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Abstract: Lithium-metal batteries have attracted extensive research attention because of their high en-
ergy densities. Developing appropriate electrolytes compatible with lithium-metal anodes is of great
significance to facilitate their practical application. Currently used electrolytes still face challenges of
high production costs and unsatisfactory Coulombic efficiencies of lithium plating/stripping. In this
research, we have developed a diluted electrolyte which is compatible with both lithium-metal anode
and sulfurized polyacrylonitrile cathode. It presents a very high Li plating/stripping Coulombic effi-
ciency of 99.3% over prolonged cycling, and the as-assembled anode-free Li-S battery maintains 71.5%
of the initial specific capacity after 200 cycles at 0.1 A g−1. This work could shed light on designing a
low-cost and high-performance liquid electrolyte for next-generation high-energy batteries.

Keywords: dilute electrolyte; Li-S battery; cycling stability

1. Introduction

Lithium-ion batteries (LIBs) are widely used in portable electronic devices and elec-
tric vehicles due to advantages such as low cost, high performance, and environmental
friendliness [1]. However, limited by the low theoretical capacity of traditional lithium-
ion battery commercial cathodes (LiCoO2 [2], LiFePO4 [3], LiNixCoyMn1-x-yO2 [4]) and
graphite anodes [5], the energy densities of current lithium-ion batteries struggle to meet
the requirements of emerging industries such as electric vehicles [6]. Therefore, the de-
velopment of energy storage systems with higher energy density is urgently required [7].
Metallic lithium possesses a high theoretical capacity (3865 mAh g−1) and a low electrode
potential (−3.040 V versus standard hydrogen electrode) [8,9]. Therefore, lithium-metal
batteries have become attractive candidates for next-generation batteries with high energy
densities [10–12].

The practical application of lithium-metal batteries still faces two huge challenges.
First, lithium metal has an ultra-high activity, which can irreversibly react with most elec-
trolytes, consuming lithium ions and reducing Coulombic efficiency (CE) [13,14]. Second,
lithium plating/stripping is uneven during the charging and discharging process [15,16],
which leads to the growth of lithium dendrites, pierces the separator, and causes safety
problems such as short circuiting of battery cells. To regulate Li deposition and sup-
press Li dendrite growth, researchers have developed various strategies, including current
collector modification, electrolyte engineering, artificial solid electrolyte layer (SEI), and
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solid-state electrolytes. The modification of the current collector mainly reduces the lithium
nucleation resistance by improving the affinity of the collector, and reduces current density
and volume expansion by designing a 3D structure [17–20]. Electrolyte engineering mainly
introduces some components of an electrolyte into SEI to improve certain physical and
chemical properties of SEI [21,22]. Artificial SEI is an artificially designed protective film
on Li metal with good properties identified by in/ex situ methods [23–25]. The solid
electrolyte can reduce the risk of short circuit caused by lithium dendrite penetrating the
separator, and thus greatly improve the safety of the battery [26,27].

The formation of robust SEI is a prerequisite for stable cycling and high CE of Li metal
batteries [28,29]. The composition of SEI is closely related to that of the electrolyte [30–32]. Elec-
trolyte engineering includes electrolyte additives [33–35], high-concentration electrolytes [36,37],
and local high-concentration electrolytes [38–40]. Zhang et al. used fluoroethylene carbonate
(FEC) as electrolyte additive to form LiF in SEI [41]. Zhang’s group achieved ultra-high CE
(99.1%) with 4 M lithium bis(fluorosulfonyl)imide (LiTFSI) in 1,2-dimethoxyethane (DME) high-
concentration electrolyte [42]. Although high-concentration electrolytes have achieved
ultra-high CE values in lithium-metal batteries, the high viscosity, poor wettability,
and high cost of high-concentration electrolytes hinder practical application. In or-
der to solve the problem of high viscosity of high-concentration electrolyte, the con-
cept of local high-concentration electrolyte was proposed, which used a non-solvated
diluent to reduce the concentration of electrolyte [43]. For instance, Chen et al. de-
signed 1.2 M lithium bis(fluorosulfonyl)imide in a mixture of flame-retardant triethyl
phosphate/bis(2,2,2-trifluoroethyl) ether (1:3 by mol) localized high-concentration elec-
trolyte, which led to a high CE of 99.2% in lithium-metal batteries [44]. However, the
localized high-concentration electrolyte still had the disadvantages of high concentra-
tion and high cost, and CE still could not meet the actual application requirements in
practical applications.

