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Abstract: The material extrusion additive manufacturing (MEAM) process for polymers seems
straightforward. However, several controlled and uncontrolled factors affect the 3D printed product
quality, e.g., MEAM process parameters, thermomechanical properties of the material, and part
design. Therefore, it is crucial to understand these interlinked factors of part geometry, material
properties, and 3D printing (3DP) process parameters to optimize 3D printed product quality. The
numerical models and simulation tools can predict the thermomechanical performance of the MEAM
process under given input parameters (material, design, and process variables) and reduce the
research and development costs significantly. However, the numerical models and tools need further
exploration and validation of simulation predictions for their adaptability and reliability. Therefore,
in this study, numerical simulations were performed to observe the impact of process parameters on
the part quality of MEAM 3D printed components. The two crucial process parameters (i.e., extrusion
temperature and layer resolution) were varied while keeping the other process parameters, part
geometry (tensile testing coupon), and material properties (acrylonitrile butadiene styrene (ABS))
constant. These two process parameters were sequentially optimized for optimum part quality, first
by varying the extrusion temperature and secondly by changing the printing resolution using the
optimum printing temperature. The 3DP process quality was evaluated in terms of dimensional
accuracy, distortions, and residual stresses. Finally, the specimens were 3D printed under similar
process conditions to validate the numerical model predictions.

Keywords: material extrusion; additive manufacturing; fused filament fabrication; process simulation;
residual stresses; warpage

1. Introduction

The material extrusion additive manufacturing (MEAM), also referred to as the fused
filament fabrication (FFF) process, is one of the most widely explored and adopted addi-
tive manufacturing (AM) or 3D printing (3DP) processes owing to its simplicity, cheaper
hardware, and open-source technology [1,2]. According to a study, in 2016, 96% of the
global AM sales market was shared by the FFF-based 3D printers [3]. In this process, the 3D
printer is fed with the material in filament form, heated to a semi-solid state, and extruded
on a build plate through a nozzle [4]. The material is extruded layer-by-layer until a solid
3D part is fabricated, and the extrudate cools down on the build plate once the process
is completed [5]. Thermoplastics are mainly processed using this process. However, the
technology has recently evolved to use polymer composites [6] and metals [7].

Although the MEAM process for polymers seems straightforward, several controlled
and uncontrolled factors affect the 3D printed product quality [8]. These factors include
MEAM process parameters (e.g., nozzle diameter, deposition speed, layer resolution, raster
pattern, raster width, infill type and density, material flow rate, raster orientation, building
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orientation, extrusion temperature, ambient temperature, and build plate temperature),
thermomechanical properties of the material (e.g., thermal conductivity, heat capacity,
young modulus, coefficient of thermal expansion, and stiffness), and part design [9–11].
Therefore, it is crucial to understand these interlinked factors of part geometry, material
properties, and 3DP process parameters to optimize 3D printed product quality [12]. Several
studies reported the experimental evaluation of the effect of these factors on the 3DP process
quality [13–15]. Although several studies followed the experimental approach for this cause,
the numerical modeling and simulations in this regard are very few.

The numerical models and simulation tools can predict the thermomechanical perfor-
mance of the MEAM process under given input parameters (material, design, and process
variables) and reduce the research and development costs significantly [16]. Computational
fluid dynamics (CFD) models have been used to simulate the 3DP process and to analyze
the temperature profile [17], material melting, layer adhesion, nozzle pressure, material
flow, and heat transfer using different commercial software [18–27]. However, the numeri-
cal models and tools need further exploration and validation of simulation predictions for
their adaptability and reliability.

In the view of existing literature, it is vital to understand and evaluate the effect of
MEAM process parameters on the 3D printed product quality. The reported study is part of
our ongoing research where all aspects of the 3DP process, i.e., material properties, process
parameters, and the design of specimens, are being considered. Other aspects will also
be covered in our upcoming studies. However, the effect of extrusion temperature and
layer height is investigated in this study. Therefore, numerical simulations were performed
to observe the impact of process parameters on the part quality of MEAM 3D printed
components. Different extrusion temperatures (210 ◦C, 220 ◦C, 230 ◦C, 240 ◦C, 250 ◦C, and
260 ◦C) within the printability window of acrylonitrile butadiene styrene (ABS) material
and three different layer heights (0.1 mm, 0.15 mm, and 0.2 mm) were selected for analysis.
These two process parameters were sequentially optimized for optimum part quality, first
by varying the extrusion temperature and secondly by changing the printing resolution
using the optimum printing temperature. The 3DP process quality was evaluated regarding
dimensional accuracy, distortions, and residual stresses. Finally, the specimens were 3D
printed under similar process conditions to validate the numerical model predictions.

