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Abstract: With the fast consumption of traditional fossil fuels and the urgent requirement for a
low-carbon economy and sustainable development, supercapacitors are gaining more and more
attention as a clean energy storage and conversion device. The research on electrode materials
for supercapacitors has become a hot topic nowadays. An electrode material for a supercapacitor,
comprising the ZIF-67 in-built carbon-based material, was prepared from a biomass pre-hydrolysate
via a hydrothermal process. As a by-product of dissolving slurry, the pre-hydrolysate is rich in
carbon, which is an excellent biomass resource. The utilization of pre-hydrolysate to prepare carbon
energy materials could realize the high value utilization of pre-hydrolysate and the efficient energy
conversion of biomass. Meanwhile, the cobalt-based MOF (such as ZIF-67), as a porous crystalline
material, has the advantages of having a regular order, high specific surface area and controllable pore
size, as well as good thermal and chemical stability. The addition of ZIF-67 modified the morphology
and pore structure of the carbon, and the obtained samples showed outstanding electrochemical
performance. One- and two-step synthetic processes generated specimens with a coral-like cross-
linked structure and a new type of rough, hollow, dandelion-like structure, respectively, and the
pore size was in the range of 2.0–5.0 nm, which is conducive to ion transport and charge transfer. In
C2-ZIF-67, the hollow structures could effectively prevent the accumulation of the electrochemical
active center, which could provide enough space for the shrinkage and expansion of particles to
protect them from the interference of electrolytes and the formation of solid electrolyte interphase film
layers. Additionally, the plush tentacle structure with low density and a large specific surface area
could expose more active sites and a large electrolyte electrode contact area, and short electron and
charge transport paths. Importantly, active, free electrons of small amounts of Co-MOF (1 wt%) could
be stored and released through the redox reaction, further improving the electrical conductivity of
Carbon-ZIF-67 materials in this work. Consequently, C2-ZIF-67 exhibited superior specific capacitance
(400 F g−1, at 0.5 A g−1) and stability (90%, after 10,000 cycles).

Keywords: Co-MOF; pre-hydrolysate; carbon; hydrothermal; supercapacitor

1. Introduction

The fast consumption of traditional fossil fuels, such as coal, petroleum, natural gas
and so on, is a global issue that may continue to worsen in years to come. The new energy
sources, such as wind and solar energy, are becoming increasingly important in order to
achieve a low-carbon economy and sustainable development [1]. However, new energy
still faces the great challenge of energy storage and conversion, so advanced devices that
can store energy are the focus of intensive research [2,3]. In reaction to the ever-increasing
request for clean energy innovations, supercapacitors are considered one of the potential
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photoelectric energy capacity and transformation gadgets for next-generation gadgets
and electric vehicles [4]. Supercapacitors (SCs), also known as electrochemical capaci-
tors, have points of interest including a high power density, good cycling performance,
high capacitance and long service life [5]. There are two main types of supercapacitors
(SCs): electric double-layer capacitors (EDLCs) and pseudocapacitors. The capacitance
performance of an EDLC relies on the surface area of the electrode materials due to its
capacitance coming from the contact area between the electrode and electrolyte [6]. Car-
bon has always been utilized as the preferred material for supercapacitors because of its
large specific surface area, good chemical stability and strong oxidation resistance [7–9].
Biomass carbon material has been widely used because of its low consumption, low pollu-
tion and availability of carbons with urea via the in situ doping method. A great deal of
previous work has shown that larch-derived carbon with ordered mesoporous structures
has been successfully prepared via the soft template method from phenol liquefaction
and formaldehyde without a hybridization reaction [10]. However, the above synthesis
routes still suffer from some obvious drawbacks such as the amount of formaldehyde and
abundant reserves [11]. The biomass-based carbon materials for a supercapacitor electrode
were prepared from pre-hydrolysate. The reason why pre-hydrolysate is an excellent raw
material for the preparation of carbon materials is due to the abundant carbon content. The
use of pre-hydrolysate to prepare carbon materials could realize the high value utilization
of pre-hydrolysate and the full utilization of resources. Meanwhile, it provides a new route
for the utilization of pre-hydrolysate.

