according to an adapted temperature program. These may include
isothermal ramp steps having various heating rates while measuring the temperature with
thermocouples that are in contact with the crucible. In a TGA instrument, the sample holder
for putting the crucible is connected to the microbalance (mass sensitive element) which is
used for detecting the weight changes associated with the sample. Then, the sample holder
system is heated with an electric furnace that can reach maximum temperatures of about
2000 ◦C. However, the quantity of heat needed depends on the specifications of material,
the design of the furnace, as well as other components [76,78].

The weight change recorded as a function of time is in isothermal mode, whereas
weight change captured as a function of temperature is in scanning mode. The non-
isothermal mode is usually associated with a constant heating rate (β) which is caused by
the linear change in temperature with time and is expressed by Equation (8):

β =
dT
dt

(8)

where dT and dt represent the change in temperature and change in time, respectively.
The data obtained from TGA assist in deducing the type of reaction that can take place
including decomposition, sublimation, vaporization, etc. Furthermore, gaseous products
that escape during the chemical reaction, thermal stability of composites, and associated
degradation mechanisms can be studied by this technique. Generally, a compound is
regarded as being thermally stable if the TGA curve shows no change in sample weight.
However, its disadvantage is the destruction of the sample as well as the restricted number
of elements to be analyzed [79,81–84].

For the removal of heavy metal ions by MOF composites, authors have employed the
TGA technique to examine the thermal stability of the synthesized materials. Depending
on the MOF that one is working with and the type of modification taking place, the thermal
stability of the resulting MOF composites (including nanocomposites) can either improve or
degrade. The composite of MIL-101(Cr)/TEPA@CA (tetraethylenepentamine@calcium algi-
nate) used in the adsorption of Pb(II) ions was synthesized by Wang et al. [85]. The obtained
TGA curves for the composite and its precursors (MIL-101(Cr) and MIL-101(Cr)-TEPA)
are shown in Figure 7a. The prepared materials demonstrated weight loss due to mois-
ture at less than 130 ◦C with weight losses of 4.95%, 8.35%, and 10.10% for the MIL-101,
MIL-101(Cr)-TEPA, and MIL-101(Cr)/TEPA@CA, respectively. The degradations occurring
between 240–470 ◦C for MIL-101(Cr) and MIL-101(Cr)-TEPA corresponding to 45.21%
and 39.96% weight loss were due to decomposition of the MIL-101 structure while con-
verting to Cr2O3. For MIL-101(Cr)/TEPA@CA, the loss in weight increased by 49.64% at
240–520 ◦C and it included the conversion of cellulose aerogel (CA) into CaO. In another
report, the thermal properties of the synthesized UiO-66-NH2@cellulose aerogel composite
were studied by Lei et al. [86] through a comparison with the thermal stabilities of UiO-66,
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UiO-66-NH2, and CA materials. The thermograms were obtained from a TGA, TG 209
F1, Germany instrument that operated at 20 ◦C min−1 heating rate and 30–700 ◦C under
N2 atmosphere. As presented in Figure 7b, the CA was less thermally stable than MOF
and showed maximum decomposition at 332.2 ◦C, whereas the value increased by 26.2 ◦C
for UiO-66@CA and 26.7 ◦C for the UiO-66-NH2@CA composite. The prepared UiO-66-
NH2@CA composite with improved thermal stability was utilized in the adsorption of
Pb(II) ions from simulated wastewater. It was observed in TGA that the processes occurring
during heating of the samples directly coincided with temperature. This suggested that the
adsorption of heavy metals occurred on the surface of the MOF structure. TGA can reveal
the chemical stability of MOFs after adsorption which strongly depends on the possibility
of preserving their initial structure. The exchange of heavy metals and guest anions from
the aqueous solution to the MOF surfaces can be observed by changes in thermal stability.
The weight loss from TGA can be used to estimate the amount of heavy metals on the
surface of MOF materials by determining changes in the mass of the MOF composites
before and after adsorption.
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(b) UiO-66, UiO-66-NH2, CA, UiO- 66@CA, and UiO-66-NH2@CA [86].

3.1.3. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry is another thermal analytical technique which was
developed in 1962 by Watson and O’Neill and commercialized in 1963 [87]. This thermal
analytical technique uses the same operating conditions as TGA and is sometimes cou-
pled together in a system referred to as simultaneous thermal analysis (STA) [78]. DSC is
based on the measurements of heat flow between a sample and inert reference materials
as a function of temperature, wherein the changes in heat capacity and endothermic and
exothermic activities occurring on a sample can be determined. It is a powerful and rapid
method for providing qualitative and quantitative data concerning the physicochemical
phase transitions experienced by materials when exposed to elevated temperatures (from
100 to 1800 K) [80,81,88–93]. The three basic phases that can occur when an amorphous
substance is being exposed to heat are as follows: (a) glass transition, in this phase change,
the structure of an amorphous substance changes from a moderately hard state to a rub-
bery state and it is reversible, and the glass transition temperature provides information
concerned with the stability of the glassy or amorphous state; (b) crystallization, this irre-
versible (two-steps) phase change entails assembling the disordered structures through
nucleation and growth processes to form crystalline structures through an exothermic
process; (c) melting, in this transition, a single step endothermic process occurs when the
crystalline lattice becomes broken down into a disordered state from solid to liquid in a
single step [87].

