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Abstract: Surface defects of fiber-reinforced resin matrix composites (FRRMCs) adversely affect their
appearance and performance. To accurately and efficiently detect the three-dimensional (3D) surface
defects of FRRMCs, a novel lightweight and two-stage semantic segmentation network, i.e., Mask-
Point, is proposed. Stage 1 of Mask-Point is the multi-head 3D region proposal extractors (RPEs),
generating several 3D regions of interest (ROIs). Stage 2 is the 3D aggregation stage composed of the
shared classifier, shared filter, and non-maximum suppression (NMS). The two stages work together
to detect the surface defects. To evaluate the performance of Mask-Point, a new 3D surface defects
dataset of FRRMCs containing about 120 million points is produced. Training and test experiments
show that the accuracy and the mean intersection of union (mIoU) increase as the number of different
3D RPEs increases in Stage 1, but the inference speed becomes slower when the number of different
3D RPEs increases. The best accuracy, mIoU, and inference speed of the Mask-Point model could
reach 0.9997, 0.9402, and 320,000 points/s, respectively. Moreover, comparison experiments also
show that Mask-Point offers relatively the best segmentation performance compared with several
other typical 3D semantic segmentation networks. The mIoU of Mask-Point is about 30% ahead of the
sub-optimal 3D semantic segmentation network PointNet. In addition, a distributed surface defects
detection system based on Mask-Point is developed. The system is applied to scan real FRRMC
products and detect their surface defects, and it achieves the relatively best detection performance in
competition with skilled human workers. The above experiments demonstrate that the proposed
Mask-Point could accurately and efficiently detect 3D surface defects of FRRMCs, and the Mask-Point
also provides a new potential solution for the 3D surface defects detection of other similar materials

Keywords: fiber-reinforced resin matrix composites; composite materials; surface defect; defect
detection; semantic segmentation; automated optical inspection

1. Introduction

Fiber-reinforced resin matrix composites (FRRMCs) have a series of advantages, such
as high specific strength and modulus, so FRRMCs are widely used in aerospace, shipbuild-
ing, and other industrial fields [1,2]. In the manufacturing process of FRRMCs, there are
always tiny concave-shaped defects on their surface. The defects adversely influence the
material’s appearance and performance. Recently, product quality problems and safety
accidents caused by composite materials’ defects have been reported [3,4]. A batch of
Boeing 787 airliners was recalled due to minor defects in the FRRMCs on the surface of the
fuselage in 2020, which caused significant economic losses [5]. Therefore, it is significant to
study the surface defects of the FRRMCs in depth. Many researchers have tried to reveal
the generation mechanism of defects and reduce defects [6]. The formation of defects can
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be partly controlled by process parameters such as consolidation pressure, resin velocity,
vacuum pressure, and cure temperature [7]. However, there are still quite a few surface
defects that are difficult to eliminate. An effective way to achieve defect-free manufacturing
is to detect surface defects during the manufacturing process and then fill the defects in the
subsequent repairing process. The surface defects are mainly recognized by human work-
ers through their visual detections using naked eyes or magnifiers nowadays. However,
surface defects of FRRMCs are generally quite tiny, with feature sizes of about 0.2 to 3 mm,
and the texture of the fibers under the surface may also lead to disturbances; thus, visual
detections are actually challenging tasks even for skilled human workers. So, automated
methods for detecting surface defects of FRRMCs are needed.

In the field of defects detection, major efforts have been devoted to 2D image-based
object detection or segmentation methods [8–10]. However, 2D image-based results can-
not directly provide the depth information of defects, so subsequent quantitative filling
processes cannot be carried out effectively. As a result, many researchers have focused on
3D point cloud-based methods, and those methods can be divided into two main groups:
(1) traditional methods and (2) deep learning-based methods. Traditional methods mainly
take advantage of local geometric features such as the normals or curvatures, and threshold-
ing methods are used to remove points of backgrounds and obtain points of defects [11–13].
Traditional methods are relatively intuitive and effective; however, the defection perfor-
mance may be relatively poor if the segmentation threshold is chosen improperly, so their
robustness and applicability deserve further improvement. As for the deep learning-based
methods, the defects detection tasks can be treated as 3D semantic segmentation prob-
lems in deep learning. PointNet [14], PointNet++ [15], and Point transformer [16] are
typical 3D semantic segmentation networks. However, the segmentation performance
(mIoU) is still less than 0.75 on public datasets [17], even with the recent state-of-the-art
semantic segmentation network. Their actual performance on defects detection also needs
to be improved. As a result, more accurate 3D point cloud-based surface defects detec-
tion methods are urgently required, which are of practical significance for the FRRMC
manufacturing process.

In this paper, defects detection is also treated as a special 3D semantic segmentation
task. To accurately detect FRRMCs’ surface defects, a novel lightweight and two-stage
3D semantic segmentation network, i.e., Mask-Point, is proposed. The network mainly
exploits the geometric features of defects and combines the advantages of traditional and
deep learning methods. The main novelties and contributions of this research are (1) new
multi-head 3D RPEs in Stage 1 of Mask-Point are designed for generating several 3D ROIs,
allowing subsequent networks to focus on potential regions of defects, and (2) the shared
classifier and NMS in Stage 2 of Mask-Point are designed for classifying and aggregating
3D ROIs to improve the overall segmentation performance.

2. Materials
2.1. The Manufacturing Process of FRRMC Products

To illustrate the methodology of this paper, a representative FRRMC material, the
2.5D Quartz fiber-reinforced phenolic resin composite, was selected. It is a new composite
material with superior overall performance [18]. As shown in Figure 1, the material is made
of a 15 mm thick 2.5D quartz fiber fabric (provided by Nanjing Glass Fiber Research and
Design Institute, Nanjing, China) and phenolic resin (provided by Beijing Glass Research
and Design Institute, Beijing, China) through the resin transfer molding process (RTM)
under atmospheric pressure. In the RTM process, the condensation reaction of phenolic
resin curing will produce water. The water will be discharged as vapor because the curing
temperature is controlled at 140 ◦C. In addition, alcoholic solvents in the phenolic resin will
also escape from the matrix as gas due to the curing temperature. The above reasons lead
to inner void defects and surface defects in the RTM process [19].
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Figure 1. RTM process and the structure of 2.5 D quartz fiber-reinforced phenolic resin composites.

