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Abstract: Applications of ultra-low-pressure filtration systems are increasing as they offer enhanced
sustainability due to lower energy input, almost no use of chemicals, and minimum operational
expenditure. In many cases, they operate as a decentralized system using a gravity-driven membrane
(GDM) filtration process. These applications are relatively new; hence, the fundamental knowledge
of the process is still limited. In this study, we investigated the phenomenon of polymeric membrane
compaction under an ultra-low-pressure system. The compaction phenomenon is well-recognized in
the traditional pressure-driven system operating at high transmembrane pressures (∆Ps > 200 kPa),
but it is less documented in ultra-low-pressure systems (∆P < 10 kPa). A simple GDM filtration setup
operated under a constant-pressure system was employed to investigate the compaction phenomena
in a polymeric hollow fiber membrane for clean water filtration. Firstly, a short-term pressure
stepping test was performed to investigate the occurrence of instantaneous compaction in the ∆P
range of 1–10 kPa. The slow compaction was later investigated. Finally, the compaction dynamic
was assessed under alternating high and low ∆P and relaxation in between the filtrations. The
findings demonstrated the prominence of membrane compaction, as shown by the decreasing trend
in clean water permeability at higher ∆Ps (i.e., 3240 and 2401 L m−2 h−1 bar−1 at ∆Ps of 1 and 10 kPa,
respectively). We also found that the intrinsic permeability of the applied polymeric membrane was
significantly higher than the apparent one (4351 vs. 2401 L m−2 h−1 bar−1), demonstrating >50%
loss due to compaction. The compaction was mainly instantaneous, which occurred when the ∆P
was changed, whereas only minor changes in permeability occurred over time when operating at
a constant ∆P. The compaction was highly reversible and could be restored (i.e., decompaction)
through relaxation by temporarily stopping the filtration. A small fraction of irreversible compaction
could be detected by operating alternating filtrations under ∆Ps of 1 and 10 kPa. The overall findings
are essential to support emerging GDM filtration applications, in which membrane compaction has
been ignored and confounded with membrane fouling. The role of compaction is more prominent for
high-flux GDM filtration systems treating less-fouling-prone feed (i.e., rainwater, river water) and
involving membrane cleaning (i.e., relaxation) in which both reversible and irreversible compaction
occurred simultaneously.

Keywords: membrane compaction; gravity-driven membrane filtration; water and wastewater
treatment; sustainable engineering

1. Introduction

The gravity-driven membrane (GDM) system is one of the current configurations used
for the sustainable filtration of water and wastewater. The system has been developed for
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decentralized systems and implemented in some full-scale submerged membrane bioreac-
tors (MBRs). It applies to a wide range of water and wastewater treatment applications [1].
The system operates at extremely low pressures (∆P < 10 kPa) compared with the tradi-
tional microfiltration (MF) or even ultrafiltration (UF) processes (∆P of 100–500 kPa); hence,
it requires much lower energy consumption [2,3]. Stabilization of the flow in the range
of 2–20 L/m2h was achieved in a laboratory-scale test without backwashing or routine
cleaning [4,5], producing a maintenance- and cleaning-free system. Thus, GDM may play a
significant role as an energy-saving strategy in advanced wastewater and water treatment.

The progress of GDM developments has been extensively reported [1]. However,
the limitation of GDMs is the relatively low stable flux over long-term operation. It is
attributed to the formation of a fouling layer on the membrane surface. Due to the dead-
end filtration system, organic debris and biological organisms in the feed are permitted
to build on the membrane surface and form a (bio)cake layer, increasing the permeation
resistance. Membrane fouling is overwhelmingly acknowledged in GDMs. Attempts have
been made to manipulate the (bio)cake layer to enhance the system throughputs [6–8].
Yet another phenomenon, compaction, also takes place. Compaction, in turn, plays an
important role, especially under ultra-low-pressure filtration, as demonstrated in this study.
Process engineers often overlook the occurrences of compaction by considering it simply as
membrane fouling.

