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Abstract: A modification of the two-flux Kubelka-Munk (K-M) model was proposed to describe the
energy conservation of scattered light in colored mixed material with a defined scattered photometric,
which is applied for the relative quantity distribution of each colored monochrome component in
mixed material. A series of systematical experiments demonstrated a higher consistency with the
reference quantity distribution than the common Lambert-Beer (L-B) law. Its application in the
fibrogram of each component for measuring the cotton fiber’s length was demonstrated to be good,
extending its applicability to white and dark colored blended fibers, the length of which is harder to
measure using L-B law.

Keywords: film thickness; image; transmission; scattered photometric; Kubelka-Munk

1. Introduction

The quantity or relative quantity distribution of each monochrome item is an impor-
tant variable to configure a color-mixed material’s properties in terms of structure and
uniformity in the textile industry, such as the color blending fibers, yarn, and fabric. A
potential environmental textile brand featured blending fibers after fiber coloring, with
50% reduction of water than traditional process [1–3]. Meanwhile, it is proposed to be
applied in the field of photometric measurement, among which the fibrogram is a typical
application, a way for measuring the length of white cotton fiber by the parallel fiber beard
linear density along the fiber axis [4,5].

In 1932, Hertel [4,5] proposed a modified form of the derived Lambert-Beer (L-B)
law to measure the linear density of cotton beards for bias reduction. However, experi-
mental coefficients were different for various materials and obtained difficultly, calling
for theoretical study [4–9]. In 1970s, the high volume instrument (HVI) was invented by
Spinlab Corporation based on Hertle’s study for cotton fiber length distribution, and has
been an international standard method on white cotton fiber length until now [9]. In 2016,
Wu et al. [10] derived a modification of two-flux Kubelka-Munk (K-M) theory for relative
thickness or surface density of a turbid medium. The theory contains the up- and down-
wards absorption and scattering light overcoming the L-B law’s shortcoming of including
down-wards absorption only [10–12]. Its results proved to be much better than L-B law,
particularly for scattered wool fibers [10–12]. Although the derived transmittance K-M
theory has been widely used in predicting the relative thickness of white materials [10–12],
the mixed-colored specimen of each monochrome fibers has not yet been investigated
which is typical important for quality control of color blending yarn industry.

In 2021, Chen et al. [13,14] of our group proposed an optical algorithm for the thick-
ness of each color material in a mixed multilayer transparent specimen, combined L-B law
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and transmission images. An estimating equation group was developed to describe the
relationship between the physical thickness of each color material and the optical depth of
multilayer transparent specimen under different monochrome light from linear regression
methods. The binary system of first order equations was employed to predict each col-
ored wool fiber material’s relative physical thickness in the mixed colored-fiber specimen.
Although its results turn to be pretty good in smooth films, the L-B law’s shortcoming
of containing down-wards absorption only limits its usage scope in scattering and thick
films [13] and fiber materials [14], particularly the fiber beards with different colors [14].
Hence, relative quantity distribution of each monochrome component needs further study.

In this paper, combined with the previous derived transmission K-M theory and con-
servation law of light flux of scattered light, a new scattering optical algorithm is proposed
for the relative thickness of each color material in a multilayer transparent specimen. This
algorithm has an advantage of comprising up- and down-ward scattering and absorption
lights, overcoming L-B law’s shortcomings of including down-ward absorption light only.
In this optical algorithm, the linear regression method was applied in obtaining linear
equation between the physical thickness and optical scattered photometric of multilayer
transparent monochrome specimens. According to the conservation law of light flux of
scattered light, ab estimation equation system was expressed to predict relative thickness
of each colored material in the multilayer specimen, and a better affinity is achieved ac-
cording to the comparison between experimental and predicted relative thickness which is
compared with results of previous algorithm from L-B law.

2. Theory
2.1. Lambert-Beer Law

L-B law [8–15] provides a light absorptivity relationship between the attenuation
of light and the physical thickness of material when a light transmits through a mate-
rial. This relationship only considers the down-wards light absorption, expressed as in
Equations (1) and (2),

I = I0e−Kx (1)

A = xK = ln(
I0

I
) = − ln(T) (2)

where K is the absorption coefficient, x is the thickness of the material, T is the transmittance,
and A is the absorbance.

