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Abstract: Bio-based plasticizers derived from renewable resources represent a sustainable replace-
ment for petrochemical-based plasticizers. Vegetable oils are widely available, non-toxic and
biodegradable, resistant to evaporation, mostly colorless and stable to light and heat, and are a
suitable alternative for phthalate plasticizers. Plasticized poly(lactic acid) (PLA) materials containing
5 wt%, 10 wt%, 15 wt% and 20 wt% natural castor oil (R) were prepared by melt blending to improve
the ductility of PLA. Three castor oil adducts with maleic anhydride (MA), methyl nadic anhydride
(methyl-5-norbornene-2,3-dicarboxylic anhydride) (NA) and hexahydro-4-methylphthalic anhydride
(HA), previously synthesized, were incorporated in a concentration of 15 wt% each in PLA and
compared with PLA plasticized with natural R. The physico-chemical properties of PLA/R blends
were investigated by means of processability, chemical structure, surface wettability, mechanical, rhe-
ological and thermal characteristics. The addition of natural and modified R significantly improved
the melt processing by decreasing the melt viscosity by ~95%, increased the surface hydrophobicity,
enhanced the flexibility by ~14 times in the case of PLA/20R blend and ~11 times in the case of
PLA/15R-MA blend as compared with neat PLA. The TG/DTG results showed that the natural R
used up to 20 wt% could significantly improve the thermal stability of PLA, similar to the maleic
anhydride-modified R. Based on the obtained results, up to 20 wt% natural R and 15 wt% MA-,
HA- or NA-modified R might be used as environmentally friendly plasticizers that can improve the
overall properties of PLA, depending on the intended food packaging applications.

Keywords: poly(lactic acid); castor oil; plasticizer; mechanical properties; rheology; thermal properties

1. Introduction

Environmentally friendly plasticizers derived from renewable resources are considered
sustainable substitutes for petrochemical-based plasticizers. The use of vegetable oils as
an alternative to fossil raw materials for preparing chemical products is regarded as a
modern challenge from both an environmental and economic point of view. Due to their
wide availability, non-toxicity and biodegradability, resistance to evaporation, and being
mostly colorless and stable to light and heat, vegetable oils are a suitable alternative for
phthalate plasticizers [1,2].

Castor oil, also known as ricinum oil (R), produced by pressing from castor (Ricinus
communis) beans, is a multipurpose vegetable oil used since ancient times, considered
a vegetable oil due to the high amount of monounsaturated fatty acid and bioactive
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compounds. The fatty acid profile comprises mainly ricinoleic acid and other minor
acids such as stearic, oleic, and palmitic acid. Triricinolein constitutes the predominant
triglyceride component in the oil. Minor biological compounds that confer oxidation
stability, anti-inflammatory, and antioxidant properties to R include carotenoid, tocopherol,
tocotrienol, phospholipid, phytosterol, phytochemical, and phenolic compounds [3].

Castor oil has long been considered medicinal oil, especially for its purgative or
laxative properties as a remedy for constipation [4]. Castor oil is classified as non-edible
oil due to its nauseant properties [5]. Therefore, food-grade castor oil is only found in
applications in the food industry in food additives, flavorings, and candy. The high value
of castor oil is given by the high content of ricinoleic acid, thus finding multiple versatile
application possibilities in the chemical industry. Hence, castor oil cannot compete with
food sources due to its utilization as a plasticizer. Castor oil is compatible with many natural
and synthetic resins, polymers, and waxes [6]. The European Union approves it for food
contact use without any restrictions. R has found applications as a raw material for a variety
of polymers such as polyamides (i.e., Nylon-11), [7] polyurethanes [8,9] or interpenetrating
networks [10,11]. The hydrogenated R derived from 12-hydroxystearic castor oil, glycerin
and acetic acid was used as plasticizer for poly(vinyl chloride) processing [12,13]. R is unique
because it carries a special ricinoleic acid, which has an 18-carbon backbone with a hydroxy
group on the 12-carbon atom and a cis double bond between carbons 9 and 10 (Scheme 1).
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The hydroxyl in the R molecule can undergo esterification to obtain more polar groups
to improve its compatibility with polar materials such as PVC and nitrile rubber (NBR) [15].
In another study, unmodified and modified R were employed to increase the reactivity
towards diphenylmethane diisocyanate (MDI), a component used to process bio-based
polyurethanes [16]. The pyrolysis process of R led to the valuable synthesized carbon
nanorods (CNR), which has application for detecting volatile biomarkers [17].

Poly(lactic acid) (PLA) is a thermoplastic polymer obtained from renewable resources
showing several benefits such as biodegradability, biocompatibility and compostability. The
Food and Drug Administration has authorized this environmentally friendly polymer for
human use in biomedical and food-contact applications. PLA and its blends and compos-
ites have been extensively used in food packaging [1,18,19], medical applications [20–22],
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and environmental protection [23,24]. Although PLA shows good processability, high
tensile strength and stiffness, it has poor thermal, flexibility, impact strength and barrier
properties that limit PLA end-use application [25]. In order to overcome the limitations as-
sociated with PLA, strategies like blending of PLA with different plasticizers such as acetyl
tri-n-butyl citrate (ATBC), poly(ethylene glycol) (PEG) [26,27], acetyl tris(2-ethylhexyl)
citrate, tris(2-ethylhexyl) citrate, and poly(ethylene glycol)bis(2-ethylhexanoate) [28] or
other polymers [29–32] or incorporation of functional filler agents [25,33] in the PLA matrix
are proposed.