However, the reason for the lower capacitance or energy density of biomass-derived
carbon supercapacitors is that their charge storage and ion transfer only occur at or near
the surface of electrode materials [12]. It is a concern that focuses on the improving of
energy density. As we all know, the energy density of a supercapacitor is basically related
to the specific capacitance due to the porous nano-sized capacitance and operating voltage
window derived from the rich redox reaction for charge storage.

In addition to looking for a material with high performance as the electrodes, the
rational design of the electrode materials’ structure is also an efficient alternative to improve
the electrochemical performance [13]. As an advanced material with a metal center and
organic block, metal–organic frameworks (MOFs) are considered to be promising for the
electrode materials of a supercapacitor, which is attributed to high porosity, large pore
volumes and tunable porosities, all of which endow MOFs with tunable functionalities for
excellent electrochemical performance [14–16]. In particular, taking advantage of its large
pore volumes and tunable porosities, MOFs have consequently been utilized as a template
to prepare a special morphology and nanostructure with a high surface area owing to the
fact that they could regulate ordered structures and offer more actives sites from redox
reactions for high capacitance supercapacitors [17,18].

Zeolite imidazole frameworks (ZIFs) have been used as electrode materials for super-
capacitors since they have a high specific surface area, high porosity, structure diversity
and high chemical stability [19]. ZIF-67, a member of ZIFs, exhibits a regular dodecahedral
coordination structure. This structure increases the contact area with the electrolyte for the
composite materials [20]. Moreover, ZIF-67 involves the rich N-containing methylimidazole
ligand [21], which could provide rich active sites from N and the redox ability from MOF
performance, and further enhance the energy density of the supercapacitor.

Meanwhile, finding a cost-effective and facile method to fabricate composites from
biomass-based carbon and MOF is crucial for improving the synergistic effect of electric
double-layer capacitors and pseudocapacitive activity. A hydrothermal reaction is a kind
of hybrid method which is mild, simple, green and safe [22]. It can not only satisfy the
liquid phase conditions of the material but also carry out hybridization efficiently, with
regular morphology.

Herein, the obtained ZIF-67/carbon composite materials were prepared by a simple
hydrothermal carbonization process and possessed a special hollow structure and hierar-
chical pore size (2.0–5.0 nm) via the modification and control of ZIF-67. Importantly, the
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electrochemical performance (400 F g−1 at 0.5 A g−1) and stability (90% after 10,000 cycles)
of the obtained samples are superior to the materials in other works. This work provides a
favorable theoretical basis and technical support for the development and utilization of
bio-based carbon materials in the field of supercapacitors.

2. Experimental Method
2.1. Materials Synthesis
2.1.1. Preparation of the Pre-Hydrolysate

Poplar wood (Henglian, Weifang, China) and deionized water (mass ratio = 1:7) were
mixed in a pulp digester and then heated for 2 h at 175 ◦C. The reacted liquid was collected.
The homogeneous pre-hydrolysate was obtained by further filtering and centrifuging at
8000 r min−1.

2.1.2. Preparation of the ZIF-67 (Co-MOF)

Cobalt nitrate hexahydrate (2.328 g, 99.0%, Sinopharm Chemical Reagent Co. LTD,
Shanghai, China) and dimethylimidazole (2.627 g, 98.0%, Sinopharm Chemical Reagent Co.
LTD, Shanghai, China) were dissolved in 100 mL anhydrous methanol (99.5%, Sinopharm
Chemical Reagent Co. LTD, Shanghai, China), respectively. Subsequently, the two solutions
were mixed and stirred for 30 s, and the reaction continued at room temperature without
stirring for 24 h. Following this reaction, the purple solid was collected by centrifugal pre-
cipitation, then repeatedly washed with anhydrous methanol and vacuum-dried overnight
at 80 ◦C, the obtained purple powder denoted as the Co-MOF (ZIF-67).