Efome et al. [94] synthesized polyacrylonitrile (PAN) nanofiber-supported Zr-based
MOF-808 via co-electrospinning for the adsorption of Cd2+ and Zn2+ from an aqueous
environment. The glass transition temperatures (Tg) of the PAN and PAN@MOF, as
obtained from a TA Instruments DSC Q2000 V24.11 Build 124, are presented in Figure 8.
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The results were obtained by annealing approximately 5 mg of the nanomaterials for 10 min
at 150 ◦C, followed by quenching to 25 ◦C for another 10 min, and then the heating rate for
Tg measurements was 5 ◦C min−1. The DSC thermogram shows that the Tg of PAN@MOF-
808 increases slightly by 3 ◦C, to 82 ◦C as compared with the initial Tg value of 79 ◦C
for PAN. The shift is attributed to the restricted chain movement on the PAN polymer
brought about by its interaction with MOF-808. DSC is similar to TGA, it can also be used
to monitor the adsorption mechanism of heavy metals by looking at the change in heat
flow as a function of the sample temperature. The transition of heavy metal ions or guest
anions from aqueous solution to the surface MOF composites can be observed by changes
in heat flow corresponding to the endothermic and exothermic peaks.
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3.1.4. Brunauer, Emmett, and Teller Method

The measurement of the surface areas of materials is one of the studies that is con-
ducted to deduce some of the properties of materials. The most commonly used method,
developed by Brunauer, Emmett, and Teller in 1938, is the BET theory [95]. The main work-
ing principle of the BET analytical technique is associated with the amount of gas adsorbed
onto the surface of materials. The types of interactions that can occur between an adsorbate
and the adsorbent are physisorption (via van der Waals) and chemisorption (via chemical
reaction) [95,96]. After the adsorbate–adsorbent interaction, the reaction ultimately reaches
equilibrium at a particular constant temperature and relative vapor pressures denoted as
P/Po. The quantity of the adsorbed gas is determined and the result is used to produce
an adsorption isotherm. The total gas captured has a proportional relationship with the
external and internal surfaces of the adsorbent material [96,97]. The BET theory can be
derived similarly to the Langmuir theory (assumes monolayer adsorption between gaseous
atoms and the adsorbent surface). However, multilayer adsorption can occur if the surface
temperature of the adsorbent is less than the critical temperature of the adsorbate (gas
molecules). In this process, many layers of adsorbed gas molecules form; however, some
of them are not in contact with the adsorbent surface layers. The BET theory assumes
multilayer adsorption where all layers are in equilibrium and atoms on the lower layers
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serve as adsorption sites for atoms on the above layers and the BET equation is expressed
by the following Equation (9):

P/Po

n
(

1 − P
Po

) =
1

nmC
+

C − 1
nmC

(
P
Po

)
(9)

where n and nm denote the specific amount and monolayer capacity of the gas adsorbed,
respectively. C represents the BET constant relating to the monolayer adsorption energy
and it can be used to determine the shape of the isotherm [95,96,98–103].

The BET isotherms can form six different curves. Type I isotherms, which are reversible,
have two patterns and are obtained from microporous solids having micropore widths that
are below ≈1 nm. Type II isotherms are common for compounds that are nonporous or macro-
porous and are also reversible. Type III isotherms are achieved when the adsorbent−adsorbate
interactions are weak and the monolayer surface coverage data are not given. Type IV isotherms
have two patterns that are related to the width of the pores. However, type IV isotherms are
reduced to type VI isotherms if the size of the width is higher than the critical width. Type
V isotherms are observed at low P/Po ranges and result from weak interactions between the
adsorbent and adsorbate. Type VI isotherms are usually obtained over multilayer adsorp-
tion on substances having extremely uniform nonporous surfaces. The stepwise-shaped
curves depend on the material, gas, and temperature [95,101,103,104].

The BET technique has been used to deduce the surface area, pore volume, and pore
diameter of MOFs and MOF composites. From the reported literature, MOFs have been
described as highly porous materials with very high surface areas that can reach over
3000 m2 g−1. Furthermore, the pore volume and pore diameter that correspond to the
specific surface areas of MOFs can be determined. The surface areas and pore volumes of
MOFs both enable MOFs to be good host that can accommodate a variety of guest molecules.
Since the adsorption of heavy metal ions by MOF composites is a surface phenomenon, the
BET technique has been used to confirm the interactions of MOF materials with the heavy
metal ions. During adsorption, these heavy metal ions penetrate into the pores of MOF
composites resulting in a reduction in the surface area and subsequently the pore volume
decreases indicating that there are some molecules occupying their space. Such information
can be obtained by an analysis of an MOF composite after the adsorption. In a study
reported by Luo and his colleagues [105], MIL−101(Cr) was prepared and functionalized
with ethylenediamine (ED) for the adsorption of Pb(II) ions from an aqueous solution.
The BET surface areas of MIL−101(Cr) and ED−MIL−101(Cr) are shown in Figure 9a.
The isotherm curves demonstrate a type I behavior and the obtained BET surface area of
2290 m2 g−1 for MIL−101(Cr) decreases significantly after grafting with 2 and 5 mmol of
ED to 1270 and 347 m2 g−1, respectively. Furthermore, the corresponding pore volume
of 1.4 cm3 g−1 for MIL−101(Cr) shows the same trend of decreasing to 0.74 cm3 g−1 for
2 mmol ED and 0.28 cm3 g−1 for 5 mmol. The reduction in the porosity is attributed
to the occupation of some pores on the MIL−101(Cr) by the ED moieties after surface
modification, and thereby, preventing the adsorption of N2 molecules. In another study,
the porous nature of the prepared AHPP-MOF composite was deduced from ASAP-2020
plus, Micromeritics, USA.