More attention is being paid to environmental, biodegradable and low-toxic vegetable
oil-based plasticizers used in polyesters. Literature data revealed few studies relating to
modifying PLA properties with R. For example, PLA, talc and 1% R were used to prepare
dental mouth mirror products by injection molding technology [34]. It was found that the
R helps to increase the impact strength up to 56% due to the improved adhesion between
the PLA and talc. In another paper, unmodified R was used for covering PLA pellets,
which were further combined with lignin with an application for the healthcare field by 3D
printing [35]. The results showed that the R did not influence the contact angle values of the
materials. Robertson et al. [36] mentioned that the addition of 5 wt% R to poly(L-lactide)
(PLLA) showed no plasticization of the PLLA, although it significantly enhances the overall
tensile toughness. The authors synthesized poly(ricinoleic acid)-PLLA diblock copolymers
and used them as compatibilizers for the PLLA/R blends [36].

The novelty of the current work lies in investigating the melt processing, structural
modifications, surface wettability, dynamic melt rheology, and mechanical and thermal
stability of PLA blended with 5, 10, 15 and 20 wt% natural R. We compared it with
PLA containing 15 wt% R adducts with maleic anhydride (MA), methyl nadic anhydride
(methyl-5-norbornene-2,3-dicarboxylic anhydride) (NA) and hexahydro-4-methylphthalic
anhydride (HA), respectively, previously synthesized and characterized by two of the
co-authors. This approach has not been documented earlier to the best of our knowledge.
The modified castor oils were used as a strategy to enhance the hydrophobic character
and overall mechanical properties related to the same amount of natural castor oil and
to evaluate the differences between the types of cyclic anhydrides on the rheological,
mechanical and thermal performance of PLA/modified castor oil materials.

2. Materials and Methods
2.1. Materials

PLA IngeoTM Biopolymer 2003D supplied by NatureWorks LLC (Minnetonka, MN, USA),
having a specific gravity of 1.25 g·cm−3, Mw of 1.43 × 105 g·mol−1, Mn of 7.54 × 104 g·mol−1

and dispersity index (ÐM) of 1.88 was used in this study.
Castor (Ricinus communis) oil (R) is a commercial product containing 90% ricinoleic

acid, with a density of 950 kg m−3, iodine value of 83 g I2 100 g−1, a hydroxyl value of
161 mg g−1, purchased from the local market (Herbavit, Romania).

Castor oil, a triglyceride ester of ricinoleic acid containing up to 2.7 hydroxyl groups
per molecule, was converted with three cyclic anhydrides into esters with carboxyl in
their structures by Mustata and Tudorachi [37]. Three castor oil adducts with maleic anhy-
dride (MA) (R-MA), methyl nadic anhydride (methyl-5-norbornene-2,3-dicarboxylic anhy-
dride) (NA) (R-NA) and hexahydro-4-methylphthalic anhydride (HA) (R-HA) (Scheme 2)
were synthesized in the presence of stannous octoate as a catalyst, at a molar ratio 1/2.7
(oil/anhydride), reaching conversions greater than 99 wt% in medium temperature con-
ditions. The modified vegetable oils were further characterized, the acid values being
130 mg g− 1 for R-MA, 132 mg g− 1 for R-NA and 134 mg g− 1 for R-HA.
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2.2. Sample Preparation

Before processing, PLA pellets were dried at 60 ◦C for 24 h in a vacuum oven to remove
moisture that might lead to degradation of macromolecular chains (moisture content < 200 ppm).
The melt processing of the PLA with natural R and modified R (R-MA, R-NA and R-HA)
was realized during melt mixing for 8 min at a temperature of 175 ± 5 ◦C using a Thermo
Scientific PolyLab QC mixer provided with a mixing chamber of 50 cm3, the screws speed
of counter-rotating rotors being of 60 rotations/minute. The homogenized melted mixtures
were hot-pressed at 175 ◦C on a laboratory LabTech LP-20B hydraulic press (LabTech,
Samut Prakan, Thailand) using a preheating for 5 min at 100 bar and a pressing step for
3 min, at a pressure of 147 bar, followed by cooling in order to obtain thin homogeneous
plates with dimensions of 150 × 150 × 1 mm. Specimens were prepared from these plates
for testing of tensile (‘dog bone’ shape), Fourier transform-infrared spectroscopy (FT-IR),
contact angle, differential scanning calorimetry (DSC), thermogravimetry (TG), and dy-
namic rheology. The compositions, visual aspects of 1 mm thickness samples and labeling
of the resulting materials based on PLA and plasticizers are presented in Table 1. All
obtained materials were homogeneous and transparent, with a very low tendency of opac-
ity for PLA-based materials containing modified R but no yellowness due to the thermal
degradation during processing and pressing steps. A white paper with a black line was
used as the background to observe the transparency better.

Table 1. Labeling, composition and visual aspects of neat PLA and PLA-based materials containing
unmodified and modified castor oil.

Sample PLA
(wt%)

Natural Castor
Oil (wt%)

Modified Castor
Oil (wt%) Visual Aspect

PLA 100 0 0
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Table 1. Cont.

Sample PLA
(wt%)

Natural Castor
Oil (wt%)

Modified Castor
Oil (wt%) Visual Aspect

PLA/15R-MA 85 0 15
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Since the torque is proportional to the shear stress (SI unit: Pa or N m−2), and the rotor
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η = K(TQfin/S) (Pa·s) (1)

P = TQfin × 2πS/60 (W) (2)

where: K is a constant dependent on temperature, TQfin is the torque at the end of process-
ing time (N·m), and S refers to the rotor speed (rotations/minute, rpm).

2.3.2. Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR)

The infrared spectra were recorded in ATR mode using a Brucker ALPHA (Platinum
ATR) FTIR spectrometer (Bruker Optics, Ettlingen, Germany) equipped with a diamond
crystal in the 3050–3600 cm−1 region, with a resolution of 4 cm−1 using air as background,
all spectra representing the average of 20 scans. Three recordings were performed for
each sample, and the evaluation was made on the average spectrum obtained from these
recordings. The processing of the spectra has been done with OPUS 7.5 program. Prior to
each test, a background spectrum was obtained to compensate for the humidity effect and
the presence of carbon dioxide by spectra subtraction.