Membrane compaction has long been recognized to occur in polymeric membranes
under compression. The mechanical stability of porous polymeric membranes depends on
their structures, and mechanical characteristics compaction preferentially occur in the bulk
layer where large pores and macrovoids are situated [9]. A sponge-like structure was less
affected by compaction than a structure with macrovoids [10]. These findings suggest a
close relationship between the fabrication parameter and the compaction phenomena. In a
pressure-driven filtration system, the applied ∆P exerts the compressive forces required to
deform the membrane structure, which physically alter the membrane properties [9] and
filtration performance. Due to compressive strain, the physical deformation may lower
the porosity, constrict the pores, and densify the polymer matrix. The polymer matrix
can exhibit instantaneous or slow deformation [11] as a result of elastic, plastic, and vis-
coelastic strains (i.e., plasticization, swelling, and creep) [11–14]. When the applied ∆P
is released, the thickness instantaneously may increase, returning to the precompression
state. However, many polymeric materials exhibit irreversible deformation, as they do not
completely restore to the initial condition upon the release of the compressive force [15].
In this regard, the two different compaction behaviors are referred to as reversible and
irreversible compactions. The latter results in irreversible flux degeneration even under
relatively low ∆P. For example, Tessaro and Jonsson [16] discovered that after temporarily
exposing a polysulfone UF membrane to a constant ∆P of 180 kPa, the filtration capacity
of the membrane significantly decreased. Kallioinen et al. [17] also discovered that a UF
membrane under compaction at 300 kPa lost its filtration capacity. In more recent reports
on ultra-low-pressure filtration systems, the clean water permeability of a hollow fiber
membrane decreased by >43% when ∆P increased from 2.2 to 10.0 kPa [18]. More impor-
tantly, a flat sheet membrane lost its clean water permeability by >86% due to compaction
when ∆P increased from 2.5 to 19.0 kPa [19]. All these reported findings demonstrate the
significance of membrane compaction in ultra-low-pressure filtration systems.

Along with the above-mentioned flux reduction, membrane compaction can affect
separation efficiency and enhance the retention of molecules of the same magnitude as
or smaller than the membrane cutoff value, as membrane compaction may lower pore
size or alter pore geometry. However, Tarnawski and Jelen [20] discovered that while the
permeability of a polysulfone UF membrane significantly decreased due to compaction in
the pressure range of 0–10 bar, the membrane’s selectivity remained unchanged. Although
slow compaction gradually occurs, a lack of adequate assessment of the effect of compaction
on membrane performance can significantly skew the results of laboratory-scale studies [21].
In addition to decreasing the flux, compaction influences solute rejection. It may shrink pore
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size or distort pore geometry and eventually increase solute rejection [22,23]. Despite the
increasing amount of research on ultra-low-pressure membrane processes, the fundamental
aspect of membrane compaction remains a research challenge.

This study investigated membrane compaction and its effects on ultra-low pressure
filtration systems handling no-fouling feed (clean water). Numerous aspects of compaction
were examined, including the influence of ∆P, reversibility, and dynamics. A better under-
standing of the membrane compaction behavior can further open new research avenues to
establish sustainable GDM processes.

2. Methodology
2.1. Material

Clean water was obtained by filtration of tap water using a household reverse-osmosis
unit, resulting in a total dissolved solute of <20 ppm. The clean water was used in all
filtration experiments, utilizing a commercial U-shaped hollow fiber membrane (Xiamen
Aqusta Water Technology Co., Ltd., Fujian, China) made from polyacrylonitrile with a
nominal pore size of 0.01 µm and a surface area of 0.242 m2. U-shaped means the HF is
bent inside the module, with both ends seen in the module, which is the typical packing
configuration for dead-end filtration. The module had a long cylindrical shape with a
base diameter of 4.6 cm and height of 22.5 cm, resulting in a module packing density of
647 m2/m3.

2.2. Filtration Setup

Figure 1 illustrates the ultra-low-pressure filtration setup used for the filtration test in
this study. Filtration was driven by the hydrostatic pressure from the elevated feed liquid
level above the membrane. The feed was raised above the membrane, which was placed
on the base of the polyvinyl chloride cylinder tank with an inner diameter of 10.12 cm. The
water level was regulated by opening and closing the ball valves placed every 10 cm up to
100 cm above the baseline (in the middle point of the membrane module), 11 cm from the
base of the U-shaped module. This arrangement allowed the hydrostatic pressure variation
of 1.0 to 10.0 kPa (0.01–0.1 bar) with an interval of 1 kPa. The feed was recirculated at a rate
of 1.5 L/min. The feed flow direction was from the outside to the lumen of the fiber and
through the lumen toward the end of the module to allow for permeate collection.
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The feed water was recirculated using a liquid pump at a constant rate of 1.5 L/min,
and the excess flow was returned to the feed store to maintain the liquid level during
filtration. The applied recirculation rate was sufficient to maintain a stable level of the
liquid. Fluctuation of the liquid level was only observed for filtration under transmembrane
pressures (∆P) below 3 kPa. Before usage, the membrane was wetted by washing with a
detergent solution at 60 ◦C for 15 min and with running tap water for 15 min, followed by
immersion in distilled water overnight for pore wetting and activation. The membrane was
then kept wet over the entire study to prevent pore deactivation due to drying.

