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Abstract: Biosorbtive removal of the antibacterial drug, ethacridine lactate (EL), from aqueous solu-
tions was investigated using as biosorbent Saccharomyces pastorianus residual biomass immobilized in
calcium alginate. The aim of this work was to optimize the biosorption process and to evaluate the
biosorption capacity in the batch system. Response surface methodology, based on a Box–Behnken
design, was used to optimize the EL biosorption parameters. Two response functions (removal
efficiency and biosorption capacity) were maximized dependent on three factors: initial concentration
of EL solution, contact time, and agitation speed. The highest values for the studied functions
(89.49%, 26.04 mg/g) were obtained in the following operational conditions: EL initial concentration:
59.73 mg/L; contact time: 94.26 min; agitation speed: 297.57 rpm. A number of nonlinear kinetic
models, including pseudo-first-order, pseudo-second-order, Elovich, and Avrami, were utilized to
validate the biosorption kinetic behavior of EL in the optimized conditions. The kinetic data fitted the
pseudo-first-order and Avrami models. The experimental results demonstrated that the optimized
parameters (especially the agitation speed) significantly affect biosorption and should be considered
important in such studies.

Keywords: biosorption optimization; Box–Behnken design; ethacridine lactate; Saccharomyces pastorianus;
natural polymer; kinetic models

1. Introduction

A key turning point in scientific and technical progress worldwide was the develop-
ment of pharmaceuticals, which have raised standards of living, extended life expectancy,
and cured millions of people of otherwise terminal diseases [1,2]. Due to their prominence,
pharmaceutical pollutants have over the past three decades increasingly been recognized
as rapidly growing environmental contaminants, being discovered in almost all ecological
matrices on every continent [3].

Pharmaceuticals are among the most important categories of environmental water
contaminants to be concerned about, due to the fact that conventional wastewater treatment
plants are not designed to completely eliminate them [4,5]. The use of many different
therapeutic agents has led to a complicated problem of environmental contamination.
There have been at least 11,926 pharmaceutically active compounds found in total, and
713 of these were detected in wastewater [6,7]. Meanwhile, the COVID-19 pandemic
has led to a sharp increase in the generation of medical waste, according to the existing
literature [2,8].

Therefore, future efforts to reduce pharmaceutical pollution are likely to prioritize and
incorporate techniques and methods that have already been shown to be effective [9–12]. In
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order to meet current demand without negatively impacting the environment, it is crucial to
provide long-term solutions based on technological, economical, and environmental condi-
tions in a sustainable way, for example, by avoiding the direct disposal of pharmaceuticals
into water sources [13,14].

Due to its simplicity of operation and design, and lack of undesirable by-products,
adsorption/biosorption has been considered a promising method for aqueous matrix
decontamination of pharmaceuticals [15,16].

In order to obtain low-cost sustainable biosorbents, a wide variety of materials such
as microbial biomass (bacteria, cyanobacteria, fungi, yeasts, and microalgae), microbial
residual biomass (resulting from fermentation processes), clays, chitosan, biochar, etc. have
already been studied [2,14,17–20].

Our previous studies have also demonstrated that biosorption processes are effective
for the removal of pharmaceutical compounds from aqueous solutions if a viable biosorbent
is used. Biocomposite materials obtained by immobilizing or encapsulating microbial
biomass in polymer matrices were successfully used as biosorbents [13,14,21–23].

Most of the conventional ways to examine a biosorption process include keeping con-
stant certain variables while assessing the impact of others. This frequently used approach
is not capable of effectively displaying the interplay between settings. Additionally, many
experiments need to be run, which requires extensive time. Response surface methodology
(RSM) is one of the suitable methods used in different fields for determination of optimal
operational conditions. It is a highly helpful tool which screens the variables, serves in
choosingexperimental designs, offers mathematical models that assist the understanding
of the connections between the studied parameters, evaluates the models’ adequacy, and
establishes the optimal conditions and appropriate values [24]. One of the RSM designs, the
Box–Behnken design gives thorough details of the solution space and enables researchers to
comprehend the factors influencing the output model [25–30]. It needs a reduced number
of runs, can be used for obtaining maximum information with minimum time and resource
requirements [25,31], and has been applied for the study of water contaminant biosorption
from diverse materials including cadmium retention by metal-reducing bacterium [32],
heavy metal removal with a new strain of Pseudomonas azotoformans [33], phytoremediation
of dyes [34], etc.