2. Methodology

The current work is divided into two phases: the MEAM process numerical simu-
lations and validation of numerical model results via 3DP experimental measurements.
The main aim of this study is to evaluate the effect of process parameters on 3DP pro-
cess quality quantified in terms of part deflections, distortions, and residual stresses. The
extrusion temperature and printing resolution were varied while keeping the other pro-
cess parameters, part geometry, and material properties constant. A standardized tensile
testing coupon (according to ASTM D638 Type-I [28]) was selected as reference geome-
try to be fabricated using acrylonitrile butadiene styrene (ABS) material (from Ultimaker,
The Netherlands). ABS provides flexibility in synthesizing nanocomposites due to its
solubility in acetone [29] and possesses significant physical, mechanical, and chemical resis-
tance properties [30,31]. A 3D CAD model for a tensile testing coupon was generated using
Solidworks 2021 (Dassault Systèmes, Paris, France), as shown in Figure 1, and imported
to slicing software. The slicing information (gcode) was generated using Cura software
version 5.0.0 (from Ultimaker, The Netherlands), containing information on toolpath, print-
ing resolution, extrusion temperature, build plate temperature, printing speed, and infill
type and density. The subsequent sections present the methods adopted for numerical
simulations and experimentation.
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Figure 1. CAD Model for ASTM D638 type I specimen with dimensions.

2.1. MEAM Process Simulations

The MEAM process simulations were performed using Digimat software (version
2021.3, from e-Xstream engineering, Käerjeng, Luxembourg). Chamber size of 215 mm
(X) × 215 mm (Y) × 200 mm (Z) was defined with a moving build plate corresponding
to the Ultimaker 3 Extended 3D printer (from Ultimaker, The Netherlands). The software
utilizes a thermomechanical numerical model to calculate the temperature variations
during the MEAM process [32]. Heat transfer equations evaluate the time-dependent
temperature fields layer-by-layer during the material deposition. The built plate and
ambient temperatures are used as boundary conditions for bottom surface elements and
ambient environment for the overall model, respectively. The first deposited layer is
constrained in all degrees of freedom due to the build plate adhesion, which gets released
at the end of the 3DP process, and final residual stresses and deformations are estimated in
this state.

The thermal gradients due to convective and radiative heat transfer cause the material
shrinkage, which results in part deformations and distortions [33]. However, the residual
stresses arise due to restricted molecular movements due to structural constraints [34]. The
3D model of the tensile testing coupon was imported in stl format, and thermomechanical
properties (for ABS material) were defined from the software database. The numerical
model requires toolpath information for 3D printed specimens imported as a gcode file.
Process parameters were specified, including extrusion temperature (210 ◦C, 220 ◦C, 230 ◦C,
240 ◦C, 250 ◦C, and 260 ◦C), build plate temperature (80 ◦C), bead width (0.4 mm), chamber
temperature (25 ◦C), convection coefficient (0.015 mW/mm2·◦C), and ambient tempera-
ture (25 ◦C). Except for extrusion temperature and printing resolution, the other process
parameters were constant for all the simulations. Voxel size (0.1, 0.15, or 0.2) was selected
per the layer heights. Digimat software provides two options for geometry discretization,
i.e., filament or layer-by-layer. Although filament discretization offers more precise results,
the layer-by-layer technique was used to lower the computational time and cost.

2.2. MEAM Experiments

Ultimaker 3 Extended 3D printer and ABS material in filament form (from Ultimaker,
The Netherlands) were used for 3DP experiments. The slicing information (gcode) was
generated using Cura software (from Ultimaker, The Netherlands), containing information
on toolpath, printing resolution, extrusion temperature, build plate temperature, printing
speed, and infill type and density. Only two process parameters, i.e., extrusion temperature
and printing resolution, were varied for their sensitivity to product quality. Different
extrusion temperatures (210 ◦C, 220 ◦C, 230 ◦C, 240 ◦C, 250 ◦C, and 260 ◦C) within the
printability window of ABS material and three different layer heights (0.1 mm, 0.15 mm, and
0.2 mm) were selected to fabricate 3D printed samples. These two process parameters were
sequentially optimized for optimum part quality, first by varying the extrusion temperature
and secondly by changing the printing resolution using the optimum printing temperature.
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The specimens were manufactured at a speed of 60 mm/s, using the build plate temperature
of 80 ◦C, with two wall layers (corresponding to 0.8 mm of thickness as bead width was
0.4 mm). The top and bottom layers were 1.2 mm thick (where the number of layers varied
depending upon the layer height), having 100% infill density with a zig-zag infill pattern.