2.2. Derived Kubelka-Munk Theory

Considering the up- and down-wards light scattering and absorption, Wu et al. [12],
the author, published a derived K-M theory indicating a scattering relationship between the
transmittance of light and the physical thickness of material when light transmits through
a material. According to the equation, the thickness (x) of specimen is proportional to the
algorithm of transmittance as elaborated in Equation (3),

P = Sx =
2r∞

1− r2
∞

ln(
1− r2

∞ +
√
(1− r2

∞)2 + 4T2r2
∞

2T
) (3)

where, S denotes the coefficient of scatter defined by the corresponding thickness of layer;
r∞ is the light reflectivity of the material with infinite thickness; P is defined as scattered
photometric here representing the ability of material’s light scattered. Here, S could be
obtained experimentally.

According to the conservation law of light flux of scattered light, the scattered coeffi-
cients of color-mixed material is equal to the sum of the results of scattered coefficient of
each composition multiplied by its corresponding concentration ratio wi, Smix = ∑n

i=1 wiSi,
where wi = xi/xmix and n is number of the monochrome materials.

Hence, the scattered photometrics of mixed material is proposed in this paper to be
equal to the sum of the scattered photometrics of its corresponding monochrome mate-
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rials, expressed as Pmix = ∑n
i=1 Pi. Two or three of these equations under different lights

form the mixed-film estimation equation system for 2-mixed or 3-mixed color multilayer
films, respectively.

2.3. Proposed Estimation Procedure

In this study, our own built imaging scanner was applied to obtain the RGB trans-
mission images at a greyscale of 0–255 with a resolution of 1000 dpi, where dpi means
the number of points within per inch. These acquired R, G, and B values represent the
transmitted light of red (R), green (G), and blue (B) monochromatic light, respectively.

Figure 1 shows that when monochromatic light enters the fiber aggregate, it is assumed
that both light reflection and light scattering inside the fiber aggregate are considered as
scattering, while scattering and absorption in air are ignored. According to the above
conservation law of scattered light flux, for A and B two-color mixed color fiber, the
scattered light amount of the mixed color fiber is equal to the total scattered light of
component A and the total scattered light of component B.
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Figure 1. Monochromatic light incident analysis of two-color hybrid fiber aggregates.

Figure 2 shows the flow chart to achieve the physical thickness of each color film in the
multilayer specimen, in which ith (i = 1, 2, 3) film represents different monochromatic film
and kth (k = R, G, B) light denotes the light channel of color images. This procedure has two
steps: (1) Color-mixed estimation system and (2) Application. For color-mixed estimation
system, the monochrome films were piled up to multilayer films one by one to scan their
transmitted RGB digital images. Next, calculate their corresponding transmittance using
R/R0, G/G0 and B/B0, where R0, G0 an B0 represents the amount of incident light under
each channel. These transmittance and corresponding infinite reflectance were applied in
Equations (1) and (2) to get Ai,k and Pi,k, respectively. Details of reflectance measurement
are described in Section 3.2 Optical parameter. After that, train the estimating equations
referred to photometric with linear regression method of ith monochromatic films and
each light. Furthermore, these estimating equations were added up to form the mixed-film
estimation equation under each light. Two or three of these equations under different
lights form the mixed-film estimation system for 2-mixed or 3-mixed color multilayer films,
respectively. In step 2: Application, the designed mixed films were arranged according
to their corresponding designed order and number of a group and accumulated to multi-
groups. Next, the RGB images of these groups were scanned to get their transmittance
using R/R0, G/G0 and B/B0. These transmittance and corresponding infinite reflectance
were applied to obtain the absorbed and scattered photometric, Amix,k and Pmix,k, using
Equations (1) and (2), respectively. Afterwards, these results are substituted into the
mixed-film estimation equation system above.
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3. Experiment
3.1. Material

In this experiment, seven commercial transparent and uniform films with different
colors are chosen as the experimental materials, numbered 1# to 7#, whose information
are listed in Table 1. Film 1# to 5# are made of poly-ethylene terephthalate (PET) and
film 6# to 7# are polypropylene (PP) films. All these colored films have characteristics of
transparent and smoothy, except 6# and 7# with rough surfaces. All images in Table 1 were
captured from films with 20 layers except 5# containing 40 layers for higher transparency.
These samples were employed to build the estimation equation systems for color separation.
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Table 1. Information of Monochrome Films.

