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Abstract: Infective endocarditis (IE) is a heart disease caused by the infection of heart valves, majorly
caused by Staphilococcus aureus. IE is initiated by bacteria entering the blood circulation in favouring
conditions (e.g., during invasive procedures). So far, the conventional antimicrobial strategies based
on the usage of antibiotics remain the major intervention for treating IE. Nevertheless, the therapeutic
efficacy of antibiotics in IE is limited not only by the bacterial drug resistance, but also by the
formation of biofilms, which resist the penetration of antibiotics into bacterial cells. To overcome
these drawbacks, the development of anti-biofilm treatments that can expose bacteria and make them
more susceptible to the action of antibiotics, therefore resulting in reduced antimicrobial resistance, is
urgently required. A series of anti-biofilm strategies have been developed, and this review will focus
in particular on the development of anti-biofilm antibodies. Based on the results previously reported
in the literature, several potential anti-biofilm targets are discussed, such as bacterial adhesins, biofilm
matrix and bacterial toxins, covering their antigenic properties (with the identification of potential
promising epitopes), functional mechanisms, as well as the antibodies already developed against
these targets and, where feasible, their clinical translation.
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1. Introduction
1.1. The Background of IE and Its Modern Epidemiology

Infective endocarditis (IE) is an infectious heart disease, with an incidence of three to
ten episodes per 100,000 per year in the population [1–3]. Over the years, the mortality
of IE changed with advances in medicine: IE was indeed a highly fatal disease up to the
1940s, when the introduction of penicillin greatly reduced its mortality [4,5]. Later on,
the development of valvular surgery sparked new modes of intervention, defining the
beginning of the early surgery era [6]. Although the majority of IE cases can be treated
with antibiotics, about 25–30% of patients develop severe valvular damage or exhibit
ineffectiveness in response to antibiotic treatments, and therefore surgery is required
during the early-acute phase of infection. Another 20 to 40% of these patients require
surgery later [7].

Concurrently, the ongoing development of antibiotics and surgical interventions
renews our understanding of the epidemiology of IE. The changes in antibiotics have
altered the patterns of infection and caused resistance worldwide [8–10]. On the other hand,
in comparison with the pre- and early antibiotic age in which rheumatic heart disease was a
leading cause of IE, nowadays, other risk factors are taken into consideration, such as the use
of intracardiac devices, prosthetic valve replacement, venous catheters, or haemodialysis.
Moreover, the average age of IE patients and the prevalence of comorbidities among them
have increased [11–13].

At the time of writing, IE is still a serious disease for its high mortality, since 20%
of patients die in hospital, and its one-year mortality rate is about 30% [1,2]. Despite the
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development of trends toward earlier diagnosis and early surgery, the mortality of IE has
barely improved in the last four decades, and its one-year mortality has not improved
in over two decades [7,14]. So far, the current management of IE is still challenged by
difficulties in both prognosis and treatment.

1.2. The Clinical Pathology of IE

As an infectious heart disease, IE is initiated by the bacterial infection of heart valves.
Bacteria can enter the bloodstream via the skin, the mouth, gastrointestinal and urinary
tracts, through venous catheters or after an invasive medical or surgical procedure. After
that, bacteria can reach the heart via body circulation and then adhere to the valves. This
will lead to the formation of holes on the valve, or scarring of the valve tissue, which
consequently will (or can) result in valve leakage [7,15]. The common signs and symptoms
of IE include: chest pain, fatigue, flu-like symptoms and abnormal heart murmurs [15].
The characteristic lesions of IE are vegetations consisting of microorganisms, inflammatory
cells, platelets, fibrin and leaflet disruptions. IE might be extended by local spread of the
infection, which leads to other complications (Figure 1) [16].
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could convert NBTE into IE. Further, injury to the endocardium and vascular endothelium 
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PVE is initiated by microorganisms invading the prosthesis during surgery or fol-
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Figure 1. The local spreading of IE infection. IE originates from the aortic valve and can spread to
the ventricular wall (A) and atrium wall (B). Adapted with permission from Thiene and Basso [16].
2006, Elsevier.