The N2 adsorption-desorption isotherm curves before and after Pd(II) adsorption are
represented in Figure 10a and the corresponding pore volumes are shown in Figure 10b.
From the BET isotherms of AHPP-MOF, it can be noted that the type IV behavior is the
prevailing curve. This characteristic hysteresis loop describes the porous nature of the
AHPP-MOF with the calculated specific surface area and pore volume of 180.29 m2 g−1 and
0.09 cm3 g−1 [36]. After the adsorption of Pd(II) ions, both the specific BET surface area and
pore volume decreased, confirming the occupation of the surface pores by the Pd(II). Yin
and co-workers [73] reported that the functionalization of MOF materials with melamine
increased the BET surface area of the final composite of melamine-modified MOFs. As
shown in Figure 10c, the obtained type I shape of the N2 adsorption-desorption isotherm
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curve confirmed the microporous surfaces. However, the melamine-modified MOFs curve
demonstrated a type IV isotherm shape which suggested the mesoporous natures of the
functionalized MOF surfaces. Furthermore, the specific BET surface areas of the MOFs
increased from 302.9 to 371.0 m2 g−1 for the melamine-modified MOF composites and
the behavior was supported by pore size distribution, as presented in Figure 10d. The re-
sults showed that MOFs had a narrow pore size distribution of about 20 Å, whereas the
melamine-modified MOFs displayed a fairly larger pore size distribution with mesoporous
architectures [73].
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3.2. Microscopic Characterization

Microscopy is another powerful technique that is employed to study the morphological
structures of prepared materials. The technique acquires information about the material at
a microscopic level wherein different images relating to the structures of materials before
and after functionalization are obtained. Furthermore, these techniques can be coupled
with various detectors to reveal the elements that are present in the structures as well as
their distribution on the surface of the composites.

3.2.1. Scanning Electron Microscopy—Energy Dispersive Spectroscopy

The most powerful and versatile analytical technique used for studying and analyz-
ing the morphological micro-, nanostructure, and chemical composition of materials is
scanning electron microscopy (SEM) [106]. This technique involves generating a beam of
electrons that have an energy of approximately 40 keV and is bombarded on the sample
of interest. This beam interacts with the surface of the analyte by scanning it using scan
coils [107–109]. This phenomenon results in excitation of the electrons on the surface and
subsequently causes elastic and inelastic collisions until the electrons possess enough en-
ergy to escape. This interaction is followed by scanning of electrons along parallel lines,
which emits various signals due to Auger electrons, secondary electrons, backscattered
electrons, X-rays, and photons. Then, the particles that originate from the sample are
collected by various detectors and produce an image or information about the surface
of the analyte [81,106,110–114]. The SEM instrument is mostly coupled with the energy-
dispersive X-ray spectroscopy (EDS) to attain qualitative data about the composition of
the sample of interest. EDS works by detecting and “counting” the X-rays generated by
the emitted electron beam. When an incident beam of electrons strikes the surface of an
analyte, it causes the excitation of inner shell electrons which leaves vacant sites that are
filled by electrons in the outer shell. This transition is accompanied by the release of X-ray
energy that is signified by the differences in energy amongst the inner and outer shell
electrons. The X-ray photons characterize all the elements in the periodic table except
H, He, and Li. The elements that are present as major constituents can be identified and
quantified [114–118].

The SEM-EDS technique has been employed for the morphological and elemental
studies of MOFs and MOF composites/nanocomposites. This instrument provides two-
dimensional images of higher resolution that reveal the geometry of a sample as well as
spatial variations. Furthermore, the data can be used to acquire evidence regarding the
external morphology, dispersion, and various phases of a sample [119]. Thanh et al. [120]
synthesized and compared two different MOFs (i.e., MIL−101(Cr) and Fe–MIL−101) for
the adsorption of Pb(II) from an aqueous solution. The obtained SEM images and EDS
analysis, as shown in Figure 11a, indicated an octahedral geometry with smooth facets for
MIL−101(Cr) and the elemental analysis (see Figure 11d) confirmed the presence of Cr,
O, and C which were the major constituents of MIL-101. The image of Fe–MIL−101, as
represented in Figure 11b, displayed irregular shapes mixed with octahedral structures.
Further support from an elemental analysis, as shown in Figure 11c, confirmed the ele-
mental composition of the prepared MOF with the major constituents being Fe, Cr, O,
and C.