2.3.3. Water Contact Angle Measurements

Water contact angle (WCA) measurements were used to determine the influence of R
incorporation over the hydrophobicity of the PLA surface. The wettability of surfaces was
determined by static contact angle measurements performed on a CAM-200 goniometer
(KSV Instruments Ltd., Helsinki, Finland). The water contact angle was determined by the
sessile drop method, at room temperature and controlled humidity, within 5 s after placing
1 µL drops of liquid on the sample’s surface. A video camera recorded the evolution of
the droplet shape, and image analysis software was used to determine the contact angle
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values. At least 10 measurements were performed on a sample, and results from three
different samples were considered for statistical determination of the final average value of
a material.

2.3.4. Stress-Strain Measurements

Tensile properties such as tensile strength, elongation at break and Young’s modulus
were determined according to EN ISO 527-2:2011 using the Lloyd LR10K machine (Lloyd.
Instruments Ltd., Bognor Regis, UK) on “dog bone” specimens of 1 mm thickness and
40 mm length taken from plates obtained by hot-pressing. The stretching of the samples
took place using a load cell of a maximum of 500 N at a crosshead speed of 10 mm min−1.
At least seven specimens were measured for each composition, and the average value
was reported. The specimens were conditioned under the same conditions for 24 h before
testing. All mechanical tests took place at 50% relative humidity and 23 ◦C.

2.3.5. Dynamic Rheology

Oscillatory frequency tests were performed in melt state at 175 ◦C using an Anton
Paar rheometer (MCR301, Graz, Austria) equipped with CTD450 in parallel-plate geometry
(diameter of 25 mm). The oscillatory frequency sweeps ranged from 0.05 to 500 rad/s, with
a constant strain of 10% (falling in the linear domain of viscoelasticity). The gap between
the parallel plates used during testing has been set to 1 mm.

2.3.6. Differential Scanning Calorimetry (DSC)

The thermal properties of the neat and plasticized PLA samples were determined
using a TA Instruments Q20 differential scanning calorimeter (New Castle, DE, USA) under
a nitrogen atmosphere. The samples were firstly heated at a rate of 10 ◦C min−1 from
25 ◦C to 200 ◦C, held for 2 min, and then cooled down to 25 ◦C with a cooling rate of
5 ◦C min−1. This was followed by the second heating run from 25 ◦C to 200 ◦C at a heating
rate of 10 ◦C min−1. Nitrogen was used as a furnace purge gas. A sample mass of ~7 mg
of each material was tested; triplicate samples were analyzed by DSC. Thermal parameters
such as the glass transition temperature (Tg), melt temperature (Tm), cold crystallization
temperature (Tcc), and enthalpy of melting (∆Hm) were determined from DSC spectra.

The crystallinity of the studied materials was calculated by applying Equation (3) [39],
where ∆Hm refers to the enthalpy of melting, ∆Hcc is the enthalpy of cold crystallization,
wPLA is the weight percentage of PLA in the samples and ∆H0

m is the enthalpy of melting
for 100% crystalline PLA, with a value of 93.7 J/g [40].

χc =
∆Hm − ∆Hcc

∆H0
m ∗ wPLA

∗ 100% (3)

2.3.7. Thermogravimetric Analysis (TG/DTG)

The thermal degradation was evaluated using a thermogravimetric balance model
STA 449 F1 Jupiter (Netzsch, Selb, Germany). Temperature and sensitivity calibration was
performed with standard metals (In, Sn, Bi, Zn, Al). Sample weights in the 7 to 10 mg
range were placed in Al2O3 crucibles and heated from 25 ◦C to 700 ◦C with a heating rate
of 10 ◦C min−1, Al2O3 being considered reference material. The nitrogen (99.999% purity)
was used as a purge and protective gas with a flow rate of 40 mL min−1. Data collection
was carried out with Proteus® software.

3. Results and Discussions

The incorporation of 5 to 20 wt% of natural castor oil in PLA aims to improve the melt
flow of the semicrystalline matrix, with a benefit on the melt processing of the resulting
materials, together with the enhancing effect on the flexibility and thermal stability of
brittle PLA, thus expanding its use in specific food packaging applications. Due to possible
physical interaction between the PLA matrix and anhydride-containing plasticizers, we
expect the modified castor oils to improve the hydrophobicity and overall mechanical
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properties, both regarding elongation but also inducing a reinforcement effect compared
with PLA/natural R, with a different result over the thermal stability and decomposition of
blended materials function of the used anhydride.

3.1. Evaluation of the Melt Processing

The influence of R amounts incorporated into PLA over the melt processability has
been evaluated by following the maxim torque (TQmax), torque after one minute (TQ1min)
and five minutes of mixing (TQ5min), the final torque at the end of mixing (TQfin), melt
viscosity (η) and power consumption (P) (Table 2). The torque versus processing time
curves were inserted in the Supplementary Materials (Figure S1). As already known, the
neat PLA has a semicrystalline structure that represses the polymer chain motion. Therefore,
high torques, melt viscosity and power values are recorded for the pristine PLA [18].

Table 2. Processing characteristics for neat and plasticized PLA.