Since IE can occur on both original and prosthetic valves, it is further classified as
native valve endocarditis (NVE) and prosthetic valve endocarditis (PVE). In the case of
NVE, deformed or damaged endothelium is more accessible for bacterial infection than the
healthy one, and IE could develop following injury or thrombosis. Indeed, non-bacterial
thrombotic endocarditis (NBTE), which is distinguished from IE for its non-infective patho-
genesis, has now been identified as a crucial factor underlying the development of IE.
Sterile thrombotic vegetations caused by NBTE are predisposed for bacterial adhesion
on valve surfaces; therefore, the entry of microorganisms into the mainstream circulation
could convert NBTE into IE. Further, injury to the endocardium and vascular endothe-
lium may generate predilection sites of infection even in the absence of sterile thrombotic
vegetations [17].

PVE is initiated by microorganisms invading the prosthesis during surgery or follow-
ing haematogenic dissemination after surgery (a rare and serious complication of valve
replacement). Similar to the pathology of NVE, thrombosis also acts as an underlying
inducement for PVE. Thrombus formation on the prosthetic valve counts on a range of
factors, including endothelisation, haemodynamics and haemostasis [18]. First of all, the
endothelisation of a prosthetic valve takes several weeks to be completed. Therefore, in the
early post-operative period, the absence of endothelium could raise the thrombotic risk.
Secondly, the altered haemodynamics after valve replacement can contribute to generating
turbulent flow in localised regions, which can then lead to stasis and thrombosis on the
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prosthetic valve. Additionally, the clotting on the valve caused by blood stasis is critical to
thrombus formation, and therefore anticoagulant treatment is required for patients after
surgery. Eventually, the thrombus composed of fibrin and thrombocytes can serve as a
predisposing focus of infection. Taking all of these factors into consideration, although
NVE is distinguished from PVE, there are a number of similarities in their pathologies.

1.3. The Challenges in Antibiotic Treatment and Prospective Anti-Biofilm Strategies

IE can be caused by a range of micro-organisms, but Staphylococci are now considered
the most frequent causative organisms, since they represent the major pathogens for
hospital-acquired infections [4,15,19–23]. Therefore, Staphylococci have become the main
targets for antibiotic therapy for this condition. However, the therapeutic efficiency of
antibiotics for IE has been challenged by the emergence of resistant Staphylococci since their
early introduction. As an example, only a few years after the introduction of penicillin,
resistant staphylococcal strains expressing β-lactamase were reported [24]. The introduction
of methicillin (a synthetic β-lactamase-resistant penicillin) facilitated the development of
Methicillin-resistant Staphylococcus aureus (MRSA) strains [25–27]. To compete with the
insurgence of resistant bacterial strains, new antibiotics and different combinations of
synergistic antibiotics have been tested to improve IE treatment. Importantly, in addition to
the acquired drug resistance, virulence factors also critically contribute to the modulation
of antibiotic susceptibility in Staphylococci; indeed, IE is particularly difficult to treat due to
the ability of MRSA to hinder the action of antibiotics via the formation of biofilms [28,29].

A biofilm can be described as a sessile community of micro-organisms in which cells
embed together by attaching to others and a surface in a protective extracellular polymeric
matrix, also known as extracellular polymeric substance (EPS). The extracellular matrix of
biofilms can effectively increase tolerance to antibiotics via multiple mechanisms [30]. The
EPS in staphylococcal biofilms is composed of polysaccharides, extracellular DNA (eDNA)
and/or proteins [17,18,31–33]. The formation of a biofilm can be generally summarised
into three main stages: attachment, maturation and dispersion (Figure 2).
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Firstly, attachment is initiated once an individual planktonic bacterial cell reversibly
associates with a surface, and such association will become irreversible if the cell remains
in contact for a sufficient period of time. Bacterial attachment is mediated by surface
proteins such as microbial surface components recognising adhesive matrix molecules
(MSCRAMMs) [35]. However, the importance and involvement of these proteins varies
largely between strains, and many of these factors function in both attachment and ac-
cumulation [34]. Following attachment, biofilm maturation is progressed by bacterial
division and their production of the extracellular polymeric matrix, enabling the transition
of bacteria from a planktonic to a sessile state. Finally, bacteria within the biofilm can return
to the planktonic state; hence, they can disassemble to undergo dispersion [36].