2.1.3. Preparation of the ZIF-67/Carbon

Cobalt nitrate hexahydrate (0.470 g), dimethylimidazole (0.530 g) and pre-hydrolysate
(100 mL) were mixed and stirred for 30 s at room temperature, and the mixture was heated
for 12 h at 250 ◦C in a Teflon reactor. The mixture was cooled down to room temperature
after the reaction, and then, the solid was collected by centrifugal precipitation, repeatedly
washed with deionized water and dried at 80 ◦C. The obtained black solid was carbonized
at 800 ◦C for 2 h with the heat rate of 5 ◦C min−1 under N2. The sample was denoted as
C1-ZIF-67. This is the one-step synthetic process to prepare the ZIF-67/carbon.

Simultaneously, the prepared ZIF-67 (1 g) and pre-hydrolysate (100 mL) were mixed
and stirred for 30 s, then heated for 12 h at 250 ◦C in a Teflon reactor. Following, the
mixture was cooled down to room temperature, and the solid was separated by centrifugal
precipitation, repeatedly washed with deionized water and dried at 80 ◦C. The obtained
black solid was carbonized at 800 ◦C for 2 h with the heat rate of 5 ◦C min−1 under N2.
The sample was denoted as C2-ZIF-67. This is the two-step synthetic process to prepare the
ZIF-67/carbon.

Finally, a certain amount of pre-hydrolysate (100 mL) was stirred for 30 s and then
heated for 12 h at 250 ◦C in a Teflon reactor. The obtained black solid was further carbonized
at 800 ◦C for 2 h with a heat rate of 5 ◦C min−1 under N2. The sample was denoted as
carbon-hydrolysate and prepared for use as a comparison.

The schematic image of the whole experimental procedure is shown in Figure 1.

2.2. Characterization

The morphologies and pore textures of the obtained samples were investigated us-
ing scanning electron microscopy (SEM; JSM-7401F microscope, Hitachi, Tokyo, Japan)
operating at an acceleration voltage of 20 kV. Transmission electron microscopy (TEM)
images were obtained on a JEOL 2011 apparatus (JEOL, Hokkaido, Japan) operating at
200 kV. The surface composition and chemical state of the obtained samples were investi-
gated by X-ray photoelectron spectroscopy (XPS; Escalab 250Xi, Thermo Fisher Scientific,
Waltham, MA, USA) with an Al Kα X-ray source. Powder X-ray diffraction (XRD) patterns
of the samples were measured using a Bruker D4 powder X-ray diffractometer (Bruker,
Rheinstetten, Germany) with Cu Kα radiation at 40 kV and 40 mA. Raman spectroscopy
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(Renishaw inVia, London, UK) with a He-Ne laser source (λ = 532 nm) was used to analyze
the texture of the MOF/carbon composites. Nitrogen sorption isotherms were measured
with a Micromeritics ASAP 2460 sorptometer (Maike, Norcross, GA, USA) using nitrogen
as the adsorbate at 77 K. All samples were degassed at 200 ◦C for more than 6 h prior to the
analysis. The surface area (SBET) was calculated using the Brunauer–Emmett–Teller (BET)
method based on the adsorption data in the relative pressure range of 0.02–0.35, and the
total pore volume was determined at the highest relative pressure.
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2.3. Electrochemical Test

The three-electrode system was used to measure the performance of the ZIF-67/carbon
materials in a 1 M KOH aqueous electrolyte. The reference electrode is mercury/mercury
oxide (Hg/HgO) and the counter electrode is a platinum sheet. The working electrode was
prepared by MOF/carbon, carbon black and polytetrafluoroethylene (mass ratio = 8:1:1).
The mixtures (6 mg) were coated onto a 1.5 cm × 1.5 cm nickel foam current collector and
dried at 60 ◦C for 8 h. The cyclic voltammetry (CV), galvanostatic charge/discharge (GCD)
and electrochemical impedance spectroscopy (EIS) were measured on a PARSTAT 4000 A
electrochemical workstation. The specific capacitance of the electrode can be calculated
from the galvanostatic charge and discharge curves according to the following equation [23]

C = I∆t/m (1)

Here, C is the specific capacitance (F/g), I is the current (A), ∆t is the discharge time (s)
and m is the mass of the active material in the electrode (g).