Sample TQmax
(Nm)

TQ1min
(Nm)

TQ5min
(Nm)

TQfin
(Nm)

Melt Viscosity
(Pa·s)

Power
(kW)

PLA 70 65 37 28 0.467 0.176

PLA/5R 28.9 7.1 6.9 5.8 0.097 0.036

PLA/10R 18.7 6.2 5.3 4.8 0.080 0.030

PLA/15R 13.9 4.1 2.2 2.1 0.035 0.013

PLA/20R 12.7 2.8 1.4 1.4 0.023 0.009

PLA/15R-MA 10.7 3.7 3.1 2.5 0.042 0.016

PLA/15R-NA 12.1 3.4 2.3 1.1 0.018 0.007

PLA/15R-HA 10.3 2.6 2.4 2.3 0.038 0.014

A constant value of torque was reached between 4 and 5 min of mixing for most of the
samples, being related to the complete melting of the PLA matrix and the homogeneous
mixing with the vegetal oil. The torques values of PLA/R samples obviously decreased
compared with neat PLA due to the plasticizer action of incorporated R that enhances
the chain mobility. By increasing the amount of R from 5 wt% to 20 wt%, an exponential
decrease in processing characteristics was observed as the frictional resistance is reduced
due to much easier deformation of the PLA chains, improving melt flow and, consequently,
melt processability. As expected, PLA containing 20 wt% R presented a lower melt viscosity
for PLA/unmodified R sample due to the low viscosity index of R [41]. A rise in the torques
values after 5 min and at the end of mixing and respectively, melt viscosity and power
consumed for processing has been observed for PLA/15R-MA and PLA/15R-HA when
compared with PLA/15R possible due to the physical interaction between the PLA matrix
and anhydride-containing plasticizers.

The melt processing behavior showed no occurrence of phase separation, indicating
that unmodified and modified R are miscible with PLA, the melted material being easily
removed from the rotors.

3.2. ATR-FTIR Results

The FTIR spectra were analyzed to describe the structural changes in the PLA materials
before and after plasticization and determine the crystallinity indices.

Synthesis and characterization of R modified with three anhydrides used in this study
were published in previous work [37].

Modification of PLA with R revealed changes in the 2700–3050 cm−1 region, assigned
to the CH stretching vibrations, and in the “fingerprint” 600–1900 cm−1 region of the FTIR
spectra, which corresponds to stretching or deformation vibrations of different groups
(Figures 1 and 2).
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FTIR spectra of neat PLA displayed two bands at 2995 and 2943 cm−1 (corresponding
to the asymmetric stretching vibration of C–H from CH3 and CH2, respectively); a strong
absorbance band at 1746 cm−1 (attributed to the stretching vibrations of amorphous C=O
groups); bands at 1452 cm−1 and 1382 cm−1, 1359 cm−1 characteristic for asymmetric and
symmetric bending vibration of C–H from CH3); strong absorbance bands at 1180 cm−1

(asymmetrical valence vibrations of C–O–C of the aliphatic chain) and 1080 cm−1 (symmet-
rical valence vibrations of C–O–C of the aliphatic chain). The band at 868 cm−1 can be as-
signed to the amorphous phase, while the band at 755 cm−1 to the crystalline phase [42,43].

In the case of PLA/R blends with different concentrations of R, a slight increase of the
signal from 2943 cm−1, assigned to the CH2 group, asymmetric stretching vibration can
be observed, while a new signal was detected at about 2855 cm−1 corresponding to the
CH2 group, symmetric stretching vibration, from the main chain of ricinoleic acid (~90%),
the main component from R (Figure 1a). Moreover, an increase in band intensity due to
the overlapped vibration bands of PLA and R was recorded at 1746 cm−1 (C=O group,
stretching vibrations). A decrease in intensity for bands from 1452 cm−1 and 1382 cm−1,
1358 cm−1 that corresponds to asymmetric and symmetric bending vibration of C–H from
CH3 due to the decrease of CH3 moieties in PLA/R blends compared to neat PLA was
observed (Figure 1b). Based on these results, the greatest changes were observed for
PLA/15R, the blending efficiency being higher for PLA with 15 wt% R. In this sense,
15 wt% loading of R modified with different anhydrides was used for incorporation into
the PLA matrix.

The effect of incorporation of R modified with anhydrides on FTIR spectra of PLA is
noticed in Figure 2. An increase of the signal from 2926 cm−1, assigned to the CH2 group,
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asymmetric stretching vibration, and a new signal at about 2855 cm−1 corresponding to
the CH2 group, symmetric stretching vibration, was observed (Figure 2a). Moreover, a
decrease in band intensity and a small shift from 954 cm−1 for PLA to 957 cm−1 PLA/15R-
anhydrides (corresponding to the O-H vibration of carboxylic acid) is notable. This can
be due to the Van der Waals interactions between PLA’s and anhydrides modified castor
oil’s functional groups, which result in a hydrogen bridge connecting hydrogen from the
hydroxyl group in PLA and oxygen from the carboxyl group of anhydrides modified R [44].

The ratio between the normalized intensities of bands at 755 cm−1 and 868 cm−1 is
proportional to the crystallinity index, and the corresponding values for studied samples
are given in Figure 3.
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Figure 3. Icrystalline/Iamorpous ratio derived from FTIR data.

Although the variations in the Icrystalline/Iamorphous ratio calculated from the FTIR
spectra are small, they provide insight into the crystallinity indices calculated more precisely
from DSC thermograms. A slight increase of the Icrystalline/Iamorphous ratio from 0.988 in
PLA up to 1.00 in PLA/15R is evident in the case of PLA/unmodified R blends. This
indicates a modification in the structure of the systems containing plasticizers due to the
increase in chain mobility. Similar findings have been reported in the literature [45–47].

The crystallinity indices of PLA/anhydrides modified R slightly decreased compared
to PLA/R, from 1.00 in PLA/15R to 0.994 in PLA/15R-MA (Figure 3). The variation in
the modification corresponds with the composition of modified R. It appears that the
plasticization efficiency was higher for the sample containing HA- and NA- modified R,
which recorded the highest crystallinity index values among the modified R.