2.3. Filtration Test
2.3.1. Flux and Permeability

The permeate flux (J, L m−2 h−1) and permeability (L, L m−2 h−1 bar−1) were calcu-
lated using Equations (1) and (2):

J =
V

t A
(1)

L =
J

∆P
(2)

where V is the volume of the permeate collected (L), A is the membrane surface area (m2),
t is the time taken for the collected permeate (h), and ∆P is the applied transmembrane
pressure (bar).

2.3.2. Instantaneous and Long-Term Compaction

For instantaneous compaction, filtration was performed for only 30 min under a ∆P of
1.0–10.0 kPa, corresponding to 10–100 cm liquid levels. The ∆Ps were set ascending from
1.0 to 10 kPa at an interval of 1 kPa. The tests were performed in duplicate to detect the
permeability as a function of pressure and to estimate the intrinsic permeability without
membrane compaction. In this test, we observed a rapid decline in permeability at the
beginning of the filtration. A relaxation of 15 min was performed in between the liquid
filtration. The permeate tube was closed during the relaxation, and no water permeation
was allowed.

Long-term filtration was performed for 8 h continuously under ∆Ps of 1.0, 6.0, and
10.0 kPa to observe any degeneration in water permeability over time, which could be
attributed to the slow compaction of the polyacrylonitrile hollow fiber membrane. Perme-
ability data were taken every 30 min.

2.3.3. Pressure Relaxation and Compaction Dynamics

The effect of abrupt changes in the applied pressure on the membrane compaction
was evaluated using multiple filtrations involving relaxations. Six clean water filtrations
were performed for one hour of sandwiching and one hour of relaxation. The permeate line
was closed during the relaxation to avoid any permeation for one hour in duplicate. This
filtration test allowed relaxation to restore permeability by decompaction of the membrane.

The final assessment of the membrane compaction was performed to observe its dy-
namics under variable pressures. For four cycles, clean water filtrations were alternatingly
conducted under ∆Ps of 1.0 and 10.0 kPa. Each filtration was performed for one hour
and in duplicate. This test was conducted to observe the compaction and decompaction
dynamics due to the change in ∆P.

3. Results and Discussion
3.1. Instantaneous Compaction

Figure 2 shows the evolution of permeability during the ascending followed by de-
scending ∆P. Because no membrane fouling occurred during the filtration of demineralized
water, the changes in permeability under various ∆Ps were fully associated with the change
in the membrane resistance in response to the changes in the applied ∆P. The figure clearly
shows the occurrence of membrane compaction from the decreasing trend in the permeabil-
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ity at higher ∆Ps. Without any compaction, the clean water permeability did not change.
In the first pressure stepping filtration test, the initial clean water permeability decreased
from 3240 L m−2 h−1 bar−1 at a ∆P of 1 kPa to 2016 L m−2 h−1 bar−1 at a ∆P of 6–10 kPa,
corresponding to a 38% loss. For the second run of the pressure stepping filtration test, the
initial clean water permeability decreased from 2823 L m−2 h−1 bar−1 at a ∆P of 1 kPa to
1676 L m−2 h−1 bar−1 at a ∆P of 10 kPa, corresponding to a 40% loss. For the first run, a
small permeability fluctuation was observed for a ∆P of 6–10 kPa, while for the second run,
a steady decline was observed at a ∆P of 1–10 kPa.
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Figure 2. Evolution of clean water permeability during two runs of pressure stepping filtration test,
showing the decreasing trend in permeability at higher transmembrane pressure.

Significant changes in clean water permeability under the ultra-low-pressure range
(less than 10 kPa) demonstrated the significant role of ∆P in dictating the hydraulic perfor-
mance. This finding implies that data on clean water permeability from two independent
studies obtained under different ∆Ps can be significantly different. The same findings
were obtained in our recent studies on ultra-low-pressure filtration. For a GDM filtra-
tion system and hollow fiber membrane, the clean water permeability decreased from
720, 500, to 426 L m−2 h−1 bar−1 when ∆P as increased from 2.2, 3.2, to 10.0 kPa, respec-
tively [18]. Similarly, for a flat sheet membrane, the permeability decreased from 2740 to
376 L m−2 h−1 bar−1 when ∆P increased from 2.5 to 19.0 kPa, respectively [19].