Since defects on the product’s surface will affect its appearance and performance, the
surface quality standard for the product requires that there should be no surface defects
with feature sizes of more than 0.2 mm. So, there are subsequent processes after the RTM. In
the traditional manufacturing process, as shown in Figure 2, skilled workers detect surface
defects using their naked eyes and magnifiers, then manually fill the surface defects with
epoxy resin, and then the repaired product will be cured again. If the geometric dimensions
and tolerances (GD&T) do not meet technical requirements, GD&T-aimed machining is
also required subsequently. The above processes are looped until the surface quality meets
factory standards.
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However, it is not easy to significantly improve the efficiency and accuracy of human-
dependent detection and repair for mass production. The integration of automatic inspec-
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tion and analysis processes into the manufacturing process has been promoted by Industry
4.0 [20] and Intelligent Manufacturing [21–23] in recent years. Therefore, automatic in-
spection and surface defect detection are the main objectives of this study. The automatic
detections system also outputs quantitative information about the surface defects and
provides technical support for the subsequent automatic repair process in the future.

2.2. Defects of FRRMCs

The surface defects of the FRRMCs in this study do not only come directly from the
RTM (see way 1 in Figure 3). If the GD&T of a product does not meet technical requirements,
machining will be performed. Thus, portions of internal void defects will be removed,
resulting in machining revealing defects.
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Figure 3. Formation of surface defects: way 1 is the machining revealed defects, and way 2 is directly
formed defects in RTM.

Surface defects are classified into four categories in ISO 8785:1998 [24]: (a) reces-
sion; (b) raising; (c) combined surface imperfections; (d) area imperfections, appearance
imperfections. Most void defects are ellipsoidal in shape due to air pressures, so most
machining-revealed defects are localized in the ellipsoid. Most directly formed defects in
RTM have irregular shapes. However, all defects are recessed concerning their surrounding
surface. Therefore, the surface defects of FRRMCs belong to the recession category. The
location and number of surface defects are highly random, which brings challenges to the
goal of automatic detection.

Treating both the defect and the material as solid entity models helps to quantitatively
evaluate surface defects in 3D computer graphics effectively. A defect can be considered as
a Boolean intersection of the defect entity and material entity, as shown in Figure 4. Thus,
the combination of different values of the following factors can be applied to represent
numerous defects in the real physical world: the 3D shape and size of the defective entity,
the 3D shape and size of different material entities, the relative position and relative
attitude of the defective entity and the material entity in space, etc. Several kinds of
defects in engineering can be derived according to the above rules quite easily, as shown in
Figure 4b–g; such a classification is intuitive, but it is still highly subjective. ISO 8785:1998
provides several features of surface defects to characterize surface defects, such as SIMl,
SIMw, SIMa, etc. [24]; therefore, surface defects can be evaluated with the same standard
metrics rather than be classified subjectively. So, the following features are designed to
characterize surface defects of FRRMCs according to ISO 8785:1998 [24]:

(a) SDL, surface defect length. The maximum size of the surface defect measured parallel
to the reference plane.

(b) SDW, surface defect width. The maximum size of the surface defect measured parallel
to the reference plane and perpendicular to the length of the surface defect.

(c) SDD, surface defect depth. The distance between the reference surface and the lowest
point in the surface defect measured vertically from the reference surface.
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(d) CSDA, surface defect area. Area of the surface defect.
(e) SDV, surface defect volume. The volume of the surface defect envelope.
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3. Methods
3.1. Data Acquisition

In order to meet the requirements of online FRRMCs’ surface defects detection and
obtain high-quality input data for the methods in this paper, a multifunctional 3D laser
scanner is developed, as shown in Figure 5a; the scanner consists of an XYZ robot and a
2D laser displacement sensor mounted on the end flange of the robot. The main technical
specification of the robot is shown in Table 1. The laser displacement sensor is a KEYENCE
LJ-V7060 with relatively high accuracy and repeatability, and its technical specification is
shown in Table 2 [25]. The interval between points on a measured profile from the sensor is
20 µm, which is one-tenth of the defect’s smallest feature size, and the trigger interval is
as fast as 16 µs, so the 3D scanner can capture tiny details of the measured surface even
with a relatively high scanning speed. In addition, the laser displacement sensor uses the
blue laser with a wavelength of 405 nm. The blue laser has better focusing characteristics
and anti-interference properties [25], making the measured results almost unaffected by
the internal texture below the surface, allowing the scanner to obtain more accurate results
than 2D image-based instruments. As a result, the 3D laser scanner provides powerful
technical support for surface defects detection in this paper.

Table 1. Technical specification of the XYZ robot.

Item Value

Range X: 0–1000 mm, Y: 0–550 mm; Z: 0–300 mm
Repeatability X, Y, and Z: ±3 µm/m (Linear encoders)
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3D laser scanner that is composed of an XYZ robot and a 2D laser displacement sensor; (b) the laser
displacement sensor (KEYENCE LJ-V7060) and an FRRMC part.

Table 2. Technical specification of the laser displacement sensor.

Model LJ-V7060

Reference distance 60 mm

Measurement range

z-axis (height) ±8 mm (F.S. = 16 mm)

x-axis (width)
NEAR side 13.5 mm

Reference distance
15 mmFar side

Repeatability z-axis (height) 0.4 µm
x-axis (width) 5 µm

Linearity z-axis (height) ±0.1% of F.S.