The aim of this current work was to optimize several parameters impacting the
biosorption of pharmaceuticals from aqueous solutions, and to assess their kinetic behavior.

Residual biomass of Saccharomyces pastorianus, the second-largest by-product of the
brewing industry, which is considered safe, low-cost, and available throughout the year in
large volumes, was chosen for biosorbent synthesis [23].

Ethacridine lactate was selected as the target molecule, as it is a widely used anti-
microbial drug worldwide [22].

Response surface methodology (RSM) using the Box–Behnken design was applied, and
two response functions—removal efficiency (R%) and biosorption capacity (Q mg/g)—were
evaluated. Three factors affecting the biosorption process were optimized: initial concen-
tration of EL solution, contact time and agitation speed. To the best of our knowledge, this
is the first time the optimization of the system of biocomposite beads and pharmaceutical
aqueous solution has been carried out, taking into account as parameters the stirring speed
in addition to the initial pollutant concentration and the contact time. The physicochemical
characteristics of the adsorbate (molecular mass, polarity, types of functional groups), the
solution chemistry (ionic strength, pH), and the temperature can all affect the biosorption
process [35]. Most of these parameters have a well-known and documented effect on the
kinetics and adsorption equilibrium of various pharmaceutical contaminants. However,
authors have rarely disclosed the methods used to improve the contact between the adsor-
bent and the water matrix. The impact of agitation on adsorption/biosorption is typically
disregarded and has only been examined briefly by a small number of researchers. There
is sufficient information regarding equilibrium and kinetics in the literature, but little is
known about how agitation speed affects these processes [35–39].
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The commonly used non-linear kinetic models Pseudo-first-order, pseudo-second-
order, Elovich, and Avrami were utilized to validate the kinetic biosorption behavior of
ethacridine lactate in the obtained optimized conditions.

2. Materials and Methods
2.1. Chemicals and Investigation Method

Analytical purity reagents required through all the conducted experiments were used
as received from commercial agents, without any treatment or purification.

The 2-ethoxy-6,9-diaminoacridine monolactate monohydrate, K2HPO4, and Na2HPO4
came from Merck (Darmstadt, Germany). HCl, NaCl and ethanol were bought from
the Chemical Company (Ias, i, Romania). NaCl and CaCl2 were delivered by Chempur
(Piekary Ślaskie, Poland). Sodium alginate (low viscosity grade) was procured from BUCHI
Laboratortechnik AG (Flawil, Switzerland).

Residual biomass of Saccharomyces pastorianus was donated by the brewing company
Albrau (Ones, ti, Romania) and stored at −20 ◦C in sealed plastic bags until use.

Distilled water was used to prepare all the solutions.
When necessary, pH corrections were made by adding NaOH (0.1 M) or HCl (0.1 M).
An EL stock solution (500 mg/L) was prepared and set aside at 4 ◦C until it was

required for further dilutions (between 1 mg/L and 60 mg/L). These solutions were
spectrophotometred at 431 nm on a UV1280 apparatus (Shimadzu, Tokyo, Japan) and
served to draw a calibration curve.

All the experiments were performed in triplicate.

2.2. Biosorbent Preparation and Characterization

Residual microbial biomass of Saccharomyces pastorianus passed through a preliminary
treatment consisting in thawing, multiple washes, and successive settlings and centrifu-
gations. The latter operation was managed in a Quirumed 80-2A laboratory centrifuge
(Jintan City, China) at a rotation speed of 2500 rpm twice for 10 min. A suspension (5%,
w/v) was prepared from residual biomass and sodium alginate solution (1% in phosphate
buffer of pH 7). Intense homogenization was then realized on a Nahita magnetic plate
(Auxilab, Beriáin, Navarra, Spain). The mixture was dripped into a 2% (w/v) CaCl2 solution.
The composite beads (hereafter SPRBA 5%) were washed with CaCl2 2% and maintained in
a fresh solution for 24 h at 4 ◦C. The biosorbent was carefully washed with distilled water
prior to the biosorption experiments.