Number Color Image Thickness/mm Material Surface

1# Blue
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To test the proposed method, 8 sets of mixed multilayer films, numbered a# to h#
were designed in accordance to their corresponding order and ratio given in Table 2. For
example, a group of a# mixed films turns to be 211 arranged from bottom to top, where
2 and 1 stands for a layer of 2# and 1# film respectively. Different numbers of groups
are selected for the limit linear test range. Films a#–f# and film g# are of PET and PP
respectively, while h# is a mixture of PP and PET with rough and smooth surfaces. a#–h#
samples in Table 2 are divided into 5 sets by the compositions of each mixed material,
numbered A# to E#. An estimation linear equation system of each set could be composed
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3.2. Optical Parameter r∞

Reflectance of infinite layers r∞, is an essential optical parameter for derived K-M
theory. To measure this parameter, specimens need to be piled up to enough thickness, so
that no light can transmit. Samples of monochrome and mixed films are stacked to 20 layers
and 10 groups of layers respectively, except 5# with 40 layers for higher transparency.
Table 3 denotes the reflectance of infinite layers from reflective images of these multilayers
obtained with built scanning image equipment.
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Table 3. r∞ of Monochrome and Mixed Films under Monochrome Light.

Number
r∞ of Monochromatic Specimen/%

Number
r∞ of Mixed Specimen/%

R G B R G B

1# 2.10 50.85 70.02 a# 27.03 55.84 42.43
2# 74.35 71.79 22.13 b# 26.50 55.89 46.89
3# 22.49 10.12 12.01 c# 35.33 59.82 40.22
4# 29.37 40.58 23.73 d# 44.64 62.54 35.07
5# 85.19 87.98 93.58 e# 30.15 26.93 20.40
6# 15.80 31.11 53.62 f# 32.93 16.85 14.82
7# 76.49 66.95 34.00 g# 17.40 32.83 37.44

h# 73.47 71.35 33.41

3.3. Monochrome Estimation Equation

To get the linear equation between the scattered photometric and thickness, specimens
with same color were accumulated to multilayers for RGB images of 1# to 7# samples
using a scanner, as shown in Figure 1. Scan images of each colored film with multilayers
at an area of 9 mm × 10 mm, ranging from 0–5 layer. Afterwards, their scattered and
absorbance were computed with Equation (2) and Equation (1), respectively. Figure 3
indicates the transmitted intensity, absorbed and scattered photometric of 0–5 layers with
sample 1# to 7# under R, G and B lights. As physical thicknesses are multiples of its layer
numbers, the latter was used as reference values here. It can be seen that the scattered
photometric has a better linearity than the absorbed photometric with the layer of films for
most films ranging from 0 to 5 layers, such as 7# in R and G channels, and different colored
film shows different linearities in R, G and B channels. Hence, optimal channels could be
selected according to the transmittance under R, G, and B channels of the 2-mixed mixture
and its components.

In addition, linear regression method was employed for linear equation between the
layer number and absorbance or scattered photometric. Data of 0–4 layers for 1#–5# and
0–3 layers for 6#–7# were regressed for better linearity of scattered photometric P = SX + C,
and absorbed photometric A = KX + D, where S denotes the coefficient of scatter defined
by the corresponding thickness of layer; and K is the coefficient of absorption, and C and D
are constants related to noises. In this section, the experiments results indicated good linear
relationship between photometric and layer numbers of monochrome films under each
monochrome light, whose r2 were all above 0.98. These estimated scattering and absorption
linear equations could be used in the construction of color-mixed equations complied with
the conversation of scattered and absorbed light in the following section.
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Figure 3. Relationship between transmittance (a1–c1), scattered photometric (a2–c2) and absorbance
(a3–c3) of 0–5 layers with 1#–7# films under R, G and B lights.

3.4. Thickness of Each Component in Mixed Samples

To examine the accuracy of proposed method, specimens a# and b# were created
numbered A# set as listed in Table 2. Following the conversation of scattered and absorbed
light in the following section, estimation equation system was constructed by summing
up linear equations from Figure 3 for each component, 1# and 2#, in mixed samples of A#
about scattered photometric and absorbance under particular (G or B) light, respectively. Its
results comprised 2-mixed estimation equation systems of A#. Figure 3 declared a higher
degree of linearity between predicted and measured scattered photometric compared with
that of the absorbance from L-B law. This may lead to more accurate predicted layer
numbers for scattered method. Afterwards, compute layer number of colored films 1#
and 2# with 2-mixed estimation systems of Figure 2. Their results and the sum of each
component with both methods are illustrated in Figure 4.