When exposed to ∆P, the membrane structure is compressed by means of matrix
deformation, pore constriction, and other phenomena. This phenomenon was reported in
another study but for relatively high ∆Ps. Applying ∆P during the filtration on a polyether-
sulfone hollow fiber membrane densified the porous support layer and thickened the
skin layer (selective barrier) [24]. As a result, it also lowered the clean water permeability.
Membrane compaction was also observed on the RO membrane, which reduced the water
permeability and increased the support layer’s resistance, with more prominent effect at
higher pressures and temperatures [25,26]. Membrane compaction also deformed the poly-
mer matrix by lowering the membrane’s volume porosity [10] and altering the membrane
pore size or pore geometry [10].

Offline examinations of membrane compaction (such as scanning electron microscopy
analysis or micrometer measurements) lack accuracy in measuring its impact on filtration
capacity. Various mechanical testing configurations were also attempted to assess mem-
brane compaction [27,28]. However, the conditions used in these tests were much different
from those found in a filter cell during filtering, leading to poor data accuracy.

Figure 2 also shows the instantaneous nature of membrane compaction under a small
change in ∆P in the range of 1 to 10 kPa. For the first pressure stepping filtration run,
the permeability was almost constant for ∆Ps beyond 6 kPa, while a gradual decline was
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observed for the second run. The findings also show that membrane compaction is very
sensitive to pressure under a low ∆P range (<6 kPa). Only minor changes in permeability
were observed during the filtration (at a constant ∆P), indicating that the compaction
instantaneously occurred when the filtration started and was poorly observed during
the short-term filtration of 30 min. The slow compaction during the filtration is further
discussed in Section 3.3.

Interestingly, a trend line could be generated to estimate the true intrinsic permeability
of the membrane without any compaction (Figure 3), which is the permeability value
where L vs. ∆P crosses the y axis. The polynomial trend line of the first run follows:
L = 1.4567∆P4 − 37.208∆P3 + 346.3∆P2 − 1428.9∆P + 4350.7 with R2 = 0.9988, corresponding
to an intrinsic permeability of 4350.7 L m−2 h−1 bar−1; that of the second run follows:
L = 0.862∆P4 − 23.448∆P3 + 233.03∆P2 − 1043∆P + 3640.2 with R2 = 0.9959, corresponding
to an intrinsic permeability of 3640.2 L m−2 h−1 bar−1. The permeability recovery at the
start of the second run of filtration demonstrated that the compaction was highly reversible.
The permeability at 1 kPa decreased by 13% from 3240 to 2823 L m−2 h−1 bar−1, while the
decrease in the intrinsic permeability was 16%. The permeability values during the second
run continued decreasing below the lowest value in the first run (1995 L m−2 h−1 bar−1),
suggesting further compaction. Figure 3 differentiates the types of compactions in an
ultra-low-pressure system comprising fast (instantaneous) and slow compactions. Fast
compaction constitutes reversible and irreversible fractions.
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bar−1; that of the second run follows: L = 0.862 ∆P4 − 23.448 ∆P3 + 233.03 ∆P2 − 1043 ∆P + 3640.2
with R2 = 0.9959, corresponding to an intrinsic permeability of 3640.2 L m−2 h−1 bar−1.

3.2. Slow Compaction

Figure 4 shows the evolution of permeability over 8 h of constant filtration under
three ∆Ps of 1, 6, and 10 kPa. It shows no indication of slow compaction over the filtration
duration, where the permeability changes from the initial to the final reading, ranging
from −6% to 6%. When the two runs were averaged, the changes were between −1%
and 3%. The negative range indicated that the final permeability was higher than the
initial permeability due to a small variation in the experimental conditions. These results
show that the phenomenon of membrane compaction under ultra-low-pressure membrane
filtration instantaneously occurred when ∆P was applied to drive the permeation. This
finding is consistent with the data obtained during a shorter filtration duration (30 min)
shown in Figure 2.
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Figure 4. Evolution of permeability over an extended filtration time under various transmem-
brane pressures.

Figure 4 also shows that the permeability for the second run of filtrations was lower
than that for the first runs. This can be explained by the irreversible compaction obtained
in the first run. Some degree of irreversible compaction was observed, even though the
membrane was relaxed by letting it idle overnight (12 h). The compaction and decompaction
phenomena resulted from filtration relaxation in the ultra-low-pressure filtration might
complicate the analysis of the actual filtration when the feed is also prone to fouling
the membrane. In this case, a confounding effect of membrane fouling and membrane
compaction would be expected, even when the fouling rate is very severe, as observed
earlier for the treatment of tapioca wastewater in a GDM bioreactor [18].