Profile data interval x-axis (width) 20 µm

Sampling cycle (trigger interval) Top speed: 16 µs
(high-speed mode)

The FRRMC test parts are fixed on the fixture; then, the 3D scanner scans them one by
one. Thus, the original 3D point clouds are obtained; one of the originally measured 3D
point clouds is shown in Figure 6a. Next, every original 3D point cloud was sub-sampled to
keep the distance of 0.02 mm between points. In order to improve the inference speed and
facilitate parallel computing during training and test, the original point clouds are divided
into smaller sub-point clouds into cubic spaces with an edge length of 8 mm. Each sub-point
cloud contains about 160,000 points. Then, with the help of manual geometric analysis and
label software, such as CloudCompare [26], each point was labeled as either “background”
or “defect” category, as shown in Figure 6b. Finally, a dataset with 120 million points
and a total of 749 samples was generated. These samples actually include surface defects
from different RTM parameters and are therefore representative. Among the 749 samples,
249 samples formed the test set, and the remaining 500 samples formed the training set.
The data augmentation techniques, such as random space clipping, rotation, and shift
noise [15], are applied to the training set, so the training set is expanded by six times,
i.e., 3000 copies.
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3.2. Mask-Point Based Defects Detection

We propose a novel Mask-Point to detect FRRMCs’ surface defects. The Mask-Point is
a lightweight, two-stage semantic segmentation network especially designed for the 3D
surface defects detection task. As shown in Figure 7, Stage 1 of Mask-Point is the multi-
head 3D RPEs, generating several 3D ROIs. Stage 2 of Mask-Point is an aggregation stage
composed of the shared classifier, shared filter, and non-maximum suppression (NMS).
Finally, the segmented results can be produced at the end of Stage 2.
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3.2.1. Stage 1 of Mask-Point: Multi-Head 3D RPEs

The surface defects of FRRMCs are recessed relative to the surrounding regions, which
could be characterized by the difference in local geometric features between defect points
and their neighboring points. Therefore, Stage 1 of Mask-Point is designed, as shown
in Figure 7a,b. The 3D point cloud data were firstly input into the grouping and SOR
layer. The grouping operator gathers the nearest neighboring points of every single point,
and the SOR operator is a statistical outlier removal filter to reduce noises. Then, the
local geometric feature extraction (LFGE) layer extracts the local geometric features, such
as Gaussian curvature or curvature change rate (NCR). In the case of NCR, if there is a
neighborhood point set (Si) with three principal components of the covariance matrix (λi1,
λi2, λi3, and λi1 > λi2 > λi3). NCRi can be calculated with Equation (1).

NCRi =
λi1

λi1 + λi2 + λi3
(1)

Then, the foreground extraction (FE) layer extracts the foreground points by a quantile
filter, and the clustering layer is used to generate several 3D ROIs. The density-based spatial
clustering of application with noise (DBSCAN) algorithm is introduced in the clustering
layer. DBSCAN can efficiently discover similarities and differences in data and determine
any shape of clusters that may exist in a given dataset without any a priori knowledge and
human intervention. These capabilities make it an ideal solution for aggregating defects.
Most points with insignificant local geometric features will be filtered out, leaving only
the point clouds of potential defect regions through LGFE and FE layers. We assume that
the left points are distributed like Points 1–4 in Figure 8. Some points (Points 1–3) will
be clustered in three clusters by DBSCAN and become 3D ROIs (Clusters 1–3) in Figure 8
because the points meet the requirements of DBSCAN to form clusters. Points 4 cannot
form a cluster because they do not satisfy the conditions of DBSACN to form a cluster.
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The pseudo-code of DBSCAN is presented in Algorithm 1 [27]. DBSCAN has only
two hyperparameters: the cluster’s radius (eps) and the minimum number of points
within a sphere of radius eps (minpts). When given a set of points in space, DBSCAN
starts with a core coordinate and continuously expands it to a region where the density is
reachable, resulting in a maximized region (called a cluster) containing core and boundary
coordinates. DBSAN has high computational efficiency, but it may be sensitive to its
hyperparameters [28] and may perform poorly on multi-density data [29,30].
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Algorithm 1: DBSCAN clustering

Input: eps, minpts, X
Output: the set of clusters
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

procedure DBSCAN(X, eps, minpts)
for each point P ∈ X do

if label(P) 6= visited then
label (P)← visited

N← Neighbors (P, eps)
if N < minpts then

mark P as Noise‘
else

C← P
for each point Pn∈N do

N← N\Pn
if label (Pn) 6= visited then

label (Pn)← visited
Nn← Neighbors(Pn, eps)
if Nn ≥minpts then
N← N ∪ Nn

if Pn not a member of any cluster then
C← C ∪ Pn
end if

end if
end if

end for
end if
end if

end for
end procedure

The scanned data may be multi-density in actual scanning because the surface of the
products may be curved even scanned uniformly. Thus, the scanned point clouds may
be non-uniform. A single DBSCAN does not work for multi-density data, so multi-head
3D RPEs are proposed. Each 3D RPE can be equipped with a DBSCAN with specified
parameters to produce one kind of 3D ROI. Multiple 3D RPEs with different DBSCAN
and hyperparameters can thus handle multi-density data. In addition, the 3D RPE can
accommodate different LGFE and FE layers to construct as many 3D ROIs as possible, thus
increasing the probability of successfully detecting surface defects. Multi-head 3D RPEs can
overcome the sensitivity to hyperparameters that occurred in traditional methods, improve
the network’s robustness, and facilitate parallel computing.

3.2.2. Stage 2 of Mask-Point: Aggregation Stage

Stage 1 of Mask-Point outputs several 3D ROIs, but not all 3D ROIs belong to the
target surface defects. Some 3D ROIs may also overlap with each other, which is similar
to the Mask-RCNN in 2D image segmentation [29,30]. Mask-RCNN firstly calculates the
probability of ROIs through the classifier. Then, the NMS is applied to remove ROIs with
lower probabilities to deal with the overlap problem and obtain the final detection results.
A new 3D shared classifier and 3D NMS are proposed in this paper to deal with 3D ROIs in
Stage 2, referring to the principles of Mask-RCNN.