3.3. Water Contact Angle (WCA)

Water contact angle measurements evaluated the wettability of the developed mate-
rials on the surfaces of 1 mm thickness plates. If the contact angle of water is larger than
90◦, the surface is considered hydrophobic, while for contact angles smaller than 90◦, the
surfaces are categorized as hydrophilic. The hydrophilic/hydrophobic balance influences
the applications of PLA blends, such as films for food packaging [31] or medical fields
involving drug delivery and tissue engineering scaffolds, where increased hydrophilicity
is needed [48].

Figure 4a,b presents the WCA of PLA mixtures with natural and modified R. Pristine
PLA sample presented a WCA of 72.94◦.



Polymers 2022, 14, 3608 11 of 23

1 

 

 

Figure 4. Water contact angle of (a) neat PLA and PLA-based materials containing pure castor oil;
(b) PLA-based materials containing anhydrides modified castor oil.

By blending PLA with natural R, an increase in WCA up to 81.29◦ was observed for
the highest amount of incorporated R. Thus, by adding R as plasticizer up to 20 wt%,
the hydrophobic character of the PLA was significantly enhanced. The hydrophobicity is
attributed to the presence of ricinoleic acid, the major component of R (~90%) [49].

Furthermore, the WCA for PLA/anhydrides modified R samples was slightly higher
compared with PLA/R samples (Figure 4). Using the modified R in PLA blends, the WCA
increased from 79.89◦ in PLA/15R to 86.48◦ in PLA/15R-HA. This can be explained by
the interactions that occur between the polar functional groups of the main component
from R (e.g., hydroxyl) and different anhydrides [37], leading to fewer available groups
at the top surface of PLA/modified R samples to interact with water, thus obtaining
materials with lower surface wettability. The water contact angle values for samples
containing R-HA and R-NA were slightly higher than those containing R-MA. This effect
is likely due to the ability of longer side chains to create more intermolecular bonds,
causing the decrease of the hydrophilic functional groups available on the surface of PLA
blends [50]. A contrary effect of decreasing the hydrophobicity was reported in the case of
the introduction of the poly(ethylene glycol) (PEG) plasticizer into PLA/PEG systems [27]
due to its solubility in water. Another study [51] reported the increased hydrophobicity
of food packaging materials by using modified cellulose. Hydrophobicity was known
to ensure an improved water barrier, lower permeability to moisture, and mechanical
durability of food packaging material [51].

3.4. Stress-Strain Results

The results of the tensile tests for the neat PLA and PLA plasticized with different
contents of unmodified R and 15 wt% anhydride–modified R are summarized in Figure 5.
PLA is characterized by a high Young modulus and brittleness, limiting its use in specific
applications. The aim of incorporating plasticizers in the PLA matrix is to reduce brittleness
and enhance flexibility.

The PLA samples containing natural R display ~14 times increase of elongation at
break, from a value of 4.7% for neat PLA up to 67% for PLA/15R and 70% for PLA/20R. A
10 times increase in elongation at break was reached even at 5 wt% natural R incorporated in
the PLA matrix, while a relatively similar increment was observed for the highest amounts
of unmodified R, 15 wt% and 20 wt%. This flexibility enhancement is associated with a
gradual decrease of the tensile strength at break and Young modulus. The highest values
of elongation at break recorded for PLA/15R and PLA/20R denoted good compatibility
between PLA and R at these elevated loadings. The flexibility enhancement appeared
because R increased the chain’s mobility by filling the space between the polymer chains,
disrupting the intermolecular bonds between PLA chains (polymer-polymer interaction),
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followed by substitution with hydrogen bonds formed between plasticizer and polymer
chains (plasticizer-polymer interaction).
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Figure 5. Mechanical properties for neat and plasticized PLA: (a) elongation at break, (b) tensile
strength at break, (c) Young modulus.

One can observe that incorporating R-MA in the PLA matrix led to the development
of a more flexible material among the used cyclic anhydride—modified R, reporting a
more than 11-fold increase of elongation at break related to neat PLA and almost double
improvement when compared with R-NA. However, the mechanical results demonstrated
a reinforcing effect of PLA blended with modified R in relation to PLA containing 15 wt%
natural R, both strength at break and Young modulus values increasing. Overall, all
obtained tensile properties recommend using PLA plasticized with unmodified R for
flexible film packaging, while those containing modified R for semi-rigid food packaging.
Lower values for elongation at break in the case of PLA/vegetal oils were reported in
the literature. The incorporation of up to 20 wt% epoxidized sunflower oil (ESO) in
PLA led to a slight increase of elongation to values of 9% for PLA/ESO 5.5%, to 16% for
PLA/ESO 6.5%, and 34% for and PLA/commercial epoxidized soya bean oil [42]. Similar
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results to our findings for mechanical properties were published for other plasticized
polyesters. Tensile tests of 3D printed samples (dogbones) measured for non-plasticized
PHB-PLA blend (reference) and PLA/PHB blends plasticized with acetyl tris(2-ethylhexyl)
citrate, tris(2-ethylhexyl) citrate, and poly(ethylene glycol)bis(2-ethylhexanoate) showed
an increase of elongation at break from 10% (reference) to 32% for plasticized blends in the
form of printed dogbones [28]. A significant increase in elongation at break was reported
by Mencik et al. [30] in the case of plasticizing PHB/PLA with commercial esters of citric
acid for Three-Dimensional (3D) print: from 5% in the case of reference to 187% for the
printed dogbones of PHB/PLA/plasticizer blends.

3.5. Dynamic Rheology

The dynamic rheological parameters recorded at 175 ◦C are representative of the
variation of viscoelastic properties function of angular frequency (ω) for the neat PLA and
the studied blends, namely storage modulus (G′), loss modulus (G′′) and dynamic viscosity
(η*) are shown in Figures 6 and 7.
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The neat and plasticized PLA predominantly shows viscous behavior (G′′ > G′) over
all testedω regions. G′ and G′′ dependence on deformation frequency presents the same
trend, with obvious differences being observed for the highest loadings of natural R.