Beads’ characterization (before and after biosorption) was realized by the means of
scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR).
The point of zero charge (pHPZC) was established.

SEM examinations were carried out with a Quanta 200 3D apparatus (FEI Europe B.V.,
Eindhoven, The Netherlands)). The SPRBA 5% material was initially dried for 2 h at 50 ◦C
in a laboratory oven (Air Performance AP60 Froilabo, Paris, France) and then placed on
double-adhesive carbon discs fixed on stubs. Normal secondary electron mode (SE) in a
low vacuum was established for the investigation. Detection was ensured by a large field
detector (LFD) at an accelerating voltage of 20 kV, a working distance of 14.5 mm, and a
spot size of 5. The magnification range was between 2 mm and 20 µm.

FTIR spectra were recorded from 4000 to 400 cm−1 (32 scans co-added) with a resolu-
tion of 4 cm−1 on a Nicolet iS50 FT-IR spectrometer (Thermo Scientific, Dreiech, Germany)
including a built-in ATR accessory, DTGS detector, and a KBr beam splitter. The ATR plate
was cleaned with ethanol after each spectrum acquisition. Air was used for background
spectrum reference, which was registered and compared with the anterior.

For the biosorbent point of zero charge determination, volumes of 25 mL of a 0.1 M
NaCl solution were used as background electrolyte. The initial pH values (pHi) were
corrected with hydrochloric acid (0.1 M) or sodium hydroxide (0.1 M) and read with
a Dostmann KLH9.1 pH meter (Carl Roth, Karlsruhe, Germany). Amounts of 0.5 g of
biosorbent were added to each solution. After 24 h of magnetically stirring at room
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temperature, the final pH values (pHf) were measured again. The sample pHPZC point was
recovered from the pHf vs. pHi curve.

2.3. Experimental Design

The Box–Behnken design (BBD) was selected for the optimization of three parameters
(ethacridine lactate initial concentration, agitation speed, and biosorption time) with impact
on the removal of EL from aqueous solution by biosorption on SPRBA 5% material. Their
coded and actual values are given in Table 1.

Table 1. Actual and coded levels for Ethacridine lactate biosorption on SPRBA 5%.

Factors Name Factors Code
Factors Level

−1 0 +1

Ethacridine lactate initial
concentration, mg/L A 20 40 60

Agitation speed, rpm B 100 200 300
Biosorption time, min C 10 65 120

The experiments were conducted with 30 mL of EL solution at pH 4 and different
concentrations in contact with 1.2 g of biosorbent and agitated at different speeds on a hot
plate magnetic stirrer (DLAB MS-H280-PRO, DLAB Scientific Inc., Riverside, CA, USA) for
different periods of time.

EL removal efficiency and biosorption capacity were estimated with Equations (1) and (2).

R (%) =
(C0 − Ce)·100

C0
(1)

Qe (mg/g) =
(C0 − Ce)·V

m
(2)

where C0 and Ce are the initial and equilibrium state concentrations (mg/L); V is the EL
volume (L); m is the amount of the biosorbent (g).

The EL removal efficiency and the biosorption capacity were set as response functions
for the BBD, expressed as second-order polynomial equations whose general form is
represented by Equation (3).

YK = α0 + α1·A + α2·B + α3·C + α4·A·B + α5·A·C + α6·B·C+α7·A2 + α8·B2 + α9·C2 (3)

where YK is the response function; α0 is the intercept; α1–α9 are the regression coefficients;
A, B and C are the coded independent variables.

Experimental data were processed in Design expert 13.0 software (Stat-Ease, Minneapolis,
MN, USA) in terms of regression model analysis and statistical calculation.

2.4. Biosorption Kinetics

Kinetic experiments were carried out with 30 mL of EL solutions and 1.2 g of biosorbent
in the optimized conditions established by BBD.

CAVS adsorption evaluation software, version 2.0 (Federal University of Paraná,
Curitiba, Paraná, Brazil) was used to apply different nonlinear kinetic models to study the
target molecules’ removal by the prepared biosorbent.