The global geometric features SDL, SDW, SDD, SDA, and SDV mentioned in Section 2
are adopted to construct the shared classifier. Because the geometrical features of surface
defects are distinguishable from non-defective ones, the geometric features are also required
by the subsequent repair process in the manufacturing process of the FRRMC products.
However, the outputs of Stage 1 are 3D ROIs with scattered points rather than features, so
the pre-processing and feature extraction layers are required to extract geometric features.
As shown in Figure 7c, a series of layers, including the convex hulling layer, triangle
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meshing layer, oriented bounding boxing layer, and the global geometric feature extraction
(GGFE) layer, is designed in Stage 2 to extract the global geometric features. A detailed
procedure is shown in Figure 9. The convex hulling layer computes the convex hull [31] of a
3D ROI and forms a triangle mesh, and then the SDA and SDV features can be approximated
by the surface area (CHA) and volume (CHV) of the convex hull. The minimum bounding
box (OBB) can be calculated in the oriented bounding boxing layer, and the length (OBBL),
width (OBBW), and depth (OBBD) of OBB can be applied to approximate the SDL, SDW,
and SDD features of a defect. Thus, all features of a surface defect can be approximated
through computer graphics analyses.
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The convex hull of a shape is defined as the intersection of all convex sets containing
a given subset of Euclidean space. Quickhull is an efficient algorithm for the automatic
computation of convex hulls for high-dimensional data [31]. It has the expected time
complexity of O(nlogn), but it could degenerate to O(n2) in the worst scenario, where n is
the number of input points. The pseudo-code for Quickhull is shown in Algorithm 2 [31].
Each unprocessed point is first given a place in an outer set. Then, Quickhull constructs
new outside sets from the outside sets of the visible facets to produce cones of new facets.
One of the new facets is chosen when a point is above many new facets. The point is
inside the convex hull and can be ignored if it is below all new facets. The procedure above
additionally logs each outside set’s furthest point. For the initial simplex, Quickhull chooses
a nondegenerate collection of points and chooses points with a minimum coordinate if
possible. The convex hull can be represented as a triangular mesh, and its CHA and CHV
can be extracted in the GGFE layer based on the triangular mesh, which is then used to
characterize the SDA and SDV features of the surface defects. With the convex hull, the
OBB of the convex hull can be computed by the PCA of the convex hull’s vertexes [32].
The OBBL, OBBW, and OBBD of OBB can be extracted in the GGFE layer, then applied to
represent the surface defects’ SDL, SDW, and SDD features.
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Algorithm 2: Quickhull algorithm for the convex hull

Input: points
Output: processed outside set (convex hull)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

procedure Quickhull(points)
create a simplex of d + 1 points
for each facet F do

for each unassigned point p do
if p is above F then

assign p to outside set of F
end if

end for
end for
for each facet F with a non-empty outside set do

select the furthest point p of F’s outside set
initialize the visible set V to F
for all unvisited neighbors N of facets in V

if p is above N then
add N to V

end if
end for

the boundary of V is the set of horizon ridges H
for each ridge R in H do

create a new facet from R and p
link the new facet to its neighbors

end for
for each new facet F’ do

for each unassigned point q in an outside set of a facet in V do
if g is above F’ then

assign q to outside set of F’
end if

end for
end for

delete the facets in V
end for

end procedure

The geometric features, including CHA, CHV, OBBL, OBBW, and OBBD, are then
input to the shared classifier for classification. Models such as the multi-layer perceptron
(MLP) [33], deep neural network (DNN), support vector machine (SVM) [34], K-nearest
neighbor (KNN) [35], Decision Tree (DT) [36], Random Forest (RF) [37], AdaBoost [38]
and GradientBoosting [39] are potential classifiers. Since it is unknown in advance which
model has the best classification performance, comparisons are needed before formally
building Stage 2. Next, the classified 3D ROIs were input into the shared filter layer to
remove the results with lower classification probabilities. Due to the multi-head 3D RPEs
applied in Stage 1 as mentioned above, one same defect may be proposed as 3D ROIs by
several different RPEs. Thus, the NMS [40] layer is introduced to remove redundant 3D
ROIs. It calculates the intersection over union (IoU) values between 3D ROIs, and regards
two 3D ROIs with IoU greater than a specified threshold as overlapping, then removes the
3D ROI with a smaller classification probability and keeps only the 3D ROI with a larger
classification probability, and loops in this way until there are no overlapping 3D ROIs.
Finally, the segmented defects are produced.

3.2.3. Outputs of Mask-Point

At the end of Mask-Point, the geometric features CHA, CHV, OBBL, OBBW, and
OBBD can be output. The body center coordinates OBBCX, OBBCY, and OBBCZ of OBB can
also be extracted in the GGFE layer, which can provide data support for the quantitative
evaluation of surface defects and information for the subsequent quantitative repair process
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of surface defects. OBBL, OBBW, and OBBD provide dimensional information on surface
defects that can be used to assess the quality of the RTM process. OBBCX, OBBCY, and
OBBCZ report the spatial coordinates of the defects, and the coordinates can be used by
automated repairing tools to locate the spatial position of the defects. CHV and CHA
provide the reference for the epoxy resin injection volume in the subsequent automated
repair process. In summary, the Mask-Point in this paper can provide technical support for
the intelligent manufacturing process of FRRMC products.