As the storage modulus is linked to the solid-like character of a polymer, the semicrys-
talline PLA registered the highest G′ values, explaining also the highest melt viscosity
and required power for melt processing. The shear rate is very low at lowest frequencies,
with the capacity of retaining the original strength of materials being high. G′ rises with
frequency because the shear rate increases as well, which also increments the amount of
energy input to the polymer chains [52].

It is noticeable in Figure 6a that the slopes of G′ (ω) and G′′ (ω) for PLA blended
with the lowest amounts (5 and 10 wt%) of pure R were slightly lower than the values
of neat PLA, while the highest pure R loadings of 15 and 20 wt% considerably changed
the shapes of the slopes. In this latter case, both dynamic moduli, G′ and G′′, present a
slightly sinusoidal shape explained by a change in the material elasticity. Higher G′ values
compared to neat PLA were found at low ω, up to 1 s−1, followed by a small “rubbery”
plateau with independent G′ values function ofω and further increase of G′ values at high
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ω. Similar behavior has been reported for incorporating 15 wt% epoxidized soybean oil
(USE) into the PLA matrix [43].

The addition of all studied amounts of natural R that act as plasticizers improved the
melt flow when applying external forces, with the decrease of complex viscosity observed
in Figure 6b. This behavior indicates that the PLA chains are easily deformed, decreasing
their frictional resistance.

Neat PLA and PLA samples containing 5 wt% and 10 wt% natural R showed a
Newtonian behavior in the frequency region up to 10 s−1, where the complex viscosity
remains constant, followed by a shear-thinning effect to the end of testing. At high R
loadings, a “full rheological flow curve” was found for PLA/15R and PLA/20R, like the
PLA/USE material reported in another study [43]. At highω, viscosity increases due to a
thickening effect for high R amounts added to the PLA matrix.

When modified R was incorporated into PLA, the resulting materials’ viscoelastic char-
acteristics changed the different functions of applied frequencies, as plotted in Figure 7a.
The amplitude sweep (AS) test results for PLA were inserted in the Supplementary Ma-
terials (Figure S2). At higher ω (over 20 s−1), the G′ of the PLA/R-MA and PLA/R-HA
samples are slightly higher than that of the PLA/natural R. In these cases; increased tough-
ness was observed related to PLA material containing unmodified R. This is attributed to
the stiff anhydrides groups of the modified R incorporated into the polymer chain.

In the case of modified R, the Newtonian plateau is larger for PLA/R-MA and R-NA,
while the sample PLA/R-HA also showed another plateau at higher ω (Figure 7b). The
intermolecular interactions that occurred during blending melt led to macromolecular
chains’ stabilization, and resistance to deformation could justify the plateau at higher
oscillation frequencies [53].

The low values of complex viscosity for PLA/R-NA material could be explained by
the low molecular mass of NA-modified R that improves PLA melt flow. This behavior
is correlated with melt processing results (Table 2), where PLA/R-NA showed the lowest
torques and power values.

3.6. DSC Results

The thermal behavior of PLA and PLA containing modified and unmodified R has
been assessed from the DSC curves recorded during the second heating, after cooling
from the melt state (Figure 8), since the thermal history produced during processing was
erased during the first heating. The thermograms recorded during the first run and cooling
(Figure S3) are inserted in the Supplementary Materials.
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The samples’ glass transition (Tg) is clearly observed both on cooling following the
first heating and on the second heating scans. At a first observation of the second heating
DSC scans, it is clear that Tg values of PLA/R blends decrease with the addition of
different amounts of R in the PLA, as compared with Tg of neat PLA. One can assume
this thermal behavior is due to a plasticization effect induced by R molecules on the PLA
matrix, R having a much low molecular weight compared with PLA. Castor oil contains
triglycerides with long aliphatic chains that can diffuse easily among the PLA molecular
chains, increasing, thus, the free volume. This behavior has been similarly observed in
other studies, where PLA has been blended with various plasticizers [39,43,54–58].

Considering the relationship between Tg and crystallinity for a neat semicrystalline
polymer, it is well-known that the crystalline regions in semicrystalline polymers constrain
the amorphous phase, resulting in a reduced relaxation that implies relatively higher Tg
values for the sample with higher Xc. Therefore, we consider this plasticization effect
more important than the constraint effect imposed by the crystallinity on amorphous phase
relaxation. When a fraction of 15 wt% maleinized R (15R-MA) is added to the PLA matrix,
a further decrease of Tg value (to 48.94 ◦C) is noted, most likely occurring due to an
additional increase of the free volume of PLA induced by MA molecule (the space is bigger
than that occupied by aliphatic chains from unmodified R), that might lead to an increase
of plasticization effect (Table 3). PLA containing R modified with NA or HA does not show
any measurable glass transition or melting process during second heating in DSC curves.
However, both transitions were evident in the first run (see Figure S3a in Supplementary
Materials). The absence of the melting peak for PLA/15R-NA and PLA/15R-HA samples
on the second heating DSC curves could be assigned to a strong crystallizability reduction
of PLA chains due to the molecular structure of NA and HA that imbedded the PLA chain
packing and might require more time to complete the crystallization process.

Table 3. Thermal parameters resulted from the second heating DSC scans of neat and plasticized PLA.

Sample Tg (◦C) Tcc (◦C) ∆Hcc (J/g) Tm (◦C) ∆Hm (J/g) Xc (%)

PLA 59.82 118.48 17.66 147.43 19.65 2.12

PLA/5R 57.60 - - 150.42 2.101 2.37

PLA/10R 56.93 - - 150.08 3.376 4.00

PLA/15R 56.71 - - 149.84 3.274 4.11

PLA/20R 56.26 - - 149.91 5.161 6.88

PLA/15R-MA 48.94 108.42 25.21 141.96; 151.48 27.98 3.48

The cold crystallization is usually denoted in a DSC curve by a clear exothermic
process with a sharp shape, limited to a narrower range. In the case of our samples, the
cold crystallization process is clearly observed for neat PLA, but no such thermal event
is recorded when R is added, regardless of content. We assume that even if a weak but
extended exotherm over a wide temperature range is slightly noticeable in the DSC curves
of PLA/R samples in Figure 8, it cannot be attributed to cold crystallization. The absence
of a cold crystallization could be explained by a dramatic change in PLA viscosity when R
is added.