The physical measurements were performed on the 3D printed samples for their
dimensions and distortions. The dimensions were recorded using a vernier caliper, and at
least three measurements were recorded for each targeted dimension. The measurements
were compared with the numerical model predictions and designed part dimensions.
Finally, the variations in residual stresses due to changes in 3DP process parameters were
observed, and their effect on part quality was analyzed.

3. Results and Discussions

The numerical model performs the MEAM process simulation layer-by-layer to mimic
the actual process, where a set of elements in the printing direction are activated in a time
step. Depending upon the discretization approach, a group of elements is activated at
a temperature selected for the extrusion process (ranging from 210 ◦C to 260 ◦C in this
case). Due to convective and radiative heat losses, the extrudate temperature is significantly
higher than the already deposited material [22]. As the printing process progresses, the
deposited material cools down close to the printing platform temperature; though, the
upcoming extrudate re-heats the already deposited material [35]. Due to the continuous
thermal cycling of the material and heat transfer phenomena in the ambient environment,
the thermal gradients are observed in the build direction, resulting in thermal stresses
within the structure [33]. The temperature variations and material properties govern
the thermal strains within the 3D printed part due to induced thermal stresses. The
thermal strains result in dimensional variations of the 3D printed part from the designed
dimensions [36]. Hence, the impact of 3DP process parameters, design, and material
properties need to be investigated and understood to obtain desired structural integrity.
The process parameters are sequentially optimized for ABS material to achieve optimum
3DP product quality by adjusting the extrusion temperature and printing resolution. The
numerical model predictions were validated with 3DP experiments performed under the
same process conditions.

3.1. Effect of Extrusion Temperature

The numerical model estimates the deviation of 3D printed sample dimensions from
the designed values in three principal directions. The overall maximum displacements
for the 3D printed samples are reported in Figure 2. The extrusion temperature varied
from 210 ◦C to 260 ◦C within the processability window of the ABS material. The overall
maximum displacement of 1.478 mm, 1.556 mm, 1.634 mm, 1.711 mm, 1.789 mm, and
1.867 mm was observed for specimens 3D printed at 210 ◦C, 220 ◦C, 230 ◦C, 240 ◦C, 250 ◦C,
and 260 ◦C, respectively. In numerical predictions, a maximum deflection from designed
dimensions was observed for specimen 3D printed at 260 ◦C. However, a minimum devia-
tion was achieved for extrusion temperature of 210 ◦C. The coefficient of thermal expansion
plays a vital role in material shrinkage, and the numerical simulation results also showed
a prominent effect of printing temperature. In addition, the deformation trend for all the
printing temperatures was the same, i.e., maximum at the specimen edges and minimum
at the central region, owing to non-uniform cooling of the specimen edges.

3.1.1. Dimensional Analysis

The numerical simulation tool does not directly provide the dimensions of the simu-
lated parts. Therefore, warped geometries were exported for dimensional analysis using
Solidworks software 2021 (Dassault Systèmes, Paris, France). The targeted dimensions
were measured as estimated by the numerical model and compared with the physical
measurements taken for the 3D printed samples, as reported in Figure 3.
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Figure 2. Maximum displacements in numerical model simulations at different extrusion tempera-
tures: (a) 210 ◦C, (b) 220 ◦C, (c) 230 ◦C, (d) 240 ◦C, (e) 250 ◦C, (f) 260 ◦C.