Polymers 2022, 14, 3423 8 of 15

Polymers 2022, 14, x FOR PEER REVIEW 8 of 15 
 

 

light in the following section, estimation equation system was constructed by summing 
up linear equations from Figures 3 for each component, 1# and 2#, in mixed samples of 
A# about scattered photometric and absorbance under particular (G or B) light, respec-
tively. Its results comprised 2-mixed estimation equation systems of A#. Figure 3 declared 
a higher degree of linearity between predicted and measured scattered photometric com-
pared with that of the absorbance from L-B law. This may lead to more accurate predicted 
layer numbers for scattered method. Afterwards, compute layer number of colored films 
1# and 2# with 2-mixed estimation systems of Figure 2. Their results and the sum of each 
component with both methods are illustrated in Figure 4. 

  
Figure 4. Comparison between physical and calculated monochrome film layers number, in mixed 
samples of (a) Sample a# and (b) Sample b# using scattered photometric and absorbance. 

For accuracy analysis, their corresponding layer number deviation ratios 𝜎 of each 
composition were calculated according to Equation (4), 

0

0

100%
x x

x
σ

−
= ×  (4)

where x denotes the calculated value; 𝑥  is the reference value. 
The mean and maximum value of these deviation ratios turns to be 2.05%, 6.21% and 

4.14%, 20.40% for derived K-M and L-B methods, respectively. Particularly, the sum of 
each component measured with the derived K-M has presents less difference from the 
true data. Hence, the scattered method exhibits a better consequence in a# and b# PET 
materials compared with L-B law.  

3.5. Relative Thickness of Each Component in Mixed Material 
To avoid effect of boundary reflectance ignorance, random error of reflectance of in-

finite layers and noises of equipment [8,16], relative optical thickness was proposed for 
testing the quantity distribution of each monochrome material. PET, PP and PP\PET 
mixed materials were applied for relative optical thicknesses of monochromatic film in 
multilayers as Table 2 described. For estimation system construction, add up the linear 
equations of each component from 0–4 layers of colored films in Figure 3, following pro-
cedures in Figure 2 to a predicted mixed equation under a particular light (R, G and B). 
Afterward, two or three of these predicted equations under different monochromatic light 
were employed to construct the 2- or 3-mixed estimation equation system. Finally, the 
relative thickness for each composition of the mixed multilayers was calculated with 
Equation (5), shown in Figure 5. 

Figure 4. Comparison between physical and calculated monochrome film layers number, in mixed
samples of (a) Sample a# and (b) Sample b# using scattered photometric and absorbance.

For accuracy analysis, their corresponding layer number deviation ratios σ of each
composition were calculated according to Equation (4),

σ =
|x− x0|

x0
× 100% (4)

where x denotes the calculated value; x0 is the reference value.
The mean and maximum value of these deviation ratios turns to be 2.05%, 6.21% and

4.14%, 20.40% for derived K-M and L-B methods, respectively. Particularly, the sum of
each component measured with the derived K-M has presents less difference from the true
data. Hence, the scattered method exhibits a better consequence in a# and b# PET materials
compared with L-B law.

3.5. Relative Thickness of Each Component in Mixed Material

To avoid effect of boundary reflectance ignorance, random error of reflectance of
infinite layers and noises of equipment [8,16], relative optical thickness was proposed for
testing the quantity distribution of each monochrome material. PET, PP and PP\PET mixed
materials were applied for relative optical thicknesses of monochromatic film in multilayers
as Table 2 described. For estimation system construction, add up the linear equations
of each component from 0–4 layers of colored films in Figure 3, following procedures in
Figure 2 to a predicted mixed equation under a particular light (R, G and B). Afterward, two
or three of these predicted equations under different monochromatic light were employed
to construct the 2- or 3-mixed estimation equation system. Finally, the relative thickness
for each composition of the mixed multilayers was calculated with Equation (5), shown in
Figure 5.

xr =
x− xmin

xmax − xmin
× 100% (5)