Regarding the melting process of PLA-based samples, it can be observed that DSC
curves show only a clear endothermic process without any shoulder or some noticeable
modification in the shape. The melting temperatures in Table 3 indicate slight increasing
values for PLA samples containing R with the same Tm, regardless of content. The less
sharpened DSC melting endotherms alongside the slightly higher Tm values compared with
neat PLA denote an improvement of PLA chain mobility through R diffusion. This increased
mobility causes an interruption of PLA chain packing, resulting in a less number of crystals
with lower dimensions but slightly more thermodynamically stable. The melting enthalpy
usually results from two crystal types: one type obtained after the sample processing that
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crystallizes on cooling, and a second type achieved during the cold crystallization process
during reheating. According to Equation (3), the crystallinity degree (Xc) is evaluated after
subtracting the cold crystallization enthalpy from the melting enthalpy value. The resulting
value is representative only of the crystal fraction developed during melting. According
to the data in Table 3, one can mention that the overall crystallinity index increases with
R content, related to neat PLA, supporting thus the plasticization effect induced by R
incorporated in PLA. These results agree with the Icrystalline/Iamorphous ratio of PLA/R
blends from Figure 3.

The plasticization of PLA by R-MA incorporation seems to have a different effect on
chain mobility. DSC curves record a strong cold crystallization process of PLA/15R-MA
sample at lower temperatures. This behavior denotes that PLA chains are arranged into a
more packed (ordered) structure at this temperature. Still, the crystallinity index decreases
when 15 wt% of R-MA is added, compared with PLA containing 15 wt% unmodified R [59].
R likely becomes a more rigid molecule through maleinization, thus proving its role in
nucleation and facilitating PLA chain packing at lower temperatures.

Regarding the PLA/15R-MA melting, one can notice that a double endotherm repre-
sents this process, usually ascribed to the mechanism of the sample’s melting, crystallization
and re-melting behavior. Other studies have also reported this behavior, which is explained
by the different sizes and perfection of crystallites as a consequence of lamellar rearrange-
ments during PLA crystallization [60–62]. The melt temperature of the second endotherm
DSC peak is higher (with 4 ◦C) than even of neat PLA. This result further demonstrates that
the R-MA acted as a nucleating agent in addition to the plasticizer role for PLA, leading to
more perfect PLA crystals but fewer in number.

3.7. Thermal Stability and Degradation

To acquire the characteristics of a plasticizer for PLA, the candidates should exhibit low
volatility and be thermally stable at or slightly above the PLA melting temperature, condi-
tions imposed by processing. The thermal degradation behavior of neat PLA and its blends
with R unmodified and modified with anhydrides were investigated by thermogravimetric
analysis, and the results are shown in Figures 9 and 10.
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The thermal degradation parameters such as Tonset (starting temperature of decompo-
sition), T5% and T30% (the temperatures corresponding to 5 wt% and respectively 30 wt%
mass losses) from the TG curve, as well as Tmax (the temperature at which the degradation
rate is maximum) from the DTG curve obtained for neat PLA and its respective blends,
were summarized in Table 4, that also included parameters for R modified with MA, NA
and HA, previously determined by Mustata and Tudorachi from the TG curve as well
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as Tmax (the temperature at which maximum degradation occurs) from the DTG curve
obtained for neat PLA and its respective blends were summarized in Table 4, that also
included parameters for R modified with MA, NA and HA, previously determined by
Mustata and Tudorachi [37].
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Table 4. Thermogravimetric data of neat PLA and PLA/R blends.

Sample Tonset
(◦C)

Tmax
(◦C)

∆Wstep (%) Residue
(%)

T5%
(◦C)

T30%
(◦C)

Ts
(◦C)I II III

PLA 264.56 316.15 98.46 - - 1.54 273.50 301.00 142.10
PLA/5R 281.41 324.00 98.53 - - 1.47 286.40 305.80 146.04
PLA/10R 303.56 338.80 98.41 - - 1.60 305.12 327.20 156.00
PLA/15R 285.86 335.20 91.15 3.93 5.53 0.62 299.80 324.60 154.19
PLA/20R 298.11 328.90 85.91 7.29 5.74 1.12 302.70 322.50 154.14

R 344.33 388.00 57.09 31.17 11.97 0.23 351.60 385.70 182.30
MA * 426(III) 14.61 21.15 61.51 3.15 166.00 438.00 161.00
NA * 434(III) 14.79 28.84 54.8 0.62 184.00 425.00 161.00
HA * 423(III) 5.73 35.83 57.15 1.29 213.00 425.00 167.00

PLA/15R-MA 271.40 327.00 91.74 3.50 3.79 0.97 256.70 286.70 134.60
PLA/15R-NA 250.68 300.30 88.76 5.03 5.54 0.68 283.20 306.20 145.53
PLA/15R-HA 260.93 294.20 94.55 6.13 - 0.75 270.50 290.30 138.37

* Reprinted with permission from Ref. [37]. 2022, Elsevier.

The heat-resistant index (Ts), which indicates the overall thermal stability of PLA
blends, has been calculated by using Equation (4) [63]. Hafiezal et al. refer to the heat-
resistance index as the temperature of the polymer in the physical heat tolerance limit [64].