Pseudo-first-order (Equation (4)), pseudo-second-order (Equation (5)), Elovich
(Equation (6)), and Avrami (Equation (7)) were applied for testing:

Qt = Qe·(1 − e−k1·t) (4)

Qt =
k2·Q2

e ·t
(1 + k2·Qe·t)

(5)
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Qt =
1
β
· ln(α·β·t) (6)

Qt = Qe·(1 − e(−kAv ·tnAv )) (7)

The parameter significance was as follows: Qt—concentration on the solid phase at
time t, mg/g; Qe—adsorbent capacity at equilibrium, mg/g; k1—pseudo-1st-order constant
rate, 1/min; t—contact time, min; k2—pseudo-second-order constant rate, g/(mg·min);
β—extent of surface coverage and activation energy for chemisorption, g/mg; α—initial
adsorption rate, mg/(g·min); kAv—overall rate constant, 1/min; nAv—parameter related to
the adsorption, without dimension.

Root mean square error (RMSE), Marquardt’s percent standard deviation (MPSD),
hybrid fractional error function (HYBRID), chi-square (χ2), and coefficient of determination
(R2) calculated by CAVS software served to assess the adequacy of the kinetic model.

3. Results and Discussion
3.1. Biosorbent Preparation and Characterization

The first aim of this experimental work consisted in the preparation of a new material
possessing the properties of an adsorbent. Since the raw material was in the form of a
residual microbial biomass (Saccharomyces pastorianus), it was necessary to insure its sta-
bility. Therefore, an immobilization step was conducted with sodium alginate chosen to
this purpose since it is known as a non-toxic, biodegradable, and highly available natural
polymeric matrix. Composed of (1-4)-linked β-D-mannuronic acid and α-L-guluronic acid,
sodium alginate is able to form a network structure with divalent cations including cal-
cium [40], and it successfully provided good immobilization of the Saccharomyces pastorianus
residual biomass.

SPRBA 5% synthesized beads had a regular, spherical form and a dark white nuance.
Their mean diameter was of 3.159 ± 0.018 mm.

In a second step, the obtained biosorbent was characterized by different techniques.
SEM analysis, before and after EL biosorption, is depicted in Figure 1.
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Figure 1. SEM pictures of the prepared composite material, SPRBA 5%, (A–C) before and(D–F)
after EL biosorption (SPRBA 5%-Saccharomyces pastorianus residual biomass immobilized in calcium
alginate with 5% dry mass).

A smooth external surface was observed, presenting some abnormalities, assignable
to the preparation process. The internal morphology displayed a uniform, porous structure
with rolling predispositions before EL biosorption, and with agglomerative tendencies
after finalizing the process. The encountered modifications confirmed the retention of the
tested pollutant.
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Functional groups existing in the SPRBA 5% biosorbent were inspected by FTIR
investigation. Spectra visible in Figure 2 disclose the presence of the inert alginate matrix.
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Figure 2. FTIR spectra of SPRBA 5% material before and after EL biosorption.

At frequencies between 3000 cm−1 and 3200 cm−1, hydroxyl vibrations were de-
tected. –CH aliphatic stretching vibration was noted at 2920 cm−1 [41]. Bands from
1600 cm−1 to 1400 cm−1, particular the asymmetric and symmetric stretching vibrations
of carboxyl ions [42] of C–O (1100 cm−1 to 900 cm−1) and mannuronate and guluronate
residues (1030 cm−1) [43], defined the natural polymer used for the immobilization of
Saccharomyces pastorianus residual biomass. A –CH2 bending vibration close to 1000 cm−1

was also detectable. Resemblances in the FTIR spectra interpretations corresponded with
those disclosed by other researchers [44]. Peaks of 1630 cm−1 and 1540 cm−1 can be as-
cribed to amide I and amide II. From 1300 cm−1 and 1200 cm−1 could be observed bands
for amide III (proteins) and PO2

− (phosphorylated proteins and phospholipids), probably
result of the yeast integrated into the polymeric material [45]. These findings validate
the idea that residual biomass of Saccharomyces pastorianus was well-incorporated in the
resulted adsorbent material.