Table 1 comprehensively compares measurements recorded for the samples fabricated
at different extrusion temperatures. Generally, the material shrinkage was observed in
all the numerical simulation results in three principal directions. In numerical simulation
results, a maximum deviation in overall length from the designed value of the specimen
was 3.47 mm for 260 ◦C extrusion temperature. However, a minimum variation of 2.76 mm
was achieved for specimen 3D printed at 210 ◦C. A maximum deviation of 0.32 mm in
grip width from the designed value of the specimen was observed for 260 ◦C extrusion
temperature. However, a minimum deviation of 0.25 mm was achieved for specimen 3D
printed at 210 ◦C. Similarly, 0.15 mm and 0.18 mm of variation from the designed value
of gauge width was measured for extrusion temperatures of 210 ◦C and 260 ◦C. Finally,
the specimen thickness of 3.89 mm was achieved at printing temperatures of 210 ◦C and
220 ◦C, although a thickness of 3.86 mm was recorded for samples 3D printed at 260 ◦C.
However, the numerical model predicted higher deflections from the designed values
than the experimental measurements. In addition, a different trend in the dimensional
measurements was observed, where the overall 3D printed specimen at 240 ◦C revealed
better dimensional control over the rest of the extrusion temperatures considered.
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Table 1. Effect of extrusion temperature on dimensional variations in numerical model and 3DP parts.

Run Extrusion
Temperature (◦C) Model Length

(mm)
Grip Width

(mm)
Gauge Width

(mm)
Thickness

(mm) Warpage

- - Design 165.00 19.00 13.00 4.00 -

1 210
Numerical 162.24 ± 0.01 18.75 ± 0.02 12.85 ± 0.02 3.89 ± 0.02 0.13 ± 0.01

3DP 163.76 ± 0.01 18.89 ± 0.01 12.85 ± 0.01 3.90 ± 0.02 0.25 ± 0.01

2 220
Numerical 162.10 ± 0.01 18.74 ± 0.02 12.85 ± 0.01 3.89 ± 0.02 0.14 ± 0.01

3DP 164.21 ± 0.01 18.91 ± 0.02 12.88 ± 0.02 3.93 ± 0.02 0.23 ± 0.01

3 230
Numerical 161.96 ± 0.01 18.73 ± 0.02 12.84 ± 0.01 3.88 ± 0.02 0.15 ± 0.01

3DP 164.89 ± 0.01 18.90 ± 0.02 12.91 ± 0.02 3.95 ± 0.02 0.20 ± 0.01

4 240
Numerical 161.81 ± 0.02 18.71 ± 0.02 12.83 ± 0.02 3.87 ± 0.02 0.15 ± 0.01

3DP 164.96 ± 0.01 18.95 ± 0.02 12.95 ± 0.02 3.98 ± 0.02 0.19 ± 0.01

5 250
Numerical 161.67 ± 0.02 18.69 ± 0.02 12.83 ± 0.01 3.87 ± 0.02 0.16 ± 0.01

3DP 164.90 ± 0.01 18.93 ± 0.02 12.92 ± 0.02 3.97 ± 0.02 0.21 ± 0.01

6 260
Numerical 161.53 ± 0.02 18.68 ± 0.02 12.82 ± 0.01 3.86 ± 0.02 0.17 ± 0.01

3DP 163.85 ± 0.01 18.88 ± 0.02 12.90 ± 0.01 3.94 ± 0.02 0.24 ± 0.01

In experimental measurements, a maximum deviation in overall length from the
designed value of the specimen was 1.24 mm for 210 ◦C extrusion temperature. However,
a minimum variation of 0.04 mm was achieved for specimen 3D printed at 240 ◦C. A
maximum deviation of 0.12 mm in grip width from the designed value of the specimen was
observed for 260 ◦C extrusion temperature. However, a minimum deviation of 0.05 mm was
achieved for specimen 3D printed at 240 ◦C. Similarly, 0.05 mm and 0.15 mm of variation
from the designed value of gauge width was measured for extrusion temperatures of
240 ◦C and 210 ◦C. Finally, the specimen thickness of 3.98 mm was achieved at printing
temperatures of 240 ◦C. However, a thickness of 3.90 mm was recorded for samples 3D
printed at 210 ◦C.

Overall, the numerical model predicted the measurements near the experimental
dimensions. However, the higher deflections from the designed values with increasing
extrusion temperatures are attributed to the material model limitation in the existing model.
The material model currently does not consider the temperature dependence of the material
properties, resulting in a linear trend with decaying product quality due to increased
extrusion temperature. Secondly, higher variations in numerical model predictions are
observed due to higher material shrinkages. This can be attributed to the stress relaxation
phenomena in the 3D printed samples, which lowers the residual stresses and deflections;
nevertheless, the stress relaxation is not considered in the current numerical model; hence
higher shrinkages are observed. Secondly, the printing temperature also played an essential
role in dimensional control of the 3D printed specimens, as higher variations are observed
at higher extrusion temperatures. The experimental analysis concluded that optimum
control over dimensions is achieved at an extrusion temperature ranging from 240 ◦C
to 250 ◦C.