In another study, Lim et al. [74] described the synthesis of MIL−101(Cr) −NO2 using
CrCl3 as a source of Cr and reduced it to MIL−101(Cr) −NH2 using SnCl2 for removing
Pd(II) and platinum Pt(VI) in acidic solutions. The SEM images, as shown in Figure 12, re-
vealed prismatic crystals with a diameter and length of approximately 150 nm and 1000 nm,
respectively, for both the MIL−101(Cr) −NH2 and MIL−101(Cr) −NO2. Furthermore,
the inset elemental mapping images showed the even distribution of Cr on the surface of
the MIL−101(Cr)−NH2 and MIL−101(Cr)−NO2 [74]. For example, the images obtained
after the adsorption of both the Pd (II) and Pt (IV) which were supported by elemental
mapping (see insets) are shown in Figure 13i–iv. For the PGM−loaded MIL−101(Cr) −NH2
(Figure 13i,ii), an even distribution of the prismatic crystals particles of the composite was
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observed. This was attributed to the high adsorption capacity of MIL−101(Cr) −NH2
towards Pd(II) and Pt(IV). Conversely, the low adsorption capacity of MIL−101(Cr)−NO2
showed the inconspicuous distribution of Pd(II) and Pt(IV) on the elemental mapping
images (Figure 13iii,iv).
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loading. MIL−101(Cr)−NO2 after: (iii) Pd loading; (iv) Pt loading [74].

3.2.2. Transmission Electron Microscopy—Energy Dispersive X-ray Spectroscopy

Transmission electron microscopy (TEM) is a highly effective analytical technique used
to study the internal surface morphologies of various materials. Its working principle is
similar to that of a SEM instrument and can also be coupled with various detectors to attain
data associated with the structure of the analytes. The difference with the TEM instrument
is that the energies of the incident beam of electrons are much higher as compared with
the SEM instrument [112,121,122]. This beam of primary/incident electrons, with energies
between 80 and 300 keV, passes through lenses where it is filtered and focussed on the
sample of interest. The beam of electrons penetrates into the sample and inelastically
collides with the inner atoms, resulting in the emission of secondary electrons and X-rays.
The emitted electrons that are scattered through smaller angles in all directions are limited
and focussed onto the projector lens by the objective aperture. Subsequently, the image is
collected onto the detector screen and its contrast is enhanced by altering the voltage from
the gun [123–125]. High-quality images with more information about a sample are formed
due to the fact that the fast-moving electrons having shorter wavelengths. Many researchers
have used TEM coupled with an energy dispersive X-ray spectroscopy (EDX) detector to
study and obtain evidence relating to the structure, texture, shape, and size of MOFs and
their composites [124,126]. For example, Lv and his colleagues [127] compared the internal
morphologies of prepared MIL−101(Cr) and MIL−101(Cr)−NH2 which were synthesized
via the solvothermal method with the use of dimethylformamide (DMF). The MIL−101(Cr)
was functionalized with amino functional groups to form MIL−101(Cr)−NH2 which was
employed for removing Pb, Cu, and Fe metal ions. As shown in Figure 14a, the synthesized
MIL−101 exhibited a hexagonal prismatic structure which remained intact after the intro-
duction of amino groups, as depicted by Figure 14b. Abedidni et al. [128] hydrothermally
synthesized MIL−101 followed by post-modification with cuprous oxide nanoparticles
(Cu2O) for the adsorptive equilibria and kinetics separation of propylene. The obtained
TEM images of the MIL−101(Cr) and 12%Cu@MIL−101(Cr) are presented in Figure 14c,d,
respectively. The evidence revealed that Cu2O nanoparticles with sizes ranging between 1
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and 3 nm were homogenously dispersed within the MIL−101(Cr) pores, and confirmed
the successful reduction of the metal precursor into nanoparticles. In another study con-
ducted by Luo and co-workers, MIL−101(Cr) with improved adsorption capacity for Pb(II)
ions was prepared by PSM using ethylenediamine (ED) in anhydrous toluene. The authors
compared the TEM images of MIL−101(Cr) before and after modification, as represented in
Figure 15a,b. The MIL−101(Cr) showed octahedral structures with smooth surface, however,
after the incorporation of ED, the surface became rougher [105].
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In contrast, a study on the post-synthetic modification (PSM) of MIL−101 with amidoxime
(AO) for removing uranium ions from seawater, which was conducted by Liu et al. [129],
demonstrated a significant effect on the structure of MIL-101. The authors initially choloro
methylated MIL−101 and obtained an octahedral structure with a uniform dispersion of the
Cl element, as shown by TEM-EDS images of MIL−101−CM in Figure 15c,e. This was fol-
lowed by grafting with diaminomaleonitrile before introducing amidoxime which resulted
in an almost spherical morphology (Figure 15d). The significant change in the structure
indicated the successful incorporation of AO and was further supported by the TEM-EDS
mapping image which depicted a uniformly dense dispersion of N element from the AO
on the MIL−101−AO (Figure 15f).