Spectra collected after biosorption show that EL signals were overlapped by the
biosorbent functional groups. This was the case for peaks from 3500 cm−1 to 3100 cm−1,
particular to the N–H asymmetric and symmetric stretching vibrations of aromatic amine
and hydrogen-bonded N–H bands. Moreover, the peak from approximatively 1630 cm−1

was found to be typical for C=N vibrations of the EL acridine ring [46]. Therefore, it
can be concluded that the SPRBA 5% biosorbent retained the studied pollutant from the
aqueous solutions.

The final experiment conducted for SPRBA 5% biosorbent characterization was rep-
resented by the establishment of the point of zero charge. As we reported in previously
published papers [13,14,21–23] and as described in the literature [47], this point is the
pH value at which the charge of the positive surface sites is equal to that of the negative
surface sites, the biosorbent surface charge being null. pHPZC is an important indicator
for whether the surface charge is negative (pH lower than pHPZC) or positive (pH higher
than pHPZC). Figure 3 illustrates two augmentations of pHf, from 2.30 to 5.60 when the
initial pH increased from to two to four, and from 6.80 to 11.60 for an increase of the initial
pH from 10 to 12. When pHi was between four and ten, only very small variations of the
final pH value were recorded (6.10 to 6.80) which denotes that in this period neither the
environmental addition of acid nor of base affected the final pH. As depicted in Figure 3,
the pHPZC of the synthesized biosorbent was 6.5.
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Figure 3. pHPZC of SPRBA 5% biosorbent (pHf, final pH; pHi, initial pH).

3.2. Box–Behnken Design and Model Validation
3.2.1. Box–Behnken Design

Another aim of this work was to study the usability of the synthesized biosorbent for
removing drugs from aqueous solutions, with ethacridine lactate selected as the model
molecule. The influence of various factors is known to affect the biosorption process of
this compound on SPRBA 5% prepared material, which was the object of our previous
papers [13,22,23]. According to these already reported outcomes, the most convenient
results were attained when the biosorbent dosage was established at 2 g/L, the pH of EL
solutions set at four, and the operating temperature was ambient.

The Box–Behnken design is a rotatable second-order design useful for the optimization
of experiment numbers required for the determination of interactions occurring between
studied parameters and their impact on the process. Three levels of variation were consid-
ered for three other factors recognized as important in the development of a biosorption
setup: (A) EL initial concentration, (B) agitation speed, and (C) time. Data acquired for
removal efficiency and biosorption capacity when using these input variables are tabulated
in Table 2.

Table 2. Independent variables and experimental and predicted removal efficiency and biosorption
capacity of ethacridine lactate biosorption on SPRBA 5%.

Run

Independent Variables
EL Removal Efficiency, % Biosorption Capacity, mg/g

A B C

Coded
Value

Actual
Value

Coded
Value

Actual
Value

Coded
Value

Actual
Value

Experimental
Value

Predicted
Value

Experimental
Value

Predicted
Value

1 −1 20 −1 100 0 65 65.91 65.81 6.49 7.58
2 0 40 0 200 0 65 81.61 81.54 16.04 16.07
3 0 40 0 200 0 65 81.78 81.54 16.11 16.07
4 −1 20 0 200 −1 10 21.28 21.47 2.10 1.27
5 +1 60 0 200 −1 10 23.76 24.37 7.06 8.30
6 +1 60 −1 100 0 65 71.41 70.89 21.11 20.13
7 0 40 0 200 0 65 81.11 81.54 16.11 16.07
8 0 40 −1 100 −1 10 22.55 22.45 4.48 4.23
9 0 40 +1 300 −1 10 36.48 35.76 7.19 7.04
10 −1 20 0 200 +1 120 73.96 73.34 7.29 6.06
11 0 40 0 200 0 65 81.12 81.54 15.94 16.07
12 +1 60 +1 300 0 65 80.69 80.79 23.95 22.86
13 0 40 +1 300 +1 120 86.31 86.41 17.02 17.27
14 0 40 −1 100 +1 120 85.13 85.85 16.91 17.06
15 +1 60 0 200 +1 120 86.73 86.54 25.74 26.57
16 0 40 0 200 0 65 82.10 81.54 16.14 16.07
17 −1 20 +1 300 0 65 69.26 69.78 6.89 7.87
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Investigation of the response function values shows that the predicted values were
very similar to those obtained experimentally, indicating that the quadratic mathematical
models expressed by Equation (8) for removal efficiency and by Equation (9) for biosorption
capacity were able to describe the relation between the input factors and the response
functions.