The energy density, E (W h/kg), and power density, P (W/kg), of each sample were
calculated from the discharge plots using Equations (2) and (3), respectively,

E = (C × ∆V2)/2 (2)

P = E/∆t (3)

3. Results and Discussion

The SEM images of the samples for carbon-hydrolysate, Co-MOF, C1-ZIF-67 and C2-
ZIF-67 are shown in Figure 2a–f. In Figure 2a, the sample of carbon-hydrolysate displays
a consistent smooth spheres structure with a size of 1–2 µm. The structure is due to the
surface energy required for spherical structures being lower and more easily obtained
under the hydrothermal conditions. The reason for the different particle sizes is the uneven
distribution of different types of sugars in the pre-hydrolysate, including a variety of sugars
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such as arabinose, ribose and xylose [24]. The Co-MOF (ZIF-67; Figure 2b), which has
particle sizes between 0.3 and 0.8 µm, shows a regular dodecahedral coordination structure.
What is interesting is that the C1-ZIF-67 and C2-ZIF-67 showed different morphologies from
the carbon-hydrolysate and Co-MOF after hydrothermal reaction. The C1-ZIF-67 showed
a coral-like cross-linked structure with 0.1 µm particle sizes (Figure 2c), and magnifying
the sample image in Figure 2e, the C1-ZIF-67 possessed cross-linking particles with a
smooth surface.
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However, the C2-ZIF-67 exhibited a rough three-dimensional dandelion-like structures
with 0.35–0.90 µm size (Figure 2d), and magnifying the sample image in Figure 2f, the
C2-ZIF-67 possessed a plush tentacle on the surface of the dandelion-like structures. The
results show that the change in structure and increase in surface roughness of the carbon-
based material is due to the introduction of Co-MOF, but the different morphologies of
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carbon-ZIF-67 is ascribed to the preparation technology, and the one-step and two-step
method. As is known to all, double-layer capacitors mainly exist on the surface or near
surface where the carbon material is in contact with the electrolyte. Such changes could
improve the specific surface area and double-layer capacitance, which is conducive to the
improvement in performance for double-layer capacitors, by increasing the surface pore
structure and contact surface area. In addition, morphology changes would provide more
active sites for oxygen reduction reactions and shorten the transmission path of electrons,
which would enhance pseudocapacitance [25].

The formation of C2-ZIF-67, it should be noted, could be carbon growing on the
surface of Co-MOF, which could be vaguely found from the red part in Figure 2f.

The TEM images of the various samples are displayed in Figure 3a–f. The carbon-
hydrolysate displayed complete spheres with a 1–2 µm size in Figure 3a, and the Co-MOF
(ZIF-67) showed a diamond cube with a 0.3–0.8 µm size in Figure 3b. The C1-ZIF-67
exhibited a cross-linking particle structure with a 0.1 µm particle size, and inside was
a solid structure (Figure 3c), but C2-ZIF-67 (Figure 3d–f) showed a hairy and spherical
morphology with 0.35–0.90 µm. The formation of C2-ZIF-67 could be from carbon growing
on the surface of Co-MOF, which is consistent with the SEM results.
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In addition, the inside of C2-ZIF-67 exhibited a hollow structure (Figure 3e,f), which is
probably because the inside of the Co-MOF was decomposed to form a hollow structure,
and the carbon material was formed on the remaining shell and gradually grew larger to
form a dandelion-like structure in the process of carbonization, which was similar to the
in-building of Co-MOF into a carbon material. Compared with a solid structure, a hollow
structure has the advantages of having a lower density and larger specific surface area,
which could expose more active sites and large electrolyte electrode contact area, and short
electron and charge transport paths [26]. The cavity could provide sufficient space for the
contraction and expansion of particles [27].