3.3. Spectroscopic Characterization
3.3.1. Fourier Transform Infrared Spectroscopy

The main working principle of Fourier transform infrared spectroscopy (FTIR) is
based on the interactions of molecules/compounds with light in the infrared region of
the electromagnetic spectrum. This analytical technique offers the opportunity to obtain
information about the functional groups that are present in a sample (solid, liquid, or
gas), as well as the possibility of understanding the molecular bonds that exist between
matter [81,130]. In IR spectrophotometry, a beam of infrared radiation emitted from the source
is passed through an interferometer and is spectrally encoded, creating an interferogram
(i.e., constructive and destructive interferences). This is followed by the light interacting
with the sample where specific frequencies are absorbed by the sample. The resulting
vibrational frequencies due to the bonds that are present in molecules are detected and
calculated in terms of wavenumbers ranging from 4000 to 400 cm−1 [81,111,130–135]. On
the FTIR spectra, there are four regions where the different types of bonds can be clearly
analyzed. The first region, from 2500 to 4000 cm−1, corresponds to single O-H, C-H,
and N-H bonds. It is followed by triple bonds which are found in the range between
2000–2500 cm−1. The middle region, with the wavenumber range from 1500 to 2000 cm−1,
corresponds to detection of double bonds; the last area, below 1500 cm−1, is the fingerprint
region where the vibrations of carbon single bonds between the atoms produce overlapping
bands [131]. The FTIR technique has been widely used to deduce the functional groups
that form as part of the MOF structure as well as to understand its interaction with other
materials after composite and nanocomposite formation for the removal of heavy metal
ions from wastewater [4,59,62,136,137].

For example, Luo et al. [105] synthesized MIL−101(Cr) which was functionalized with
ED for the adsorption of Pb(II) ions from wastewater. The amount of ED was varied to
achieve the optimum removal of Pb(II), and the results are shown in Figure 16. The IR spec-
tra for the functionalized ED−MIL−101 demonstrated peaks at 1581, 1051, and 882 cm−1

which were attributed to the N−H plane stretching, C−N bond stretching, and −NH2
stretching, respectively. Furthermore, the broad band between 3434 and 3231 cm−1, which
was attributed to the −NH stretching, showed an increase in the intensity with an increase
in the amount (2, 5, and 10 mmol) of ED grafted.

In another study, MIL-101-NH2 was functionalized with thymine for the adsorption
of Hg(II) ions from wastewater [138]. The IR spectrum of the resulting composite after
adsorption was also obtained and compared with MIL−101−thymine, as presented in
Figure 17a(i). The authors numbered the carbon atoms on MIL-101-thymine for easy interpre-
tation. The spectrum of MIL−101−NH2 revealed peaks at 1658 cm−1 which were attributed
to the stretching vibrations of C2=O and C7=O. Moreover, stretching vibration absorption
bands of C3–C5 and C6–N were observed at 1124 and 1085 cm−1, respectively. All these
distinct peaks were detected on the IR spectrum of MIL−101-thymine (Figure 17a(ii)).
However, after the adsorption of Hg(II) ions, the absorption peaks of C2=O and C7=O
became broad with a shift to higher wavenumbers (Figure 17a(iii)). Jalayeri and co-workers
reported on the IR spectra of MIL−101(Cr) which was functionalized with amine moieties
via the organic linker (AFMIL) for the removal of hexavalent chromium from an aqueous
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solution [139]. The spectrum for the AFMIL, as presented in Figure 17b(i), showed a peak
at 3381 cm−1 which was attributed to stretching vibrations of the amino moieties. Fur-
thermore, the N–H bending vibrations and C–N stretching of the aromatic amines were
observed at 1621 and 1340 cm−1, respectively. After the adsorption of hexavalent Cr, the IR
spectrum (Figure 17b(ii)) showed some reduction in peak intensity as well as a slight shift
to higher wavenumbers, which confirmed the chemical interaction between Cr and amino
moieties. In addition, the IR is also one of the characterization techniques that can be uti-
lized to understand the mechanism of heavy metal adsorption using MOFs. Peng et al. [24]
showed the IR spectra of MOF−808−EDTA before and after for La3+, Hg2+, and Pb2+

adsorption and revealed the shift of C-N vibration mode from 1214 cm−1 to 1220 cm−1,
1242 cm−1, and 1250 cm−1. The shift in bands indicated the strong interaction between
heavy metal ions and the grafting of the EDTA functional groups on the framework, which
resulted in the chelate complex after adsorption.
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3.3.2. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) is an analytical technique that uses the photo-
electric effect to obtain information about the chemical nature of a material at the atomic
and molecular levels [81,113]. This surface-sensitive method involves the irradiation of an
X-ray beam onto the surface of a sample. The atoms in the sample absorb the incident light
and result in the emission of core electrons of which their kinetic energy (KE) is measured
according to Equation (10):

hν = BE + KE + Φspec (10)

where hv denotes the energy of the X-ray and Φspec is the spectrometer work function.
The rearranged form of Equation (11) is used to calculate the binding energy (BE):

BE = hv − KE − Φspec (11)

The XPS spectrum is obtained as a function of the number of photoelectrons spotted
against the BE. The photoelectron peaks are extracted from the orbital of the elements
they were emitted from, and their corresponding BE permit their recognition. The peak
intensities generated by the photoelectrons are directly proportional to the concentrations
of the elements and can be used for their quantification. The XPS techniques can be used
quantitatively to further reveal data regarding the empirical formula, the electronic and
chemical states of elements (excluding hydrogen and helium) found within a sample, as
well as their interactions with metal centers [81,111,113,140–142]. In the adsorption of
heavy metal ions from wastewater by MOF materials, this technique has been widely used
to study and understand the type of interactions taking place as well as to support the
deduced adsorption mechanism.