YR = 81.5433 + 4.0240·A + 3.4675·B + 28.5095·C + 1.4821·A·B + 2.5727·A·C
−3.1879·B·C − 7.9556·A2 − 1.7699·B2 − 22.1559·C2 (8)

YQe = 16.0704 + 6.8854·A + 0.7575·B + 5.7668·C + 0.6109·A·B + 3.3709·A·C
−0.6516·B·C − 1.1569·A2 − 03035·B2 − 4.3648·C2 (9)

Positive signs within the above equations suggest a reciprocal effect of the factors,
while negative signs imply an antagonistic impact [48].

Figure 4 illustrates the three-dimensional response surfaces for the two response
functions. For each investigation, two of the studied parameters were used simultaneously
while maintaining the third constant at zero.
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Figure 4. Three-dimensional response surface models of (A–C) removal efficiency and (D–F) biosorp-
tion capacity response functions.

The observable nonlinear nature of the results shows that there were interactions
between the input variables and the output functions. It is evident that both the removal
efficiency and the biosorption capacity were influenced by an increase of the EL concen-
tration, of the agitation speed, and of the contact time. This effect can be explained by
the fact that, under agitation conditions, the biosorbent active sites are more easily acces-
sible for the EL molecule. Likewise, greater contact time between SPRBA 5% beads and
the pollutant encountered in the aqueous solutions ensured better biosorption. It can be
observed that agitation had an essential role in shortening the biosorption time. In static
conditions [23] after a contact time of 5 h, the removal efficiency and biosorption capacity
of unagitated solutions were lower than those obtained under agitation (81.26% vs. 90.72%
and 24.30 mg/g vs. 26.98 mg/g) for the biosorption of the same pollutant existing in an
aqueous solution with the same pH and concentration,.

Similar findings have been highlighted by other researchers. For example, Sadrnia et al. [49]
optimized the removal of doxorubicin by retention on adsorbent nanoribbons and showed
that time (along with pH, adsorbent weight, and temperature) was a key factor in the pro-
cess. Babas et al. [50] dedicated a recent study to the adsorption of sofosbuvir on activated
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carbon derived from argan shell residue, and indicated that pollutant removal was highly
affected by parameters such as pH, adsorbent amount, and target molecule concentra-
tion. Ajebli et al. [51] revealed in their work that tenofovir elimination by adsorption on
activated carbon obtained from maize cobs was optimized by Box–Behnken design, and
that parameters such as pH, adsorbent mass, and initial drug concentration had a decisive
impact on the process.

Analysis of variance (ANOVA) (Tables 3 and 4) was employed to establish the statiscal
significance of EL concentration, agitation speed, and time.

Table 3. ANOVA of quadratic model for EL removal efficiency.

Source Sum of Squares DF Mean Square F-Value p-Value Observation

Model 9272.38 9 1030.26 2279.93 <0.0001 Highly significant
A 129.54 1 129.54 286.67 <0.0001 Highly significant
B 96.19 1 96.19 212.87 <0.0001 Highly significant
C 6502.34 1 6502.34 14389.38 <0.0001 Highly significant

AB 8.79 1 8.79 19.44 0.0031 Insignificant
AC 26.48 1 26.48 58.59 0.0001 Significant
BC 40.65 1 40.65 89.96 <0.0001 Highly significant
A2 266.50 1 266.50 589.74 <0.0001 Highly significant
B2 13.19 1 13.19 29.19 0.0010 Significant
C2 2066.88 1 2066.88 4573.91 <0.0001 Highly significant

Residual 3.16 7 0.4519
Lack of Fit 2.42 3 0.8081 4.37 0.0940 Insignificant
Pure Error 0.7390 4 0.1847
Cor Total 9275.55 16

Table 4. ANOVA of quadratic model for biosorption capacity.