Figure 4a shows the XRD patterns of the obtained samples for C1-ZIF-67 and C2-ZIF-
67 to confirm their crystal structure. The (002) crystal plane of graphite carbon appears
approximately at the 25◦ peak band for the samples. This result showed that the porous
structures and defects of the samples resulted in the low crystallinity and graphitization
degree of the carbon materials [28]. The (111), (200) and (220) crystal planes of metal
Co (JCPDS No.15-0806) appear in peak bands of approximately 44.3◦, 51.7◦ and 75.9◦,
respectively. The samples exhibited the same characteristic peaks, which indicated that
the samples had the same crystal structure [29]. More interestingly, when the sample was
prepared by the two-step hydrothermal method, its characteristic peaks, corresponding
to cobalt, exhibited more intensity, which indicated that metallic Co is more active in
C2-ZIF-67 than C1-ZIF-67.
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The Raman spectrums (Figure 4b) of the C1-ZIF-67 and C2-ZIF-67 displayed two peaks:
one was the peak of 1350 cm−1 (D band), which reflects the characteristics of disordered
graphite, and the other was the G band at 1590 cm−1 of graphite carbon. The ID/IG value
was widely used to reflect the defect degree of graphite materials [30]. The value of both
was 1 by calculation, showing that they had the same crystal structure, which was in good
agreement with the results of XRD.

In order to determine the chemical composition and type of chemical bonding of
the obtained samples, the XPS was tested and the data of the samples for C1-ZIF-67 and
C2-ZIF-67 are exhibited in Figure 5. C, N, O and Co are contained in the two samples
(Figure 5a). Figure 5b displays the Co spectra of C1-ZIF-67 and C2-ZIF-67. In C1-ZIF-67, the
Co 2p3/2, Co 2p1/2 and Co3O4 peaks were observed at 795.8, 780 and 803.5 eV, respectively.
In addition to the above three peaks, there was another peak at 777.5 eV (metallic Co)
in C2-ZIF-67. In the C 1s spectrum of the C1-ZIF-67 sample (Figure 5c), there were four
peaks at 283.4, 284.5, 287.5 and 289.4 eV, which represent C-C sp2, C-C sp3, C-O and C-N
bonds, respectively. The C 1s spectrum of the C2-ZIF-67 sample exhibited similar bonds to
C1-ZIF-67, with C-C sp2 (283.4 eV), C-C sp3 (284.5 eV), C-O (287.7 eV) and C-N (289.7 eV)
bonds, respectively (Figure 5e). The three Gaussian peaks at 531.6, 530.5 and 529.1 eV are
shown in the O 1s spectrum of the C1-ZIF-67 sample (Figure 5d) due to the presence of
the C-O bonds, adsorbed -OH groups on the surface and lattice oxygen in Co3O4. Peaks
similar to the sample of C1-ZIF-67 were presented at 531.7, 530.4 and 528.7 eV of the



Polymers 2022, 14, 3377 8 of 14

C2-ZIF-67 sample (Figure 5f). Actually, oxygen groups with high electronegativity, in
addition to providing active sites, could form stable structures by modifying the carbon
skeleton [31]. Chemical bonds such as C-C and C-O could enhance the tectonic force and
structural stability. Moreover, the surface of the carbon material is enriched with oxygen-
containing functional groups due to the electronic structures of C and O in the sample
being affected by the presence of Co3O4. In addition, the increase in the capacitance value
during electrochemical electronic storage depends largely on this effect.
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Figure 5. (a) XPS spectra of the C1-ZIF-67 and C2-ZIF-67, (b) the high-resolution Co 2p XPS spectra of
the C1-ZIF-67 and C2-ZIF-67, and the high-resolution XPS spectra of C1-ZIF-67 (C 1s) (c), C1-ZIF-67
(O 1s) (d), C2-ZIF-67 (C 1s) (e) and C2-ZIF-67 (O 1s) (f).