3.1.2. Warpage Analysis

Besides dimensional analysis, the out-of-plane deformations of the 3D printed parts
are essential to analyze and are termed as distortions or warpage. The warpages come into
action due to the thermal gradient in the build direction. In addition, the specimen edges
go through non-uniform cooling, resulting in higher thermal stresses in these regions. The
warpage measurements recorded from the numerical model predictions and 3D printed
samples are also reported in Table 1. A visual comparison of warpages for simulation
and experimental results is reported in Figure 4. The numerical model results recorded
maximum and minimum warpage of 0.17 mm and 0.13 mm for specimens fabricated at
260 ◦C and 210 ◦C, respectively.
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Although the differences in warpage measurements are a fraction of millimeters, they
are important to consider where tighter control over dimensions is desired. The measured
warpage in the 3D printed samples revealed higher values than the numerically predicted
results. The imperfect build plate adhesion resulted in this variation, as the numerical
model assumes perfect adhesion to the build plate. However, thermal stresses developed
due to non-uniform cooling of the specimen edges, resulting in part detachment from the
build plate. Therefore, higher z-direction deflections are observed. The numerical model
predictions show that minimum warpage is achieved at an extrusion temperature of 210 ◦C.
However, in experimental measurements, minimum warpage is achieved at 240 ◦C. The
numerical model revealed a similar trend to deflections, where the warpages increase with
increased extrusion temperatures. This is once again attributed to the existing material
model limitations. Contrary to experimental measurements, higher warpages at higher
or lower temperatures than the optimum temperature are due to two main reasons. Once
the material is deposited at a temperature lower than the optimum temperature of 240 ◦C,
it tends to cool down to the build plate or ambient temperature, depending on the layer
number [37,38]. As the material cools down, the phase-change process from semi-solid
to solid starts due to lower extrusion temperature, and inter-bead diffusivity of polymer
chains is inhibited, resulting in imperfect adhesion. However, higher thermal cycling
increases residual strains and warpages at higher temperatures.

3.1.3. Residual Stresses

The numerical model also predicted the residual stresses generated within the 3D
printed part due to thermal cycling and process constraints. The numerically predicted
residual stresses for the specimens manufactured at different extrusion temperatures are
presented in Figure 5. The thermal gradient along the z-direction and non-uniform cooling
of the samples results in the residual stresses.

Generally, higher residual stresses are generated along the specimen edges, and
significantly lower residual stresses are observed within the specimen structure. In addition,
the specimen 3D printed at an extrusion temperature of 210 ◦C revealed lower residual
stresses than all the other printing temperatures under consideration. This observation
also supports numerical predictions of the higher dimensional control at an extrusion
temperature of 210 ◦C, as higher residual stresses result in higher dimensional variations
and distortions in the specimen. The residual stresses can be limited by controlling the
cooling process. Hence, the 3DP process within the temperature-controlled closed chamber
can provide better quality.
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3.2. Effect of Layer Height

In the second phase, only numerical simulations were performed to evaluate the
effect of layer height on 3DP quality. Three different layer heights (0.10 mm, 0.15 mm,
and 0.20 mm) were selected with an optimum extrusion temperature of 240 ◦C, while all
the other process parameters were kept constant. The voxel sizes varied accordingly to
mimic the layering effect and height. The process simulation for 0.20 mm layer height was
performed in the previous phase. Only two simulations for 0.10 mm and 0.15 mm of layer
resolution were performed, and results are reported in the subsequent sections.

The dimensional and distortion analysis was performed on the numerically predicted
results, as reported in Table 2. A significant improvement in dimensional control was
achieved by reducing the layer height. A comparison of dimensions for specimens virtually
fabricated at layer heights of 0.15 mm and 0.10 mm is presented in Figure 6. An overall
length of 162.26 mm and 165.00 mm, grip width of 18.77 mm and 18.95 mm, the gauge
width of 12.88 mm and 12.92 mm, and thickness of 3.91 mm and 3.96 mm was achieved
for 0.15 mm and 0.10 mm of layer heights, respectively. Finally, a warpage of 0.13 mm
and 0.08 mm was observed for specimens modeled at 0.15 mm and 0.10 mm of printing
resolution, as reported in Figure 7.
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Table 2. Effect of Layer Height on Dimensional Variations in Numerical Model and 3DP Parts.