Source Sum of Squares DF Mean Square F-Value p-Value Observation

Model 788.47 9 87.61 68.96 <0.0001 Highly significant
A 379.27 1 379.27 298.55 <0.0001 Highly significant
B 4.59 1 4.59 3.61 0.0990 Insignificant
C 266.05 1 266.05 209.42 <0.0001 Highly significant

AB 1.49 1 1.49 1.18 0.3142 Insignificant
AC 45.45 1 45.45 35.78 0.0006 Significant
BC 1.70 1 1.70 1.34 0.2855 Insignificant
A2 5.64 1 5.64 4.44 0.0732 Insignificant
B2 0.3879 1 0.3879 0.3053 0.5978 Insignificant
C2 80.22 1 80.22 63.14 <0.0001 Highly significant

Residual 8.89 7 1.27
Lack of Fit 8.89 3 2.96 474.96 <0.0001 Highly significant
Pure Error 0.0249 4 0.0062
Cor Total 797.36 16

The modeled high F-values of 2279.93 (for removal efficiency response function)
and 68.96 (for biosorption capacity response function) revealed that both models were
significant, and that there was only 0.01% chance that F-values this large could occur due
to noise.

Overall, p-values inferior to 0.05 suggest that model terms are significant. For removal
efficiency, it appeared that all three tested parameters (EL initial concentration, agitation
speed, and time) as well as their interactions and their quadratic forms were of great
importance for the process. In the case of biosorption capacity, greater impact was observed
due to EL initial concentration, time, their interaction, and the quadratic form of the last
cited parameter.

Summary statistics indicated a good fit and high significance for the obtained models.
Correlation coefficients (R2) of 0.9997 for the removal efficiency model and 0.9888 for
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the biosorption capacity model were calculated. Adjusted correlation coefficients (Adj.
R2) and predicted correlation coefficients (Pred. R2) had similar values (for the removal
efficiency model: Adj. R2 = 0.9992 and Pred. R2 = 0.9957; for the biosorption capacity
model: Adj. R2 = 0.9745 and Pred. R2 = 0.8220).

3.2.2. Models Validation

One of the major advantages of using a response surface methodology such as Box–
Behnken design resides in the possibility of obtaining optimized values of the tested
parameters and predicting what results should be expected.

In our specific situation, based on the experimental data utilized, Design Expert
software was able to generate multiple possibilities with high desirability. Among these
included the following recommended values for the implied factors: A = 59.7341 mg/L;
B = 297.566 rpm; C = 94.2582 min. Under these conditions, the removal efficiency should
be 89.4855% and the biosorption capacity should be 26.04 mg/g.

In order to confirm this suggested resolution, three different experiments were con-
ducted with an EL solution at a concentration of 60 mg/L under an agitation speed of
300 rpm for 94 min. A removal efficiency of 90.7195% ± 0.8341% and a biosorption capacity
of 26.9828 mg/g ± 0.6802 mg/g were calculated. Good agreement between predicted and
verified values was clearly apparent, sustaining the observation that the mathematical
models well fitted the investigational data and were highly compatible and reliable.

3.3. Biosorption Kinetics

The experiments were carried out at pH 4, with 30 mL of EL and 2 g/L SPRBA 5%. The
initial EL concentration and the agitation speed were those suggested by the Box–Behnken
design, respectively 60 mg/L and 300 rpm.

For the examination of the process control mechanism, several different equations
were applied for modelling the kinetics of EL biosorption on the prepared material. Pseudo-
first-order, pseudo-second-order, Elovich, and Avrami nonlinear forms were tested, in
order to establish which was appropriate to describe the EL biosorption.