Figure 6 shows the nitrogen adsorption and desorption isotherms and pore size
distribution curves of the obtained samples for C1-ZIF-67 and C2-ZIF-67. Compared with
the C1-ZIF-67, the nitrogen sorption of C2-ZIF-67 increased obviously at various relative
pressures, and the hysteresis loop of C2-ZIF-67 obviously changed in a P/P0 range of
0.45–1.0 (Figure 6a), which displayed the characteristic mesoporous structure and the
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higher mesopores’ proportion [32]. The pore size distribution confirmed the multistage
porous structure of the materials (Figure 6b). The content of the mesopore region (3.7 nm)
was lower in the sample of C1-ZIF-67, while the mesopore content of the C2-ZIF-67 was
relatively higher. The pores’ size plays an important role in the supercapacitors, which is
attributed to the pore size at the range of 2.0–5.0 nm providing proper channels for ion
transport and a greater number of active sites for electrochemical interactions/reactions,
which were beneficial to the performance of the supercapacitors [33]. In addition, the
micropores contributed to a large space for the adsorption and storage of electrolyte ions,
and the macropores were beneficial to the ions’ rapid transfer [34]. This multistage porous
structure was of great benefit for the supercapacitors. The textual parameters of the samples
are presented in Table 1. The C1-ZIF-67 possessed the lower SBET (121 m2 g−1), total pore
volume (0.209 cm3 g−1) and Smicro/SBET ratio (11%). The specific surface area, total pore
volume and Smicro/SBET ratio of C2-ZIF-67 increased to 235 m2 g−1, 0.254 cm3 g−1 and 38%,
respectively. However, the average pore size (8.4 nm) of C2-ZIF-67 was smaller than the
average pore size (11.9 nm) of C1-ZIF-67. These results further indicate that the Smicro/SBET
ratio of C2-ZIF-67 is more favorable to the transmission and storage of supercapacitors,
and C2-ZIF-67 is more suitable for supercapacitors than C1-ZIF-67 [35].
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and C2-ZIF-67.

Table 1. Pore structure parameters of the investigated samples.

Sample SBET (m2 g−1) Smicro/SBET (%) Vtotal (cm3 g−1) Average Pore Size (nm)

C1-ZIF-67 121 11 0.209 11.9

C2-ZIF-67 235 38 0.254 8.4

Figure 7 displays the CV and GCD tests of the samples for C1-ZIF-67 and C2-ZIF-67.
The CV curves of C1-ZIF-67 and C2-ZIF-67 shown in Figure 7a and c possessed a nearly
rectangular shape in the different scan rates, and every CV curve showed a pair of obvious
redox peaks, which indicated the synergy of the double-layer and pseudocapacitance
behaviors [36]. With the scan rate increasing, the curve shape of C1-ZIF-67 had minor
changes, while the curve shape of C2-ZIF-67 had no apparent change, which benefited from
low internal resistance (IR) and a hollow structure, and proved that there is little energy
wasted during the cycle due to internal resistance. In addition, compared with C1-ZIF-67,
the redox peak of C2-ZIF-67 was more obvious and symmetric, which further illustrated
the more excellent pseudocapacitive behavior of C2-ZIF-67 [37]. The specific capacitance of
C2-ZIF-67 calculated from the discharge plots was 400 F g−1 at 0.5 A g−1 (Figure 7d), and
the specific capacitance of C1-ZIF-67 calculated from the discharge plots was 214 F g−1 at
0.2 A g−1 (Figure 7b), which verifies our above analysis. The energy density E (W h kg−1)
and power density P (W kg−1) of the samples were calculated using Equations (2) and
(3), respectively. The sample of C2-ZIF-67 produces a high energy density of 80 W h kg−1
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at a power density of 300 W kg−1, and the energy density of C1-ZIF-67 is 42.8 W h kg−1,
and the power density is 160.5 W kg−1. Compared with C1-ZIF-67, C2-ZIF-67 showed a
superior electrochemical performance. In fact, a large number of MOF/carbon materials
are discussed in Table 2, and the sample obtained (C2-ZIF-67) in this work has a certain
advantage in terms of capacitance value. As shown in Table 2, some carbon materials are
combined with a single metal in the same process as in this work, such as Ni/C, Zn/C
and Co3O4/C. There are also some samples where a variety of metals are combined with
carbon materials, such as Fe-Mg/C and Co-Al/C in the table, but the electrochemical
performances of these samples are inferior to the obtained sample in this work. In addition,
the preparation process is relatively simple in this work. Importantly, this work realizes the
high value utilization of pre-hydrolysate and the full utilization of biomass resources.
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100 mV s−1, and charge–discharge curves of C1-ZIF-67 (b) and C2-ZIF-67 (d) at different current densities.