3.3. Distributed Surface Defects Detection System with Mask-Point

A distributed and surface defects detection system is developed in the laboratory
based on Mask-Point for the manufacturing process of real FRRMC products. The system’s
architecture is shown in Figure 10, and it consists of three subsystems: the scanner subsys-
tem, the inference subsystem, and the visualization subsystem. Each subsystem can run
its own task and communicate with each other through a local area network. The scanner
subsystem scans FRRMCs parts while storing the point cloud files and recording them into
the database; it provides the reasoning API and Samba Server [41] to allow the reasoning
subsystem to request the defect detection tasks and corresponding point cloud files. The
reasoning subsystem keeps executing the following loops: request a reasoning task, obtain
the task path, fetch the point cloud file according to the task path, execute the defects detec-
tion with Mask-Point kernel, and send the segmented results to the visualization subsystem.
The visualization subsystem keeps executing the cycle of rendering. The visualization
subsystem is established on the advanced Vulkan graphics API [42]; thus, the rendering
frame rates keep above 20FPS even with 100 million points. The different subsystems are
decoupled from each other, and the inference subsystem can also be multiple opened in
parallel across multiple processes, thus improving the detection efficiency of the system.
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4. Results and Discussion
4.1. Training and Test Performance of Mask-Point

To verify the effectiveness of Mask-Point, the training set and test set made in Section 2
are used to train and test Mask-Point. The training procedures of the Mask-Point also
require two stages corresponding to Mask-Point’s architecture: the shared classifier in Stage
2 is firstly trained, then, freezing the classifier, other parts of Mask-Point are trained.

For the shared classifier in Stage 2, seven machine learning models are compared
because which model has the best performance is unknown in advance, including MLP [33],
SVM [34], KNN [35], DT [36], RF [37], AdaBoost [38], and GradientBoosting [39]. All the
above models are implemented by Scikit-learn [43], their pseudo-codes and parameters are
listed in Table 3, and default values are adopted for parameters not specifically listed. A
total of 4396 samples of 3D ROIs are obtained from Stage 1 with pre-defined parameters in
total, 3077 (70%) samples are applied to train classifiers, and the remaining 1319 (30%) are
used to test classifiers.

Table 3. Seven machine learning models for the shared classifier and their pseudo-codes (Scikit-learn
[43] style).

Model Parameters

MLP MLPClassifier(hidden_layer_sizes = (32.64),
max_iter = 500)

SVM svm.SVC (probability = True)
KNN neighbors.KNeighborsClassifier()

DT tree.DecisionTreeClassifier()
RF RandomForestClassifier(n_estimators = 50)

AdaBoost AdaBoostClassifier(n_estimators = 50)

GradientBoosting GradientBoostingClassifier(n_estimators = 50,
learning_rate = 1.0, max_depth = 1)

Confusion matrices (see Figure 11) and several commonly used classification met-
rics (see Table 4) based on confusion matrices were introduced to evaluate the above
classifiers’ performance. As shown in Figure 11a, the confusion matrix cross-tabulates
predicted values and ground truths into four categories to summarize the performance
of a binary classifier: (a) True Positive (TP): correctly predicting a label; (b) True Negative
(TN): correctly predicting the other label; (c) False Positive (FP): falsely predicting a label;
(d) False Negative (FN): missing and incoming label. Values with relatively larger TP and
TN and smaller FN and FP indicate better performance. The confusion matrices of the
seven classifiers are shown in Figure 11b–h, where label “D” represents defects and label
“ND” represents non-defects.

Table 4. Performance of seven classifiers.

Metric

Accuracy Precision Recall/Sensitivity F1 Score Matthews Correlation
Coefficient (MCC)

ACC = (TP + TN)/
(P + N)

PPV = TP/
(TP + FP)

TPR = TP/
(TP + FN)

F1 = 2TP (2TP +
FP + FN)

MCC = TP × TN − FP ×
FN/sqrt((TP + FP) × (TP + FN) ×

(TN + FP) × (TN + FN))

MLP 0.9970 0.9904 0.9904 0.9904 0.9886
SVM 0.9833 0.9947 0.8990 0.9444 0.9363
KNN 0.9864 0.9948 0.9183 0.9550 0.9482

DT 0.9992 0.9952 1.000 0.9976 0.9972
RF/

AdaBoost/
GradientBoost

0.9985 0.9952 0.9952 0.9952 0.9943
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GradientBoosting, respectively.

The classification metrics, including the accuracy, precision, recall, f1 score, and
Matthews Correlation Coefficient (MCC) [44], are introduced, and their definitions are listed
in the table header of Table 4. The metrics reflect the performance of the classifier from
different aspects. Larger values indicate better performance. From confusion matrices
and metrics, it can be found that the DT model has the best performance with the largest
metrics and the least FN and FP values. The sub-optimal models are RF, AdaBoost, and
GradientBoosting models with the same confusion matrices. MLP’s performance is slightly
worse than RF. These models above have the same level of performance indeed, as their
MCC values differ by less than 0.01, and the difference between FN and FP values is less
than two compared to thousands of samples; the small differences in performance may be
caused by the splitting way of data or noises in engineering. SVM and KNN do not perform
well, indicated by the large FN values. The MLP model is chosen as the shared classifier
model in engineering because it has better scalability and can be accelerated in the GPU,
and further fine-tuning of performance is also feasible, allowing Mask-Point to achieve
high-speed inference as all layers of Mask-Point can run in the GPU if MLP is adopted. Of
course, DT seems to be the best choice if only the CPU is provided, but its inference speed
will be limited when dealing with massive data in practice.