For example, Lim and co-workers studied the interactions of MIL−101(Cr)−NO2 and
MIL-101(Cr)-NH2 with Pd(II) and Pt(IV) ions in order to understand the mechanism of
adsorption [74]. Initially, the XPS N 1s spectra were obtained to confirm the reduction of
the NO2 to NH2, as represented in Figure 18a. The MIL−101(Cr)−NO2 spectrum showed a
peak at 405.6 eV, which was attributed to the nitro functional group that was attached to the
phenyl ring (PhNO2). However, the peak diminished upon the reduction process, as the
spectrum for MIL−101(Cr)−NH2 revealed a new peak at 399.2 eV which was ascribed to the
amino group that was attached to the phenyl ring. After the adsorption of Pd and Pt ions, the
authors obtained and compared the XPS N 1s spectra for metal-loaded MIL−101(Cr)−NH2
with the pristine, as shown in Figure 18b. The spectrum in (Figure 18b(1)) revealed two
intense peaks at 399.2 and 400.2 eV which were attributed to the N in PhNH2 and PhNH3

+

(interaction with H+ and Cl− that remained after the synthesis process). As compared
with the Pd-loaded MIL−101(Cr)−NH2 (Figure 18b(2)), there was an increase in intensity
of the peak at 400.2 eV and a decrease in the intensity of the peak at 399.2 due to the
electrostatic interaction of PhNH3

+ with the [PdCl4]2−. Similar trends were also observed
on the spectrum (Figure 18b(3)) of Pt-loaded MIL−101(Cr)−NH2, where the electrostatic
interaction was between PhNH3

+ and [PtCl6]2−. In addition, the appearance of a new
peak at 401.9 eV was also observed, which was due to the partial oxidation of PhNH2
to PhNO2. Furthermore, the Pd 3d spectrum (Figure 18b(5)) revealed a peak at 337.8 eV
corresponding to the [PdCl4]2− adsorbed on the MIL−101(Cr)−NH2. For the Pt 4f spec-
trum (Figure 18b(7)), two major peaks of (4f 7/2) attributed to the [PtCl6]2− and [PtCl4]2−

were observed at 74.8 and 72.6 eV, respectively. Conversely, the MIL−101(Cr)−NO2 N 1s
spectrum, as shown in Figure 18c(1–3), showed no significant effects on the adsorption of
both the Pd and the Pt, as the peak at 405.6 eV showed no adverse effects which was further
supported by the low intensity observed on the Pd 3d and Pt 4f spectra. Moreover, the
excellent performance of MOF composites for heavy metal adsorption could be traceable to
the electrostatic or strong chelation. The wide-scan XPS spectra indicated that the metal ions
were adsorbed in the pores of MOF. In the case of functionalized MOF, the N 1s core level
was shifted to higher binding energy upon metal loading (399.8 eV, 399.5 eV, and 399.9 eV
for La3+@MOF−808−EDTA, Hg2+@MOF−808−EDTA, and Pb2+@MOF−808−EDTA, re-
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spectively) as compared with the as-synthesized MOF−808−EDTA (399.2 eV) [26]. This
showed that the valence of N in EDTA was changed because of the interaction with the
guest metal ions.
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Figure 18. (a) XPS for N 1s spectra of MIL−101(Cr)−NH2 and MIL−101(Cr)−NO2; (b) MIL−
101(Cr)−NH2 after Pd loading (2) Pd and Pt-loading (3), Pd 3d and Pt 4f of pristine ((4) and (6)), and
metal-loaded MIL−101(Cr)−NH2 ((5) and (7)); (c) XPS for N 1s of MIL−101(Cr)−NO2 (1) after Pd
loading (2), Pt loading (3), XPS for Pd 3d and Pt 4f of MIL−101(Cr)−NO2 ((4) and (6)), and after
metal-loading ((5) and (7)) [74].

4. Conclusions

Some positive aspects of adsorption technology have been demonstrated in the re-
mediation of wastewater containing heavy metal ions. Adsorption technology has been
proven to be efficient in removing pollutants from contaminated water owing to its ease of
operation and low cost. MOF polymers have shown some potential activity as adsorbents
for the adsorption of metal ion pollutants. These materials have very interesting inorganic–
organic coordination structures that can be easily tailored to suit a specific application.
Furthermore, their surface functionality can be improved by introducing other materials
such as metal oxides, nanoparticles, and active functional groups, for the purpose of remov-
ing heavy metal ions. MOF composites that have been synthesized and modified for the
adsorption of heavy metal ions have been characterized. Hence, in this review, we focussed
on various analytical methods that have been employed in the reported studies of heavy
metal adsorption. The combination of these techniques has provided a significant amount
of data that assist in studying the behavior of MOF composites and their interactions with
metal ions. Microscopic characterization techniques coupled with EDS/X were able to
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detect some elements that were adsorbed by MOFs. Further supports were also provided
by the FTIR spectroscopy, wherein we observed the vibrational peaks of the introduced
functional groups as well as a reduction in the peaks after adsorption. The XPS confirmed
the adsorption of heavy metal ions by looking at the orbital of the active elements on MOF
composites as well as the orbitals of the targeted metal ion. In conclusion, this review
focussed on understanding the role that each analytical technique has in order to determine
the efficiency of the adsorption process.
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115. Akkaş, E.; Akin, L.; Çubukçu, H.E.; Artuner, H. Application of Decision Tree Algorithm for classification and identification of