Relative thickness deviation ratios of Figure 5 were computed with Equation (4) as
shown in Table 4, whose mean and maximum values from scattered photometric and
absorbance were 3.56%, 14.03% and 6.77%, 42.24%, for 2-mixed PET material (1#2# and
2#1#), 2.28%, 6.86% and 1.7%, 6.74% for 3-mixed PET material (4#5#3#), 1.94%, 6.13% and
4.08%, 12.05% for 2-mixed PP material (6#7#), and 2.89%, 14.38% and 17.07%, 78.31% for
PET/PP material (7#4#), respectively. This indicates a better application of the modification
of K-M theory than L-B law both in average and maximum error rate. The reason for this is
that the L-B model only considers the unidirectional absorption of light by materials but
does not consider the reflection and scattering of light. When the light passes through the
material, in addition to absorption and reflection, a large amount of scattered light will
be generated inside and on the surface. Therefore, the modified K-M theory is proposed
to consider not only light absorption and light transmission, but also light scattering. Its
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advantages are particularly obvious in PP\PET mixed sample with smooth and rough
surfaces.
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each component and their sum for Sample a# (a1–c1), b# (a2–c2), c# (a3–c3), d# (a4–c4), e# (a5–c5),
and f# (a6–d6) with PET material, g# (a7–c7) with PP materials and h# (a8–c8), and i# (a9–c9) with
PP\PET mixed material.

Table 4. The relative thickness deviation ratios of each component.

Order Ratio
Scattered Photometric Absorbance

Mean Deviation Rate% Max Deviation Rate% Mean Deviation Rate% Max Deviation Rate%

2#1# 1:2 1.53 5.09 4.26 20.4

1#2#
3:1 2.56 6.21 4.029 19.57
1:1 6.81 14.03 12.45 42.24
1:2 3.36 8.76 6.35 23.48

4#3# 1:1 2.72 6.35 5.12 24.63
4#5#3# 1:1:1 2.28 6.86 1.7 6.74

6#7# 1:1 1.94 6.13 4.08 12.05

7#4#
1:1 2.89 14.38 17.07 78.31
1:2 4.09 12.01 10.69 42.72

4. Application

To make sure the algorithm’s applicability in fiber assemblies, cotton, wool and
polymer colored fiber assemblies were used to compare with the common L-B law. Primary
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fibers, white and black colored cotton, grey and yellow colored wool fibers, and pink
colored polymer fibers were piled up parallelly with different weight for optical weight
with transmission images. Linear regression method was applied to relationship between
scattered photometric or absorbance and their weight in R, G, and B channels, respectively.
These linear equations for each primary fibers under same light were summed up to
construct the estimation equations system, as shown in Figure 2. Relative quantity of each
primary fiber could be obtained in gray-yellow blended wool and black-white cotton with
ratio of 1:1 and 1:2 respectively as procedure above compared with actual weights from a
balance (accurate to 0.001 g), as described in Figure 6. The mean and maximum relative
weight deviation ratios of scattered photometric and absorbance are 3.57%, 15.29% and
4.44%, 15.04%, for 2-mixed wool fibers, 1.86%, 5.5% and 27.25%, 176.79% for cotton samples,
and 1.46%, 5.31% and 6.65%, 16.63% for cotton and polymer mixed fibers, respectively.
Hence, this new proposed method is better in fiber assemblies. The large derivation of black
cotton using L-B law in Figure 6(a2) may deduced from random errors of fiber assemblies
and ignorance of reflectance. Hence, based on this theory, a new method with digital image
technology could be invented for primary fiber quantity distribution from blending fiber
beards, which is essential data for the fibrogram for primary fiber length measurement.
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5. Conclusions

In this study, a scattered optical algorithm was proposed for relative quantity distribu-
tion of each monochrome component in color mixed material based on derived K-M theory
and the color transmission image. The linear regression method and conservation of scat-
tered light were applied to obtain the estimating equation system on a defined optical
variable, scattered photometric P, from transmission images of monochrome item with
different weight or thickness. The obtained results were relative quantities to avoid igno-
rance factors of theoretical surface reflectance, random error, and measured derivation of
reflectance of infinite layers. A series of experiments were performed with color-mixed
specimens with smooth PET, rough PP, PP\PET mixed films, cotton, and wool fiber assem-
blies. Results show that this algorithm performs better than the commonly used L-B theory,
especially in smooth PET\rough PP mixed materials and fiber assemblies. Therefore, this
optical algorithm shows a potential application in assessing the primary fiber length of
blending fibers, as well as testing the evenness of scattering film and fiber assembly, es-
pecially hollow fibers and other fiber materials with shape modifications for functional
application [17–19], as well as to support the fibrogram of fiber beards for fiber length test-
ing. Based on this theory, a new method with digital image technology could be invented
for primary fiber length measurement from blending fiber beards, having the characteristics
speed, high accuracy, and low cost.
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