With the trained classifier, other hyperparameters in the Mask-Point can be trained.
Since the 3D RPEs in Stage 1 may affect the segmentation performance of the network,
the performance of different numbers and parameters of 3D EPRs are compared. As
shown in Table 5, one, two, and four different 3D RPEs are compared. Some of the key
hyperparameters of Mask-Point are set as follows: the number of nearest neighbors of the
grouping layer in the RPE is in array of [25, 30, 50, 75], the local geometric feature of the
LGFE layer is NCR, and the parameter pairs (eps, minpts) of DBSCAN in the clustering
layer are in [(0.15, 45), (0.125, 30), (0.175, 65), (0.2, 80)]. The suppression threshold of the
NMS layer is 0.3. The commonly used evaluation metrics for the semantic segmentation task
are the mAcc and the mIoU. mAcc is equal to the mean accuracy value of all categories, as
shown in Equation (2). mIoU [45] of the segmentation calculates the ratio of the intersection
over the union of the ground truths and the predicted result, as shown in Equation (3).

mAcc =
Accdefect + Accbackground

2
(2)
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mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(3)

where pij represents the number of points whose true category is i but is predicted to be j.
Similarly, pji represents the number of points whose true category is j but is predicted to
be i, and k + 1 is the total number of categories including empty categories. pii represents
the real quantity. As shown in Table 5, the mAcc and mIoU increase as the number
of different 3D RPEs increases, indicating that the overall segmentation performance is
improved with the number of different 3D RPEs increases. However, the inference speed
is becoming slower because more 3D RPEs and subsequent networks in Stage 2 consume
more computational resources. The Mask-Point with four 3D RPEs has the relatively best
segmentation performance, and the corresponding accuracy, mIoU, and inference speed
achieve 0.9997, 0.9402, and 320,000 points/s on a single NVIDIA RTX3090, respectively.

Table 5. Comparison of different numbers of different 3D RPEs on the FRRMC test set.

Number of Different
3D RPEs mAcc mIoU Inference Speed

(Points/s)

1 0.9462 0.6328 410,000
2 0.9698 0.8269 350,000
4 0.9997 0.9402 320,000

Five detailed defects detection cases are shown in Figure 12. Cases A–D contain 1–4 surface
defects, respectively. The original unlabeled 3D point clouds are listed in the first column,
and the labeled ground truths are listed in the second column. The third column is the
predicted values, and the fourth is ground truths and predictions in the same magnified
view. The last two columns are corresponding 2D images. The macroscopic positions of
the defects in predictions and ground truths correspond almost one-to-one, regardless of
whether the sample has one or multiple defect instances, which intuitively demonstrates
the good mAcc. In particular, the points in the red-centered green box in column 4 occupy
almost all the points, and the points in the red-centered green box represent TP value points
in the confusion matrices, indicating that the predicted points almost overlap with the
ground truths. There are also a few scattered green points in the fourth column, which
indicate that Mask-Point segments out more points than ground truths, indicating that
the algorithm in this paper is broader than ground truths to prevent underestimation.
Case 5 is a defect-free instance, as Mask-Point does not misclassify any point as a defect
category. The above performance shows that surface defects of FRRMCs can be accurately
and efficiently segmented from the 3D point cloud with Mask-Point.

The outputs of Mask-Point are shown in Table 6, including the global geometric
features and center coordinates of each surface defect corresponding to Figure 12. The same
features computed from ground truths are listed in Table 7. Some of the corresponding
convex hulls and OBBs are shown in Figure 13. It can be seen that the difference between
the predicted and ground truth values of the OBB series values and CHA is small, and
only some of the CHV values are slightly different. For example, the predicted CHV of
defect D-1 is 5.1993 mm3, while the ground truth CHV is 3.6478 mm3. Different boundary
points of ground truths and predications lead to different convex hulls, thus affecting the
estimation of the volume value. More accurate CHV estimation may rely on finely tuned
scanning parameters and will be explored in future works.
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Table 6. Global geometric features and center coordinates of each surface defect in Figure 12 computed
from predictions.

Name Number OBBCX
/mm

OBBCY
/mm

OBBCZ
/mm

OBBD
/mm

OBBW
/mm

OBBL
/mm

CHV
/mm3

CHA
/mm2

A-1 233 78.2883 19.3031 58.5207 0.1893 0.3693 0.3837 0.2767 0.2488
B-1 314 79.0784 13.1296 59.8993 0.3081 0.4613 0.4873 0.1825 0.4077
B-2 304 78.6286 12.9802 63.6387 0.1778 0.3877 0.4217 0.4421 0.2763
C-1 396 30.6412 10.8558 57.2657 0.2017 0.4417 0.4574 0.7670 0.3830
C-2 283 33.1384 10.8632 60.2893 0.1934 0.3885 0.4177 0.5223 0.2905
C-3 255 33.6745 10.8470 61.4207 0.1149 0.3422 0.3908 0.0837 0.2144
D-1 1147 48.2271 11.4217 67.1759 0.3800 0.8790 1.3698 5.1993 1.7152
D-2 164 52.4099 11.4485 69.5911 0.1621 0.2424 0.3141 0.2983 0.1773
D-3 197 47.0998 11.2117 69.2650 0.1640 0.2799 0.3125 0.3461 0.2125
D-4 165 46.3314 11.0236 72.7422 0.1351 0.2483 0.3471 0.0515 0.1475
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Table 7. Global geometric features and center coordinates of each surface defect in Figure 12 computed
from ground truths.

Name Number OBBCX
/mm

OBBCY
/mm

OBBCZ
/mm

OBBD
/mm

OBBW
/mm

OBBL
/mm

CHV
/mm3

CHA
/mm2

A-1 228 78.2882 19.3035 58.5199 0.1888 0.3333 0.3842 0.1558 0.2483
B-1 305 79.0781 13.1304 59.8964 0.2992 0.4532 0.4631 0.0616 0.3969
B-2 301 78.6285 12.9807 63.6382 0.1760 0.3381 0.4053 0.4940 0.2746
C-1 391 30.6416 10.8565 57.2661 0.2023 0.4420 0.4628 0.5529 0.3784
C-2 271 33.1422 10.8642 60.2898 0.1939 0.3795 0.4147 0.1628 0.2837
C-3 243 33.6756 10.8483 61.4182 0.1088 0.3420 0.3807 0.1361 0.2059
D-1 1037 48.2236 11.4240 67.1782 0.3947 0.8316 1.2739 3.6478 1.6350
D-2 154 52.4138 11.4492 69.5929 0.1577 0.2347 0.3181 0.3031 0.1754
D-3 185 47.1024 11.2122 69.2642 0.1705 0.2865 0.2947 0.2356 0.2049
D-4 158 46.3312 11.0248 72.7408 0.1345 0.2440 0.3235 0.0519 0.1431
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Figure 13. Convex hulls and OBBs of some surface defects regarding Figure 12 computed from pre-
dictions. (a) The convex hull and OBB of A-1; (b) the convex hull and OBB of B-1; (c) the convex hull 
and OBB of B-2; (d) the convex hull and OBB of C-1; (e) the convex hull and OBB of C-2; (f) the 