natural minerals using SEM-EDS. Comput. Geosci. 2015, 80, 38–48. [CrossRef]
116. Lovejoy, T.C.; Ramasse, Q.M.; Falke, M.; Kaeppel, A.; Terborg, R.; Zan, R.; Dellby, N.; Krivanek, O.L. Single atom identification by

energy dispersive x-ray spectroscopy Single atom identification by energy dispersive x-ray spectroscopy. Appl. Phys. Lett. 2012,
154101, 2–6. [CrossRef]

117. Hodoroaba, V.D. Energy-dispersive X-ray spectroscopy (EDS). In Characterization of Nanoparticles; Elsevier: Amsterdam, The
Netherlands, 2020; pp. 397–417.

118. Shindo, D.; Tetsuo, O. Energy dispersive x-ray spectroscopy. In Analytical Electron Microscopy for Materials Science; Springer: Tokyo,
Japan, 2002; pp. 81–102.

119. Bedia, J.; Muelas-ramos, V.; Peñas-garz, M.; Almudena, G.; Rodr, J.J.; Belver, C. A Review on the Synthesis and Characterization
of Metal Organic Frameworks for Photocatalytic Water Purification. Catalysts 2019, 9, 52. [CrossRef]

120. Thanh, H.T.M.; Phuong, T.T.; le Hang, P.T.; Toan, T.T.; Tuyen, T.N.; Mau, T.X.; Khieu, D.Q. Comparative study of Pb(II) adsorption
onto MIL-101 and Fe-MIL-101 from aqueous solutions. J. Environ. Chem. Eng. 2018, 6, 4093–4102. [CrossRef]

121. Wang, Z.L. New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 2003, 15, 1497–1514.
[CrossRef]

122. McNeill, A. PLA2G6 Mutations and Other Rare Causes of Neurodegeneration with Brain Iron Accumulation. Curr. Drug Targets
2012, 13, 1204–1206. [CrossRef] [PubMed]

123. Bogner, A.; Jouneau, P.H.; Thollet, G.; Basset, D.; Gauthier, C. A history of scanning electron microscopy developments: Towards
‘wet-STEM’ imaging. Micron 2007, 38, 390–401. [CrossRef]

124. Wang, Z.L. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. 2000, 104,
1153–1175. [CrossRef]

125. Madsen, J.; Susi, T. The abTEM code: Transmission electron microscopy from first principles. Open Res. Eur. 2021, 1, 1–30.
[CrossRef]

126. Denny, M.S.; Parent, L.R.; Patterson, J.P.; Meena, S.K.; Pham, H.; Abellan, P.; Ramasse, Q.M.; Paesani, F.; Gianneschi, N.C.; Cohen,
S.M. Transmission Electron Microscopy Reveals Deposition of Metal Oxide Coatings onto Metal−Organic Frameworks. J. Am.
Chem. Soc. 2018, 140, 1348–1357. [CrossRef]

127. Lv, S.; Liu, J.; Li, C.; Zhao, N.; Wang, Z. A novel and universal metal-organic frameworks sensing platform for selective detection
and efficient removal of heavy metal ions. Chem. Eng. J. 2019, 375, 122111. [CrossRef]

128. Abedini, H.; Shariati, A.; Khosravi-nikou, M.R. Separation of propane / propylene mixture using MIL-101 (Cr) loaded with
cuprous oxide nanoparticles: Adsorption equilibria and kinetics study. Chem. Eng. J. 2020, 387, 124172. [CrossRef]

129. Liu, L.; Fang, Y.; Meng, Y.; Wang, X.; Ma, F.; Zhang, C. E ffi cient adsorbent for recovering uranium from seawater prepared
by grafting amidoxime groups on chloromethylated MIL-101 (Cr) via diaminomaleonitrile intermediate. Desalination 2020,
478, 114300. [CrossRef]

http://doi.org/10.1021/ja071174k
http://www.ncbi.nlm.nih.gov/pubmed/17580944
http://doi.org/10.1016/j.ssc.2020.114004
http://doi.org/10.1021/je501115m
http://doi.org/10.1007/978-0-387-39620-0_1
http://doi.org/10.1039/c3ja50026h
http://doi.org/10.1002/sca.21041
http://www.ncbi.nlm.nih.gov/pubmed/22886950
http://doi.org/10.1016/j.cageo.2015.03.015
http://doi.org/10.1063/1.3701598
http://doi.org/10.3390/catal9010052
http://doi.org/10.1016/j.jece.2018.06.021
http://doi.org/10.1002/adma.200300384
http://doi.org/10.2174/138945012802002401
http://www.ncbi.nlm.nih.gov/pubmed/22515743
http://doi.org/10.1016/j.micron.2006.06.008
http://doi.org/10.1021/jp993593c
http://doi.org/10.12688/openreseurope.13015.2
http://doi.org/10.1021/jacs.7b10453
http://doi.org/10.1016/j.cej.2019.122111
http://doi.org/10.1016/j.cej.2020.124172
http://doi.org/10.1016/j.desal.2019.114300


Polymers 2022, 14, 3613 30 of 30

130. Mohamed, M.A.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A. Fourier Transform Infrared (FTIR) Spectroscopy; Elsevier
B.V.: Amsterdam, The Netherlands, 2017.