Lithium–sulfur (Li-S) batteries have a high theoretical capacity (1675 mAh g−1) and are
an excellent choice for the next generation of lithium batteries [45]. However, the insulating
properties of S and Li2S and the shuttle effect caused by the dissolution of intermediate
polysulfides during cycling of Li-S batteries hinder the development of Li-S batteries [46].
Researchers composite S and C to form a cathode material (S@C) to enhance the conductivity
of S and suppress the shuttle effect [47]. Composite cathodes prepared from a mixture of
sulfur and pyrolytic polyacrylonitrile (S@pPAN) have attracted extensive research attention.
Compared with S@C cathodes, S@pPAN can more effectively inhibit the dissolution of
polysulfides, and enables good compatibility with carbonate electrolytes and little self-
discharge [48]. However, S@pPAN did not perform well in ether-based electrolytes due to
the slower reaction kinetics leading to partial dissolution of polysulfides [49]. Previously
reported research works have introduced Se, an element of the same main group as S with
a higher conductivity, into S@pPAN to improve the conversion reaction kinetics of the
cathode [50,51].

In this work, we used lithium bisfluorosulfonimide (LiFSI) as lithium salt,
1,2-dimethoxyethane (DME) as solvent, lithium nitrate as additive, and the diluent
1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether (TTE) as a diluent, to prepare a di-
luted electrolyte, namely 0.67 M LiFSI in DME/TTE (1% LiNO3). A schematic illustration
of the diluted electrolyte is shown in Figure 1a. The diluent has excellent chemical stability
and will not change the original solvated structure of the lithium salt when added to
the electrolyte. Therefore, diluting the electrolyte reduces the lithium salt concentration,
thereby reducing viscosity and cost. Li-Cu half-cell using diluted electrolyte exhibited
an ultra-high lithium plating/stripping CE of 99.3% at a current density of 0.5 mA cm−2.
The diluted electrolyte also showed good compatibility with the pyrolyzed polyacryloni-
trile and selenium disulfide composite cathode (pPAN/SeS2). The assembled anode-free
lithium-sulfur battery delivered an ultra-high capacity-retention rate of 71.5% after 200 cy-
cles. Therefore, this diluted electrolyte provides a new strategy for advancing the practical
application of lithium-sulfur batteries.
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Figure 1. (a) Schematic illustration of the solvate structures of high–concentration electrolyte
(top) and diluted electrolyte (bottom), with LiFSI, DME, and TTE as salt, solvent, and diluent,
respectively; (b) CE test of Li||Cu half–cells electrolytes with different lithium salt concentra-
tion (0.5 mA cm−2, 1 mAh cm−2); (c) The galvanostatic charge–discharge curves of 0.67 M LiFSI in
DME/TTE (1% LiNO3); (d) CE test of Li||Cu half–cells with different ratios of diluents.

2. Experimental
2.1. Synthesis of Materials
2.1.1. Materials

Anhydrous lithium nitrate (LiNO3, 99.9% Alfa Aesar), (lithium bisfluorosulfonimide
(LiFSI), 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropylether (TTE), and 1,2-dimethyl ether
oxyethane (DME)) were all purchased from TCI. Selenium disulfide (SeS2) and polyacry-
lonitrile (PAN) were both purchased from Sigma-Aldrich. Lithium foil (Li), aluminum foil
(Al), copper foil (Cu), separator (Celgard 2400), carboxymethyl cellulose (CMC), styrene-
butadiene rubber (SBR), and carbon black SUPER C45 (SP) were purchased from Shenzhen
Branch Crystal Materials Technology Co., Ltd. (Shenzhen, China)

2.1.2. Preparation of pPAN/SeS2

The PAN and SeS2 powders (1:4 w/w) were mixed and ground for 30 min before being
sealed in a glass vessel and heat-treated at 380 ◦C for 8 h. The samples were then placed in a
porcelain boat and kept at 350 ◦C for 6 h under a N2 protective atmosphere to remove excess
sulfur and selenium elements, and then naturally cooled to obtain pPAN/SeS2 powder.