Figure 13. Convex hulls and OBBs of some surface defects regarding Figure 12 computed from
predictions. (a) The convex hull and OBB of A-1; (b) the convex hull and OBB of B-1; (c) the convex
hull and OBB of B-2; (d) the convex hull and OBB of C-1; (e) the convex hull and OBB of C-2; (f) the
convex hull and OBB of C-3; (g) the convex hull and OBB of D-1; (h) the convex hull and OBB of D-2.

4.2. Comparison of Mask-Point and Typical 3D Semantic Segmentation Networks

To further verify the performance of Mask-Point, several other typical 3D semantic seg-
mentation networks are preliminarily compared, including PointNet [14], PointNet++ [15],
KPConv [46], and PointTransformer [16]. The PointNet and PointNet++ are implemented
from Xu’s repository [47], and the KPConv and PointTransformer implemented from
Open3D-ML’s repository [48]. All the parameters concerning the number of samples were
set to 160,000 if needed, i.e., all points were forced to participate in the training and test.
The other parameters were improved mainly based on the default parameters but with
little changes. The networks were trained and tested on the same GPU server with an
NVIDIA RTX 3090 using the FRRMCs dataset made above. The best results of each model
trained with different parameters are shown in Table 8 and Figure 14. Mask-Point achieves
the relatively best performance compared with other networks. The accuracy and mIoU
reached 0.9997 and 0.9402, respectively. The mIoU of Mask-Point is increased by about 30%
compared with the sub-optimal network, i.e., PointNet.
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Table 8. Comparison of Mask-Point with several other typical semantic segmentation networks on
the test set.

Model Mask-Point
(This Paper) PointNet PointNet++ KPConv PointTransformer

Best mAcc 0.9997 0.9941 0.9950 0.9932 0.9938
Best mIoU 0.9402 0.6272 0.5881 0.4953 0.4983
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Figure 14. Comparison of Mask-Point with several other typical semantic segmentation networks on
the test set.

The relatively poor performance on mIoU of other networks may be due to the
irregular shape of the surface defects, making it more difficult for the networks to extract
general features. In addition, other networks belong to the one-stage networks and do
not have the 3D RPEs-like structures. So, it may be difficult for these networks to locate
defect regions from a large number of point clouds, especially when the sizes of defects are
significantly smaller than the backgrounds and the points’ number of defects is significantly
less than the backgrounds with limited samples. Conversely, the 3D RPEs in Stage 1 of Mask-
Point could generate different 3D ROIs, allowing Stage 2 to focus on the potential defect
regions, thus finally performing a relatively high defects segmentation performance. Mask-
Point provides a new possible method for accurate surface defects detection of FRRMCs.

4.3. Verification of Mask-Point

In addition to the above FRRMC dataset-based experiments, the proposed Mask-
Point is also applied to detect surface defects of real FRRMC products using the proposed
distributed surface defects detection system mentioned in Section 3 and compared with
skilled human workers. A real FRMMC product is shown in Figure 15. The area to be
examined is framed in red. The Mask-Point-based system accomplishes scanning and
defects detection within five minutes. Two skilled workers from the front line are engaged
to detect defects individually as many as possible within five minutes. Ground truths are
determined by the most skilled human workers and experts with unlimited time, as shown
in Figure 16. The examined areas were divided into seven from Area A to G.
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Figure 16. Ground truths which are labeled by the most skilled human workers and human experts.
The labels B-I, D-I, D-III, E-I are individually marked defects for comparison.

The results scanned and detected by the Mask-Point system are shown in Figure 17.
It contains about 26.63 million points in total, and each colored point represents a defect
instance. The comparison of human workers and Mask-Point is listed in Table 9. It can be
seen that skilled workers can recognize most of the surface defects, and their accuracies
and recalls are close to 0.9, F1 scores are close to 0.94, and FPs are 0, indicating that humans
do not recognize non-defects as defects. However, the human workers take more time
to adjust the light and the position of the magnifier during the detection and therefore
cannot achieve high performance within the limited 5 min. They believe that they can
achieve better performance if more time is allowed. Mask-Point achieves the relatively
best performance compared with human workers in the same time limit with precision,
accuracy, f1 score, and recall values of 0.9630, 0.9643, 0.9811, and 0.6939, respectively.
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are marked to avoid confusion for readers.

Table 9. Comparison of human workers and Mask-Point with the same limited five minutes.