131. Dutta, A. Fourier transform infrared spectroscopy. In Spectroscopic Methods for Nanomaterials Characterization; Elsevier: Amsterdam,
The Netherlands, 2017; pp. 73–93.

132. Blum, M.; John, H. Historical perspective and modern applications of Attenuated Total Reflectance–Fourier Transform Infrared
Spectroscopy (ATR-FTIR). Drug Test. Anal. 2011, 4, 298–302. [CrossRef] [PubMed]

133. Ismail, A.A.; van de Voort, F.R.; Sedman, J. Chapter 4 Fourier Transform Infrared Spectroscopy: Principles and Applications. In
Techniques and Instrumentation in Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 1997.

134. Bacsik, Z.; Mink, J.; Keresztury, G. FTIR Spectroscopy of the Atmosphere. I. Principles and Methods. Appl. Spectrosc. Rev. 2004, 39,
295–363. [CrossRef]

135. Taylor, P.; Bunaciu, A.A.; Aboul-enein, H.Y. Application of Fourier Transform Infrared Spectrophotometry in Pharmaceutical
Drugs Analysis Application of Fourier Transform Infrared Spectrophotometry in Pharmaceutical. Appl. Spectrosc. Rev. 2010, 45,
206–219. [CrossRef]

136. Ji, C.; Wu, D.; Lu, J.; Shan, C.; Ren, Y.; Li, T.; Lv, L.; Pan, B.; Zhang, W. Temperature regulated adsorption and desorption of heavy
metals to A-MIL-121: Mechanisms and the role of exchangeable protons. Water Res. 2021, 189, 116599. [CrossRef] [PubMed]

137. Wang, X.; Manikoff, J.N. Metal-Organic Frameworks for Mercury Sensing and Removal. Gen. Chem. 2018, 4, 180003. [CrossRef]
138. Luo, X.; Shen, T.; Ding, L.; Zhong, W.; Luo, J.; Luo, S. Novel thymine-functionalized MIL-101 prepared by post-synthesis and

enhanced removal of Hg2+ from water. J. Hazard. Mater. 2016, 306, 313–322. [CrossRef]
139. Jalayeri, H.; Aprea, P.; Caputo, D.; Peluso, A.; Pepe, F. Synthesis of amino-functionalized MIL-101(Cr) MOF for hexavalent

chromium adsorption from aqueous solutions. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100300. [CrossRef]
140. Engelhard, M.H.; Droubay, T.C.; Du, Y. X-ray photoelectron spectroscopy applications. In Related Information: Encyclopedia of

Spectroscopy and Spectrometry, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 716–724. [CrossRef]
141. Stevie, F.A.; Donley, C.L. Introduction to x-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 2020, 38, 063204. [CrossRef]
142. Huang, H.; Qiao, Y.; Yuan, Y.; Zhang, J. Surface functionalization for heterogeneous catalysis. In Encyclopedia of Nanomaterials;

Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–13. [CrossRef]

http://doi.org/10.1002/dta.374
http://www.ncbi.nlm.nih.gov/pubmed/22113892
http://doi.org/10.1081/ASR-200030192
http://doi.org/10.1080/00387011003601044
http://doi.org/10.1016/j.watres.2020.116599
http://www.ncbi.nlm.nih.gov/pubmed/33166920
http://doi.org/10.21127/yaoyigc20180003
http://doi.org/10.1016/j.jhazmat.2015.12.034
http://doi.org/10.1016/j.enmm.2020.100300
http://doi.org/10.1016/B978-0-12-409547-2.12102-X
http://doi.org/10.1116/6.0000412
http://doi.org/10.1016/B978-0-12-822425-0.00073-7

	Introduction 
	Analytical Methods for Heavy Metal Analysis 
	Inductively Coupled Plasma Mass Spectrometry 
	Inductively Coupled Plasma Optical Emission Spectroscopy 
	Flame Atomic Absorption Spectrometer 
	Ultraviolet-Visible Spectroscopy 

	Characterization of MOF Composites for Heavy Metal Ions Adsorption 
	Physical Characterization 
	X-ray Diffraction 
	Thermal Gravimetric Analysis 
	Differential Scanning Calorimetry (DSC) 
	Brunauer, Emmett, and Teller Method 

	Microscopic Characterization 
	Scanning Electron Microscopy—Energy Dispersive Spectroscopy 
	Transmission Electron Microscopy—Energy Dispersive X-ray Spectroscopy 

	Spectroscopic Characterization 
	Fourier Transform Infrared Spectroscopy 
	X-ray Photoelectron Spectroscopy 


	Conclusions 
	References