3.3. Compaction Dynamics

Figure 5 shows the relaxation effect on membrane compaction dynamics during six
filtrations (P1–P6) under a ∆P of 6 kPa with relaxations. Each filtration was run for 30 min,
followed by 60 min of relaxation. Figure 5A shows no evidence of irreversible compaction
over the first five cycles (filtration and relaxation). Only a slight decrease (about 3%) in
permeability was observed for the sixth cycle. However, the change was insignificant based
on a statistical analysis using the post hoc Tukey HSD test with a Tukey HSD p-value of
less than 0.9. This suggests that relaxation restored all reversible compactions from the
previous cycles.

Figure 5B shows the initial and final values of the permeabilities for the six cycles. A
slight decrease in permeability was observed during the 60 min filtration. However, this
decrease was fully restored after the relaxation at the beginning of the next cycle. The ability
of relaxation to restore the permeability was evident during the first four cycles and the first
three cycles of the second run. Beyond those cycles, relaxation poorly restored permeability.
The initial permeability of the final cycle of run 1 was 2074 L m−2 h−1 bar−1, while the initial
permeability of the first cycle of run 2 was 2112 L m−2 h−1 bar−1, which was 1.8% higher.
This was considered as part of the compaction dynamics due to the prolonged relaxation
between the two runs. Nevertheless, the permeability decline was statistically insignificant.
This finding is important when considering the operation of ultra-low-pressure filtration in
a submerged MBR equipped with a plate-and-frame module with a flat-sheet membrane
that typically operates under ∆P < 0.3 bar [29]. Traditionally, the permeability loss over
time in an MBR operation has exclusively been attributed to membrane fouling [27,30].
However, the confounding effect of compaction and decompaction is expected, as ascribed
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from the findings in this study. In the past, the occurrence of compaction and decompaction
was grouped into membrane fouling. Such limitations can hamper the judgment and
mislead the analysis, leading to inaccurate results. For instance, during the filtration of
activated sludge, the applied pressure was found to significantly affect the permeability in
an ultra-low-pressure filtration system [18].

Polymers 2022, 14, x FOR PEER REVIEW 8 of 12 
 

 

Figure 4. Evolution of permeability over an extended filtration time under various transmembrane 
pressures. 

Figure 4 also shows that the permeability for the second run of filtrations was lower 
than that for the first runs. This can be explained by the irreversible compaction obtained 
in the first run. Some degree of irreversible compaction was observed, even though the 
membrane was relaxed by letting it idle overnight (12 h). The compaction and 
decompaction phenomena resulted from filtration relaxation in the ultra-low-pressure 
filtration might complicate the analysis of the actual filtration when the feed is also prone 
to fouling the membrane. In this case, a confounding effect of membrane fouling and 
membrane compaction would be expected, even when the fouling rate is very severe, as 
observed earlier for the treatment of tapioca wastewater in a GDM bioreactor [18]. 

3.3. Compaction Dynamics 
Figure 5 shows the relaxation effect on membrane compaction dynamics during six 

filtrations (P1–P6) under a ΔP of 6 kPa with relaxations. Each filtration was run for 30 min, 
followed by 60 min of relaxation. Figure 5A shows no evidence of irreversible compaction 
over the first five cycles (filtration and relaxation). Only a slight decrease (about 3%) in 
permeability was observed for the sixth cycle. However, the change was insignificant 
based on a statistical analysis using the post hoc Tukey HSD test with a Tukey HSD p-
value of less than 0.9. This suggests that relaxation restored all reversible compactions 
from the previous cycles. 

 
Figure 5. Compaction dynamics of the membrane under multiple filtrations (at constant pressure of 
6 kPa) and relaxation cycles, showing (A) average permeability from two runs and (B) initial and 
final permeabilities of each cycle. Dashed lines in (B) represent relaxation/idle periods in between 
two runs for 60 min. 