2.1.3. Diluted Electrolyte Configuration

The purchased LiFSI was weighed and heated in a glove box at 60 ◦C for 4 h to remove
traces of water. Solvent DME and diluent TTE were dewatered with molecular sieves for
48 h. Then, for electrolyte configuration, LiFSI and anhydrous lithium nitrate were first
dissolved in DME, and stirred magnetically for 4 h. After the lithium salt was completely
dissolved, TTE was added and stirred for 2 h.
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2.2. Characterizations

The XRD patterns were collected using a Rigaku Smart Lab diffractometer (Japan)
with Cu Kα radiation (λ = 1.5405 Å) in a scan range (2θ) of 10–80◦. SEM images and EDS
of pPAN/SeS2 powder were obtained by HITACHI-SU8220 (Japan) type field emission
scanning electron microscope.

2.3. Electrochemical Measurements

CR2032 coin cells were assembled in a glove box filled with argon, with both O2
and H2O below 0.1 ppm. Cu (ϕ16 mm) and Li foil (ϕ15.5 mm) were applied to prepare
Li-Cu half-cell, for evaluating Li plating/stripping efficiency. The cells were first cycled
for 5 times at 50 µA in the voltage range of 0–1 V (vs Li+/Li) to remove copper foil surface
impurities. Then, they were cycled at a current density of 0.5 mA cm−2 and a lithium
deposition capacity of 1 mAh cm−2 for long cycling. In Li||pAN/SeS2 half-cell, the
cathode is composed of a mixture of pPAN/SeS2, SP, and CMC/SBR in a mass ratio of 8:1:1,
respectively, and the mass loading of the cathode is ~2 mg cm−2. Li||pPANSeS2 half-cells
were cycled at a current density of 0.1 A g−1 in the voltage range of 1–3 V. The anode-free
lithium-sulfur battery was assembled by first deeply lithiating the pPANSeS2 cathode
through 2 mAh g−1, and then assembling it with copper foil to form a Cu||pPANSeS2
battery. The mass loading of the cathode is 4~6 mg cm−2. The Cu||pPANSeS2 cells were
cycled at a current density of 0.1 A g−1 with a voltage interval of 1–3 V.

3. Results and Discussion

In this work, the effect of lithium salt concentration in the electrolyte on the elec-
trochemical performance was first studied. Different concentrations of electrolytes nM
LiFSI 1%wt LiNO3 in DME/TTE (1:2, v:v), (n = 0.33, 0.67, 1, 1.33) were configured and
Li||Cu batteries were assembled to evaluate the compatibility of different electrolytes
with lithium-metal anode. The result is shown in Figure 1a. The average CE of Li-Cu cells
using a 0.33 M LiFSI in DME/TTE (1% LiNO3) electrolyte was 98.8% under test conditions
of 0.5 mA cm−2 current density and 1 mAh cm−2 deposition amount, and the cells failed
after 130 cycles. When the lithium salt concentration is increased to 0.67 M and 1 M, the
average Coulombic efficiency is significantly increased to approximately 99.3% and the
cycle life is also extended (about 200 cycles). With a continued increase of the electrolyte
concentration to 1.33 M, the CE drops to 98.8%, and the CE value fluctuates significantly
during the cycle, accompanied by a shortened cycle life. The batteries with 0.67 M and 1 M
electrolytes showed similar CE and cycling stability. The CE value of Li plating/stripping
in a certain electrolyte and cycling stability are mainly dependent on the component and
microstructure of as-generated SEI. It can be deduced that 0.67 M and 1 M electrolytes
benefit formation of SEI, with favorable properties such as good mechanical strength,
uniform composition distribution, and smooth ion diffusion through SEI [52]. Consid-
ering the cost, the 0.67 M electrolyte was chosen as the optimal electrolyte. We further
investigated the plating/stripping curves of Li-Cu cells with 0.67 M diluted electrolyte.
The deposition overpotential of Li metal was 45 mV and remained stable during cycling
(Figure 1c), further indicating that changing the diluted electrolyte could promote the stable
electroplating/stripping of Li metal. We also tested the ionic conductivity and wettability
of 0.67 M diluted electrolyte. As can be seen from Figures S1 and S2, it has a moderate ionic
conductivity of 2.78 × 10−4 S cm−1 and also a good wetting capability in relation to copper
foil, lithium foil, and the separator.