Ts = 0.49 [T5% + 0.6(T30% − T5%)] (4)

DTG curve of natural R (Figure 9b) showed three partially overlapped steps of mass
loss assigned to decomposition and/or volatilization of different compounds in various
temperature ranges. R thermally decomposed in three consecutive stages; in the first one,
several highly volatile and unstable compounds (oxygenated compounds, hydroperoxides,
and polyunsaturated fatty acids) undergo decomposition, according to other results [65].
The second phase refers to the decompositions of ricinoleic acid (monounsaturated fatty
acid), while the decomposition of saturated fatty acids takes place in the third stage.
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Thermal decomposition of PLA matrix involved the cleavage of functional groups,
including C-C, C-O, and C=O bonds. The weight loss for PLA is recorded between
265–380 ◦C, being attributed to the thermal degradation due to the trans-esterification
reaction that cleaves the PLA backbone structure [66].

It can be seen both from the TG/DTG curves plotted in Figure 9 and the data shown
in Table 4, respectively, that natural R is more thermally stable than PLA-containing
ester groups. Therefore, the shifts to higher values of Tonset (Figure 9a, inserted graph),
Tmax, and Ts show the improvement of the thermal stability of PLA/5R and especially
PLA/10R sample, compared to neat PLA. This enhancement in thermal stability was also
recorded for higher R fractions incorporated in the PLA matrix (PLA/15R, PLA/20R),
with slightly lower thermal parameters related to PLA/10R. However, a higher thermal
resistance when compared with PLA. The explanation of this behavior could be provided
by R decomposition, which in the second stage of its mechanism involves an increase
in ricinoleic acid degradation rate, leading to PLA matrix degradation. Moreover, this
behavior is clearly noticeable in Figure 9b, where the second stage of the R decomposition
mechanism becomes more evident for PLA matrix decomposition in samples PLA/15R and
PLA/20R. As shown in Table 4, the mass loss value assigned to each second or third-stage
decomposition mechanism for these samples is not negligible, which further supports our
assumption. The DTG curves (Figure 9b) show that the sample containing 10 wt% R proves
the highest thermal stability. But for this content of R and lower one (5 wt%), the rate
of the degradation mechanism of PLA matrix slightly increases, a maximum mass loss
being recorded.

The obtained results regarding the R decomposition are similar to the ones reported
by Mustata and Tudorachi in their work [37], where thermal degradation of R modified
with three types of anhydrides has been investigated. According to the reported thermal
degradation kinetic parameters, the order of thermal stability of R modified with cyclic
anhydrides is R-HA > R-NA > R-MA. By melt blending of PLA with each of this modified
R in a fraction of 15 wt%, the thermal stability of all samples decreased compared to the
PLA blended with the same fraction of unmodified R (Figure 10).

According to Figure 10a and data presented in Table 4, the thermal stability decreases
more for PLA/15R-NA but seems to be the only sample containing modified R with such
behavior. One can say that a different diffusion of molecules/radicals resulting during
degradation (water, alcohols, saturated and unsaturated hydrocarbons, carbon monoxide
and dioxide, and carbonyl compounds) could affect the rate of the overall mechanism.
Based on the DTG curves shown in Figure 10b, it can be noted that the decomposition
mechanism for PLA blended with modified oils occurs at a slightly slower rate compared
to pure PLA or PLA containing 15 wt% unmodified R.

As shown by the data obtained by Mustata and Tudorachi [37], the most important
percentage of mass loss during the degradation of R resulted in the first step when the
aliphatic chains were broken (C-C bonds). Analyzing the data obtained in this study, it can
be seen that R shows the lowest percentage of residue after the degradation mechanism
compared to the blended samples. Although R increases the thermal stability of the PLA
matrix (increasing the Tonset value), the overall degradation process becomes more dynamic
with increasing of natural R content. The intermediate compounds resulting between the
degradation steps (II and III) led to an acceleration of the degradation mechanism. This
hypothesis is clear in the results from the percentage of residues at the end of the degrada-
tion process, as shown in Table 4. In contrast, PLA samples containing modified R show a
reduction in the residue values, indicating a higher degradation mechanism intensity.

4. Conclusions

Castor oil unmodified (up to 20 wt% of the total blend) or modified with three cyclic
anhydrides (15 wt% of the total blend) could be fully incorporated into the PLA matrix to
improve the melt processing, mechanical, thermal, and rheological properties of neat PLA.
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An exponential decrease of processing parameters was observed when increasing the
amount of natural R in PLA from 5 to 20 wt%, as the frictional resistance is reduced due to
much easier deformation of the PLA chains, improving melt flow and consequently melt
processability. A rise in the processing parameters has been recorded for PLA/15R-MA
and PLA/15R-HA when compared with PLA/15R, possibly due to the physical interaction
between the PLA matrix and anhydride-containing plasticizers.

Both natural and modified R blended with PLA lowered the surface wettability of the
resulting materials, increasing their surface hydrophobicity.

The mechanical testing results demonstrated enhanced flexibility for PLA/natural R
materials and a reinforcing effect for PLA blended with modified R in relation to PLA con-
taining 15 wt% pure R, with both strength at break and Young modulus values increasing.
Among the PLA/modified R blends, incorporating R-MA offered the best tensile properties
for the respective PLA blend.

The samples containing unmodified R showed increased thermal stability, while
those containing modified R changed the dynamic of the overall degradation mechanism,
PLA/15R-MA showing the best onset thermal stability from all modified R.

Based on the obtained data, plasticized PLA with natural R could be recommended
for the manufacturing of flexible films, while those containing anhydride-modified R could
be used for semi-rigid food packaging.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14173608/s1, Figure S1: Torque-time curves for the neat PLA
and PLA plasticized with natural and modified castor oil. Figure S2: Amplitude sweep test results
for PLA; Figure S3: DSC curves (exo up) from the first heating (a) and cooling (b) for neat PLA and
PLA plasticized with natural and modified castor oil.
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