Figure 5B shows the initial and final values of the permeabilities for the six cycles. A 
slight decrease in permeability was observed during the 60 min filtration. However, this 
decrease was fully restored after the relaxation at the beginning of the next cycle. The 
ability of relaxation to restore the permeability was evident during the first four cycles 
and the first three cycles of the second run. Beyond those cycles, relaxation poorly restored 
permeability. The initial permeability of the final cycle of run 1 was 2074 L m‒2 h‒1 bar‒1, 
while the initial permeability of the first cycle of run 2 was 2112 L m‒2 h‒1 bar‒1, which was 
1.8% higher. This was considered as part of the compaction dynamics due to the 
prolonged relaxation between the two runs. Nevertheless, the permeability decline was 
statistically insignificant. This finding is important when considering the operation of 

1700

1800

1900

2000

2100

2200

0 30 60 90 120 150 180

Pe
rm

ea
bi

lit
y 

(L
 m

−2
h−

1
ba

r−
1 )

Filtration/relaxation cycle

0

500

1000

1500

2000

2500

P1 P2 P3 P4 P5 P6

Pe
rm

ea
bi

lit
y 

(L
 m

−2
h−

1
ba

r−
1 )

Filtration/relaxation cycle

(A)

P1            P2            P3          P4            P5           P6

(B)

Run 1

Run 2

Figure 5. Compaction dynamics of the membrane under multiple filtrations (at constant pressure of
6 kPa) and relaxation cycles, showing (A) average permeability from two runs and (B) initial and
final permeabilities of each cycle. Dashed lines in (B) represent relaxation/idle periods in between
two runs for 60 min.

Figure 6 shows the filtration dynamics under two alternating ∆Ps of 1 and 10 kPa. It
clearly shows a slight decrease in permeability as the filtration proceeded. The permeability
decline trend was slightly more prominent for filtrations under a ∆P of 1 kPa. Unlike the
full relaxation shown in Figure 5, where permeability could fully be restored, holding the
filtration at 1 kPa inhibited the complete restoration of the permeability. The permeability
degeneration shown for a ∆P of 1 kPa filtration represents the irreversible compaction
illustrated in Figure 3. The filtration test involving a very low ∆P was also used to identify
the irreversible fouling rate in colloid filtration, mainly for MBR application [31].

The presence of irreversible compaction demonstrated in Figure 6 suggests the critical
role of membrane compaction and decompaction in ultra-low-pressure membrane filtration.
This role is expected to be highly dominant when dealing with feeds with a low membrane
fouling propensity, involving periodic membrane cleanings to maintain high flux [32–37].
The trend in operating GDM under ultra-low pressure is increasing, and membrane com-
paction will play an essential role in such applications. In addition, ultra-low-pressure
applications will benefit from developing custom-made membrane materials, as recently
reported [38–40]. However, in addition to from combating membrane fouling, membrane
material development should consider the compaction phenomenon that can substantially
reduce permeability (>50%) from the intrinsic value, as shown in Figure 1.
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4. Conclusions

This paper reports the phenomenon of membrane compaction in ultra-low filtration
systems that have recently been used in emerging gravity-driven membrane (GDM) filtra-
tion of water and wastewater treatment. The findings demonstrated the prominent impact
of membrane compaction under the tested pressures (∆P < 10 kPa). Clean water perme-
ability decreased from 3240 L m−2 h−1 bar−1 under a ∆P of 1 kPa to 2401 L m−2 h−1 bar−1

under a ∆P of 10 kPa (Figure 2). The actual permeability was found to be significantly
lower than the intrinsic permeability (without compaction), with a permeability loss of
>50% (4351 vs. 2401 L m−2 h−1 bar−1). The compaction was mainly instantaneous, with
immediate permeability changes at different ∆Ps. Only minor permeability changes were
observed during prolonged clean water filtrations of 8 h under ∆Ps of 1, 6, and 10 kPa. The
membrane compaction was highly reversible and could be restored (i.e., decompaction)
by applying relaxation via temporarily stopping the filtration. The permeability of six
filtrations under a ∆P of 10 kPa was statistically insignificant. By alternatingly operating
filtrations under a high (10 kPa) and low (1 kPa) ∆P, irreversible compaction was detected.
Our findings are essential for supporting the emerging applications of GDMs in which the
filtration is driven by the hydrostatic pressure at an ultra-low pressure of <10 kPa. In this
context, the occurrence of compaction might be grouped into membrane fouling, resulting
in an inaccurate analysis. Membrane compaction’s roles are expected to be more prominent
in GDM filtration systems treating less-fouling-prone feed (i.e., rainwater or river water)
and when involving membrane cleaning (i.e., relaxation). In this situation, the operational
fluxes are relatively high; hence, both irreversible and irreversible compactions also occur.
Further studies on the effect of compaction on solute rejection are strongly suggested. If
compaction affects solute rejection, ∆P can be used as an important parameter to define
permeate quality.
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