Region/Metric
Ground

Truth
Human Worker 1 Human Worker 2 Mask-Point

TP FN FP TP FN FP TP FN FP

A 4 4 0 0 4 0 0 4 0 0
B 7 6 1 0 7 0 0 6 1 1
C 8 6 2 0 7 1 0 8 0 0
D 9 7 2 0 7 2 0 7 2 0
E 8 8 0 0 8 0 0 7 1 0
F 7 6 1 0 7 0 0 7 0 0
G 11 10 1 0 8 3 0 11 0 0

In total 54 47 7 0 48 6 0 50 4 1
Precision

-

1.000 1.000 0.9804
Accuracy 0.8704 0.8889 0.9091
F1 Score 0.9307 0.9412 0.9524

Recall 0.8704 0.8889 0.9259

However, there are also four FNs (see yellow boxes in Figure 17) and one FP (see the
blue box in Figure 17) produced by Mask-Point. Four FNs (B-I, D-I, D-III, E-I) are found
at the beginning and end of Area B, D, and E. The FNs and FP may be due to insufficient
geometric features of the defects or insufficient acquisition of the original data caused by
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the low scanning frequency. The FP (B-II) is found to be caused by a piece of dust that
was raised on the surface. Because the current Mask-Point uses only the basic features of
the OBB, their orientation relative to the entire surface is not considered, i.e., whether 3D
ROIs are raised or concave is not identified by Mask-Point, and therefore, the misjudgment
is produced. The misjudgment can be avoided by surface cleaning before engineering
inspection, and the algorithm’s improvement will be carried out in future works. Besides,
it is also worth noting that C-I and D-II in Figure 17 are correctly detected defects but
not obvious, so they are marked by green boxes to avoid confusion for readers. These
experiments proved that the proposed distributed surface defects detection system with
Mask-Point outperformed the skilled workers in a limited time.

4.4. Summary of Experiments

Three experiments, including training and validation experiments, comparison experi-
ments, and verification experiments, are studied in this section. The first two experiments
were performed on the FRRMCs dataset produced in this paper. The verification experi-
ments were performed on the real FRRMC products.

In the training and test experiments, seven different machine learning models were
compared to find a better classifier in Stage 2 of Mask-Point. The MLP model was chosen
because of its good performance, and it can be accelerated by GPU and facilitate parallel
computation. Different types and numbers of 3D RPEs were also compared because they
affect the overall performance of Mask-Point. The Mask-Point with four 3D RPEs achieves
the relatively best segmentation performance, and the corresponding accuracy, mIoU, and
inference speed reach 0.9997, 0.9402, and 320,000 points/s on a single NVIDIA RTX3090,
respectively. A comparison of ground truths and predictions is shown in Figure 12, which
visually demonstrates the high mIoU achieved by the proposed method. In addition, the
predicted OBB series features, CHA, and CHV are also output to support the subsequent
repair process.

To further verify the performance of Mask-Point, several other typical 3D semantic
segmentation networks are preliminarily compared. The mIoU of Mask-Point is about
30% ahead of the sub-optimal 3D semantic segmentation network PointNet. A Mask-
Point-based distributed surface defect detection system is developed and applied in the
scanning and defect detection of real FRRMC products. Mask-Point achieves the relatively
best precision, accuracy, f1 score, and recall values of 0.9630, 0.9643, 0.9811, and 0.6939 in
competitions with skilled human workers within limited five minutes. It is generally 1% to
3% ahead of the skilled human workers. The above three experiments demonstrate that
Mask-Point can accurately and efficiently detect surface defects in FRRMCs.

In addition, there are still many aspects of Mask-Point can be improved. It can be
observed that the integrity of 3D point clouds is less than 2D images, as shown in the
fourth and sixth columns of Figure 12. The predicted CHV and the CHV of the ground
truths are slightly different in Tables 6 and 7. The above problems may be related to the
3D scanner and the scanning process. The scanning process parameters and the filtering
techniques thus deserve further studies. A piece of raised dust is found to be the cause of
the FP misclassification, as shown in Figure 17 B-II. The classifier in Mask-Point should also
be further upgraded to determine whether the 3D ROIs are raised or recessed to improve
the defect detection performance further.

5. Conclusions

In order to accurately and efficiently detect the 3D surface defects of FRRMCs, a
novel two-stage 3D semantic segmentation network especially designed for the surface
defects detection task, i.e., Mask-Point, is proposed. Stage 1 of Mask-Point generates many
3D ROIs, allowing subsequent networks to focus on potential regions of defects. Stage
2 classifies and aggregates the 3D ROIs; the two stages together lead to relatively better
segmentation results. To evaluate the performance of the Mask-Point, a new 3D surface
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defects dataset of FRRMCs containing about 120 million points is produced. The following
conclusions are obtained:

(a) Multi-head 3D RPEs in Stage 1 make the Mask-Point can deal with multi-density data
in engineering, overcome the sensitivity to hyperparameters, and facilitate parallel
computing. The shared classifier in Stage 2 of Mask-Point with features CHA, CHV,
OBBL, OBBW, and OBBD can effectively classify 3D ROIs.

(b) Training and test experiments show that the accuracy and mIoU increase as the num-
ber of different 3D RPEs increases, but the inference speed becomes slower when the
number increases. The Mask-Point with four 3D RPEs has the relatively best segmen-
tation performance; the corresponding accuracy, mIoU, and inference speed achieve
0.9997, 0.9402, and 320,000 points/s on a single NVIDIA RTX3090, respectively.

(c) Preliminary comparison experiments also indicate that Mask-Point offers relatively
best segmentation performance compared with several other typical networks. The
mIoU of Mask-Point is about 30% ahead of the sub-optimal 3D semantic segmentation
network PointNet.

(d) A Mask-Point-based distributed surface defect detection system is developed. The
system is applied to scan real FRRMC products and detect their surface defects. It
achieves the relatively best precision, accuracy, f1 score, and recall values of 0.9630,
0.9643, 0.9811, and 0.6939 in competitions with skilled human workers within limited
five minutes. Mask-Point is generally 1% to 3% ahead of the skilled human workers.

The above experiments demonstrate that the proposed Mask-Point cloud relatively
accurately and efficiently detect surface defects of FRRMCs. It offers new potential tech-
nology support for defect-free manufacturing of FRRMCs. Mask-Point is also applicable
to the other surface defects detection tasks with other similar materials rather than only
FRRMCs as long as their surfaces have similar characteristics to resin materials. In the
future, a larger dataset will be produced to improve the performance of Mask-Point further,
and more in-depth research will be conducted.
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