To reveal the effect of diluent TTE on the electrochemical properties of Li metal
anodes, we prepared 2 M LiFSI in DME (1% LiNO3) and 0.67 M LiFSI in DME (1% LiNO3)
electrolytes without diluent. The stable CE of the battery assembled with 2 M LiFSI in
DME (1% LiNO3) electrolyte is about 98.5%. The CE fluctuates significantly after 100 cycles,
and the battery fails at nearly 200 cycles. By contrast, the CE of the battery with diluted
electrolyte 0.67 M LiFSI in DME (1% LiNO3) remained stable during 200 cycles (Figure 1d).
We compared this electrochemical performance with those reported references in terms
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of electrolyte concentration, Coulombic efficiency, cycle number, and current density, as
summarized in Table 1.

Table 1. Electrochemical performance of LMBs in various electrolytes.

Electrolyte Concentration Li Plating/Stripping CE Ref.

LiFSI-DME/TTE 0.67 M 99.3%, 200 cycles, 0.5 mA cm−2, 1 mAh cm−2 This work

LiFSI-DME 4 M 98.5%, 300 cycles, 1 mA cm−2, 1 mAh cm−2 [42]

LiNO3 + LiFSI-DME 4 M 98.5%, 400 cycles, 0.5 mA cm−2, 0.5 mAh cm−2 [53]

LiTFSI-SL 1.3 M 96.6%, 100 cycles, 0.5 mA cm−2, 1 mAh cm−2 [54]

LiPF6 + LiDFOB-
FEC/DMC/HFE 1.2 M 98%, 200 cycles, 1 mA cm−2, 1 mAh cm−2 [55]

LiFSI-DMC 10 M 99.2%, 200 cycles, 0.2 mA cm−2, 2.5 mAh cm−2 [56]

We further explored the effect of lithium nitrate on the electrochemical performance
of the electrolyte. From the CE test results of the Li||Cu half-cell, the CE and cycling
stability of the two electrolytes are generally similar in the initial 100 cycles (Figure 2a).
Over prolonged cycling, the CE of the Li||Cu half-cell with 0.67 M LiFSI in DME/TTE
(0% LiNO3) electrolyte fluctuates greatly, and the battery fails at the 130th cycle. The CE
fluctuation over prolonged cycling mainly originates from increased internal resistances in
the battery system. In contrast, the batteries with 0.67 M LiFSI in DME/TTE (1% LiNO3)
electrolyte showed stable cycling. Next, we assembled Li||pPAN/SeS2 half-cells and
tested the electrochemical performance of pPAN/SeS2 cathodes in the two electrolytes.
Composition analysis and morphological characterization of pPAN/SeS2 were carried out.
As can be seen in Figure S3, energy-dispersive X-ray spectroscopy (EDS) demonstrates
uniform distribution of C, S, and Se elements, and the X-ray diffraction (XRD) pattern
reveals an amorphous phase of pPAN/SeS2 (Figure S4). As shown in Figure 2b, the stability
of the Li||pPAN/SeS2 half-cells assembled with the two electrolytes differs considerably
at low active material loadings (the first discharge is not included in the figure, the first
cycle in the figure corresponds to the second cycle). Specifically, the initial capacities of
the two electrolytes are 541 mAh g−1 (0% LiNO3) and 540 mAh g−1 (1% LiNO3). The
first 10 cycles show the same trend. As the cycle continued, the capacity of the electrolyte
with 0% LiNO3 decreased significantly, and only 331 mAh g−1 remained after 200 cycles,
corresponding to the capacity retention rate of 61.1%. As a comparison, the capacity of
the diluted electrolyte with 1% LiNO3 remained stable during cycling, with a capacity of
535 mAh g−1 remaining after 200 cycles, and the capacity retention rate was as high as
99%. The galvanostatic charge–discharge curve results indicate that batteries applying
the diluted electrolyte with 1% LiNO3 show almost no change in the charge–discharge
plateau at 50th, 100th, and 200th, indicating a slight internal polarization (Figure 2c). On
the contrary, with the progress of the cycle, the distance between charge and discharge
platforms increases and the polarization is serious for the battery with 0% LiNO3 electrolyte,
which is consistent with the cycling performance results.