Pseudo-first-order modelling offers the possibility of discovering the values of the
time-scaling factor, which is able to estimate the time taken to reach the equilibrium state
and the amount of adsorbed pollutant at equilibrium [52]. Pseudo-second-order kinetics
is another widely used model. It relies on the supposition that adsorption implicates
chemical interaction, with electrostatic interactions, etc., happening between the molecule
to be adsorbed and the biosorbent surface. Initial concentration of pollutant, enthalpy and
entropy fluctuations must also be taken into consideration as influencing the biosorption
process [53]. The Elovich kinetics model assumes that a chemical mechanism leads the
adsorption process, and seems to be applicable for systems evolving heterogeneous adsorb-
ing surfaces [54,55]. The Avrami model postulates that the surface of the active sites is the
place of reaction between the adsorbate and adsorbent. Its foremost factors are the two
constants included in Equation (7), the latter of these representing shifts of the adsorption
mechanisms dependent on time and operating temperature [56–58].

Figure 5 depicts the above-mentioned kinetics models fitted to the experimental data
that was recorded.
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Figure 5. Kinetic models for the biosorption of EL on SPRBA 5% synthesized biosorbent
(Qt—concentration on the solid phase at time t).

The biosorption kinetic parameters recovered from the graphical plots, and their
statistical error functions, are specified in Table 5.

Table 5. Kinetic parameters of EL biosorption on SPRBA 5% beads.

Kinetic Model Pseudo-First-Order Pseudo-Second-Order Elovich Avrami

Kinetic Parameters

Qe 26.9978 30.3847 26.9978
k1 0.0559
k2 0.0002
α 6.3717
β 0.1784

kAv 0.8680
nAv 0.0645

Statistical Error
Function

RMSE 0.1868 0.7605 1.7131 0.1868
MPSD 1.5637 5.6877 14.2008 1.6066

HYBRID 0.2695 3.8475 21.4119 0.2845
X2 0.0525 0.6845 3.3903 0.0525
R2 0.9988 0.9817 0.9071 0.9988

From Figure 5 and Table 5, it can be seen that the biosorption capacities reported by
pseudo-first-order and Avrami kinetics, followed closely by that of pseudo-second-order
model, were comparable to those obtained experimentally and to those suggested by the
Box–Behnken design. Furthermore, the low values of statistical error functions confirm
likewise the idea that these models are appropriate for explaining the EL biosorption on
SPRBA 5%. Certain previous research [59,60] inspected the pseudo-first-order and pseudo-
second order kinetics and revealed that the adsorption is described by the pseudo-first-
order equation at elevated initial pollutant concentrations, while the pseudo-second-order
equation is more suitable to define the adsorption behavior at reduced concentrations.
This supposition corroborates with conclusions drawn by researchers who showed that,
for example, the adsorption of triclosan on simple-walled carbon nanotubes [61] can be
interpreted by the pseudo-first-order kinetic model. Other papers have suggested that the
experimental data recorded for adsorption of various drugs on different adsorbent materials
are matched more easily by the pseudo-second-order kinetic model (e.g., adsorption of
doxorubicin hydrochloride on mango seeds used for carbon activation [62], removal of
tetracycline using a new magnetic nanohybrid adsorbent [63], retention of ibuprofen and
naproxen on different composites [64], elimination of carbamazepine by adsorption on
chitosan magnetic nanocomposite [65]).
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4. Conclusions

Removal of ethacridine lactate from aqueous matrices was investigated using
Saccharomyces pastorianus residual biomass immobilized in calcium alginate as biosorbent.
SEM and FTIR analyses were used to determine the morphology and surface functionalities
of the synthesized biocomposite material before and after biosorption. The point of zero
charge of the prepared biosorbent was also established.

Box–Behnken design was applied to optimize three process variables (EL initial con-
centration, agitation speed, and contact time) in order to maximize two response functions
(removal efficiency and biosorption capacity). The validated results demonstrate that the
optimized parameters significantly affected the biosorption, and should be considered
important in such studies.

The biosorption capacities reported for pseudo-first order and Avrami kinetics, fol-
lowed closely by the results of the pseudo-second-order model, were comparable to the
results obtained experimentally and those suggested by the Box–Behnken design.

Biocomposite materials based on microbial residual biomass and natural polymers
can be effective biosorbents for pharmaceutical removal from aqueous matrices.

In perspective, the benefits of optimizing process variables can be efficiently exploited
for application in different biosorption processes.
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