Table 2. The specific capacitance of C-ZIF-67 and other materials.

Materials Electrolyte Current Density
(A g−1)

Specific Capacitance
(F g−1) Ref.

Ni3(HITP)2 EDLC TEABF4/ACN 0.05 111 [38]

PC-Zn KOH 0.5 138 [39]

IM-HPC H2SO4 0.5 236 [40]

Co3O4@Carbon
Peanut shells@FeCl3/MgCl2

KOH
Na2SO4

1
1

261
247

[41]
[42]

Cellulose paper @Ni
Lignin/single walled CNT

hydrogel
Co-Al-LDH@Carbon

KOH
Cellulose/Li2SO4 gel

H2SO4

0.2
0.5
1

268
292

300.7

[43]
[44]
[45]

CNTs/NCP H2SO4 1 308 [46]

C-ZIF-67 KOH 0.5 400 This work
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Figure 8a displays the representative Nyquist plots of the obtained samples for C1-
ZIF-67 and C2-ZIF-67, in which all samples showed a circular arc-like shape in the high-
frequency region, and the C2-ZIF-67 sample has the smallest arc radius, which indicates that
it has the smallest charge transfer resistance [47]. Due to the diffusion control of the reactants
or products for the electrode reaction, a linear shape is presented in the low frequency
region [48]. However, the impedance curve deviates from 45◦ in the low-frequency region,
which is possibly due to the induced impedance caused by the uneven surface of the
electrode [49]. The slope of C2-ZIF-67 was the largest, indicating that the material exhibited
the best conductivity. The C2-ZIF-67 sample exhibits excellent low impedance behavior
in the full frequency region. This stems from its special hollow structure, which promotes
charge transfer and mass transfer.
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Figure 8b presents the Bode phase angle plots of the samples for C1-ZIF-67 and C2-ZIF-
67. The C1-ZIF-67 and C2-ZIF-67 have phase angles of approximately −80◦ and −70◦ in the
high frequency region, respectively. Their phase angles are between −45◦ (pseudocapacitor)
and −90◦ (ideal capacitor) indicating the presence of intercalation capacitance in the
samples [50]. Meanwhile, the capacitance retention of C1-ZIF-67 achieved 87%, and the
C2-ZIF-67 reached 90%, after 10,000 cycles (Figure 8c). The result indicates that C2-ZIF-67
has excellent cyclic stability and electrochemical reversibility. Herein, the relatively high
retention rate (90%) of C2-ZIF-67 indicates that it has advantages as an energy storage
material, possibly because its ratio of microporous and mesoporous structures provides
efficient ion transmission and storage, while maintaining a stable capacitance.

4. Conclusions

In summary, ZIF-67/carbon materials were synthesized from pre-hydrolysate by one-
and two-step hydrothermal processes. The results demonstrated that Co-MOF (ZIF-67)
could control the morphology and porous structures of pre-hydrolysate-based carbon
materials, and improved the electrochemical performance of Carbon-ZIF-67. The materials
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showed coral-like cross-linked structures and dandelion-like hollow structures by compris-
ing pre-hydrolysate with ZIF-67, respectively. A hollow structure could expose more active
sites and large electrolyte electrode contact areas, and short electron and charge transport
paths. The cavity further prevents the accumulation of an electrochemical active center
to protect them from the interference of electrolytes and the formation of solid electrolyte
phase interface film layers. The superior porous structures could provide more space for
charge storage and more channels for the rapid transfer of electrolyte ions. The C2-ZIF-67
showed excellent specific capacitance (400 F g−1, at 0.5 A g−1) and stability (90%, after
10,000 cycle number) due to the synergistic effect of the structures of the carbon materials
and active groups of ZIF-67 with lower amounts. This work realizes the high value utiliza-
tion of pre-hydrolysate and the full utilization of resources, and expands the application
field of pre-hydrolysate and Co-MOFs, which provides a favorable theoretical basis and
technical support for the development and utilization of bio-based carbon materials in the
field of supercapacitors.
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