For practical applications, we tested the cycling stability of Li||pPAN/SeS2 half-cells
under high mass loading and lean electrolyte conditions, using a diluted electrolyte of
0.67 M LiFSI in DME/TTE (1% LiNO3). As can be seen in Figure 3a, an obvious capacity
activation phenomenon can be observed. The second discharge capacity of the pPAN/SeS2
cathode is 489 mAh g−1, which increased slightly to 502 mAh g−1 after 50 cycles. After that,
the specific capacity remained stable over prolonged cycling. The relatively lower specific
capacity in the second cycle is because of the harsh testing conditions of lean electrolyte and
high mass loading, which result in very difficult wetting of the electrode by the electrolyte.
The active materials did not participate fully in the reaction during the initial few cycles.
As the cycling progress continues, the pPAN/SeS2 cathode is activated and gradually
wetted by the electrolyte. Thus, the specific capacity increases in the initial 15 cycles.
After that, the quite stable cycling stability indicates the high lithium storage reversibility
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of the pPAN/SeS2 cathode in the diluted electrolyte. The galvanostatic current charge–
discharge curves show that the charge–discharge voltage plateaus almost do not change
over prolonged cycling, as shown in Figure 3b. It confirms that the internal resistance and
thus voltage polarization of the Li-S battery cell is very small, which is consistent with the
cycling performance results. The above results indicate that the diluted 0.67 M LiFSI in
DME/TTE (1% LiNO3) electrolyte can enable good operation of Li-S cell even under harsh
testing conditions of high cathode mass loading and lean electrolyte.
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In order to maximize the energy density of the battery, we assembled an anode-free
lithium-sulfur battery using the above diluted electrolyte. The pPAN/SeS2 cathode was first
discharged to 0.28 V, followed by deep lithiation of Li-Al alloying reaction with a specific
capacity of 2 mAh cm−2. After that, the lithiated cathode (pPAN/SeS2) was assembled
with a bare Cu foil as the anode to form a Cu||pPAN/SeS2 anode-free cell. Figure 4a
shows the cycling performance of the anode-free Li-S battery. It can be seen that the first
discharge capacity of the Cu||pPAN/SeS2 full battery is 466 mAh g−1, which maintains
333 mAh g−1 after 200 cycles, with a capacity retention rate of 71.5%. The average CE
is as high as 99.9% excluding the initial cycle. Here, we compare the electrochemical
performances of our anode-free Li-S cell with those previously reported. As summarized in
Table 2, we can see that our cycling stability is superior to those reported in other studies. It
can be seen from the galvanostatic charge–discharge curves that the voltage platform only
increases slightly with the cycle, indicating that the internal resistance of the anode-free cell
is very small (Figure 4b).
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Table 2. Performance comparison of anode-free Li-S batteries between this and reported work.

Battery Chemistry Cycling Stability Loading Ref.

Cu||pPAN/SeS2 71.5% retention over 200 cycles at 0.1 A g−1 4–6 mg cm−2 This work

ATCu||Li2S 64.8% retention over 120 cycles at 1.166 A g−1 4.5 mg cm−2 [57]

Cu||Li2S 70% retention over 100 cycles at 0.1166 A g−1 4 mg cm−2 [58]

Au/Cu||Li2S 69.5% retention over 150 cycles at 0.1 C 4 mg cm−2 [59]

4. Conclusions

In summary, a diluted electrolyte 0.67 M LiFSI in DME/TTE (1% LiNO3) was prepared
for an advanced sulfurized polyacrylonitrile-based anode-free Li-S battery. At the anode
side, the diluted electrolyte demonstrates a good compatibility with the lithium-metal
anode, and thus it enables highly reversible Li plating/stripping with a high average CE of
99.3% over prolonged cycling. At the cathode side, it can effectively suppress dissolution
and shuttling of intermediate polysulfides even under harsh testing conditions of high
cathode mass loading and lean electrolyte. As a result, the fabricated Li-S battery maintains
71.5% capacity after 200 cycles at 0.1 A g−1, which is superior to those of previously
reported anode-free Li-S cells. This work thus elucidates designing a low-cost diluted-
liquid electrolyte towards next-generation long-life and high-energy batteries.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym14163312/s1, Figure S1: EIS spectra of symmet-
rical cells (stainless steel/separator/stainless steel) using 0.67 M LiFSI–DME/TTE (LiNO3); Figure S2:
Optical images showing wettability of 0.67 M LiFSI-DME/TTE (LiNO3) on lithium foil (a), separator

https://www.mdpi.com/article/10.3390/polym14163312/s1
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(b), and copper foil (c); Figure S3: EDS elemental mapping images of the pPAN/SeS2 composite for
(b) sulfur, (c) carbon and (d) selenium; Figure S4: XRD of pPAN/SeS2 (black), PAN (red), SeS2 (green).
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