Run Layer Height
(mm) Model Length

(mm)
Grip Width

(mm)
Gauge Width

(mm)
Thickness

(mm) Warpage

- - Design 165.00 19.00 13.00 4.00 -
1 0.20 Numerical 161.81 ± 0.02 18.71 ± 0.02 12.83 ± 0.02 3.87 ± 0.02 0.15 ± 0.01
2 0.15 Numerical 162.26 ± 0.01 18.77 ± 0.01 12.88 ± 0.01 3.91 ± 0.02 0.13 ± 0.01
3 0.10 Numerical 165.00 ± 0.01 18.95 ± 0.01 12.92 ± 0.01 3.96 ± 0.01 0.08 ± 0.01
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The results show that, at higher printing resolutions (lower layer heights), higher
dimensional accuracy of the product is achieved. The 0.10 mm layer height produced speci-
mens with final dimensions close to desired ones. As the layer height reduces (increasing
resolution), the number of layers producing a 4 mm thickness increases. Therefore, the cool-
ing of a layer with 0.10 mm has enough time to adequately bond to the already deposited
layer and solidifies at the deposited position before the deposition of the incoming layer.
Consequently, improved dimensional accuracy is achieved.

4. Conclusions

In this study, numerical simulations were performed to observe the impact of process
parameters on the part quality of MEAM 3D printed components. Different extrusion
temperatures (210 ◦C, 220 ◦C, 230 ◦C, 240 ◦C, 250 ◦C, and 260 ◦C) within the printability
window of ABS material and three different layer heights (0.1 mm, 0.15 mm, and 0.2 mm)
were selected for analysis. These two process parameters were sequentially optimized for
optimum part quality, first by varying the extrusion temperature and secondly by changing
the printing resolution using the optimum printing temperature. The 3DP process quality
was evaluated regarding dimensional accuracy, distortions, and residual stresses. Finally,
the specimens were 3D printed under similar process conditions to validate the numerical
model predictions.

The numerical model predicted the actual 3DP process outcomes with a reasonable
difference from the experimental results. However, the higher deflections from the de-
signed values with increasing extrusion temperatures are attributed to the material model
limitation in the existing model. The higher dimensional variations in numerical model
results can also be attributed to the stress relaxation effect, which is not considered in the
numerical model. However, higher warpages/distortions recorded in 3D printed samples



Polymers 2022, 14, 3482 11 of 13

were due to the numerical model considering perfect build plate adhesion of the specimen.
The 3DP experimental results conclude that the optimum print quality can be achieved at an
optimum extrusion temperature of 240 ◦C. Two main reasons are that higher-dimensional
variations and warpages at higher or lower temperatures than the optimum temperature.
Once the material is deposited at a temperature lower than the optimum temperature of
240 ◦C, it tends to cool down to the build plate or ambient temperature, depending on
the layer number. As the material cools down, the phase-change process from semi-solid
to solid starts due to lower extrusion temperature, and inter-bead diffusivity of polymer
chains is inhibited, resulting in imperfect adhesion. However, higher thermal cycling in-
creases residual strains and warpages at higher temperatures. The higher thermal gradients
within the printed part can also lead to higher distortions in the build direction.

In addition, the specimen 3D printed at an extrusion temperature of 210 ◦C revealed
lower residual stresses than all the other printing temperatures under consideration. This
observation also supports numerical predictions of the higher dimensional control at an
extrusion temperature of 210 ◦C, as higher residual stresses result in higher dimensional
variations and distortions in the specimen. Finally, the printing resolution also plays a
vital role in the dimensional control of 3D printed parts. Based on the numerical model
predictions, it is suggested that higher printing resolutions should be used to produce
higher quality parts, especially in functional components where higher dimensional control
is desired.

It is concluded that extrusion temperature and process resolution are of paramount
concern while achieving optimum product quality. The optimum printing temperature
varies with material compositions. However, lower layer heights are suggested for higher
dimensional accuracy of 3D printed parts. The presented numerical model can be further
improved to optimize the printing temperature and layer heights for other materials.
In future studies, other polymeric materials will be considered to optimize the process
parameters for the MEAM process. The proposed methodology can be implemented at a
lower cost and limit the need for experimental optimization of 3DP process parameters.
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