All stages of biofilm formation can be targeted for anti-biofilm therapeutic purposes.
For example, the initial attachment can be prevented by targeting staphylococcal adhe-
sions [37]; biofilm maturation can be disturbed by blocking surface proteins involved in
cell-to-cell adhesion [38]; and finally, the pre-existing biofilm can be decomposed by using
dispersal agents, such as cis-2-decenoic acid (C2DA), dispersin B and DNase I [35].

Since anti-biofilm strategies target the molecular pathways involved in the biofilm’s
formation and maturation, which is different from the conventional antimicrobial routes,
this translates into a significantly reduced selection pressure, which in turn mitigates the
potential development of resistance. Further, since factors involved in staphylococcal
biofilm formation are highly species-specific (compared to targets for conventional antibi-
otics), anti-biofilm strategies may allow for the development of narrow-spectrum precision
agents, which will have low or no influence on other microbiota [34]. To date, a wide
range of molecular targets involved in biofilm formation are being investigated, and the
combination of antibiotics and anti-biofilm therapies is likely to be more effective than a
single treatment.

1.4. Antibodies as a Promising Approach for Anti-Biofilm IE Treatment

In addition to the molecular agents that could inhibit staphylococcal biofilm forma-
tion, different alternative strategies can be used, such as monoclonal antibodies (mAbs)
treatment. When staphylococcal infections occur, the immune system generates anti-
bodies against a wide range of antigens, including surface proteins, toxins and cell wall
proteins [36,39–41]. These antibodies can disrupt the biofilm’s formation via different
immunological mechanisms (Figure 3).
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A neutralising antibody is an antibody that can block the infectious and pathogenic ef-
fects of microbes. High-affinity IgA and IgG antibodies can neutralise the action of secreted
staphylococcal proteins, such as immune evasion molecules, exoenzymes, toxins and sur-
face proteins, which are potential therapeutic targets. Further, neutralising antibodies can in
turn bind to bacterial adhesins (e.g., MSCRAMMs) and cell wall components to inhibit ini-
tial attachment to host matrixes and subsequent initiation of biofilm formation (Figure 3A).
Another type of mechanism, known as opsonophagocytosis (i.e., opsonophagocytic-killing,
OPK), entails antibodies that can mediate microbial clearances by phagocytes. These
surface-bound antibodies (mainly IgG) can trigger OPK by neutrophils and macrophages
expressing FcR on their surface. Once antibodies bind to the antigens, their Fc regions are
able to activate phagocytes to engulf pathogens (Figure 3B). Similarly, microbial clearance
can also be mediated via activating the complement system. The classical complement
pathway is activated once the surface-bound antibodies (IgM and IgG) bind to the C1q
subunit on the C1 complex, and then the following cascade leads to the formation of the C3
convertase, which cleaves C3 (the central component of all complement pathways) into C3a
and C3b. Finally, C3b acts as an opsonin to enable phagocytosis via C3b receptor-expressed
phagocytes ingesting C3b-coated pathogens; the soluble C3a (also known as C5a) acts
as chemoattractant to recruit immune cells to initiate inflammation. C3 activation also
causes the formation of the membrane attack complex (MAC) that can mediate lysis of
certain pathogens. These all contribute to the killing of pathogens (Figure 3C). Additionally,
antibodies targeting different components of the biofilm matrix can directly destabilise the
biofilm structure and thus promote bacterial dispersal (Figure 3D).

The antibodies naturally produced by the host are highly specific, therefore highlight-
ing the potential of antibody therapy as a feasible option for narrow-spectrum anti-biofilm
treatment. So far, the feasibility of antibody therapies disrupting staphylococcal biofilms
has been shown by some studies, in which different antigens have been targeted, such
as surface proteins [43–47], toxins [45], cell wall enzymes [48] and poly-N-acetyl-β-(1,6)-
glucosamine (PNAG) [47]. Importantly, the major disadvantage of antibodies therapy, as
in the case of antibiotics, is related to the poor penetration into the deepest layers of a
biofilm, which would result in incomplete disruption. Moreover, development of resis-
tance is possible, although less likely than with antibiotics. Another hurdle faced by the
development of antibodies for anti-biofilm IE treatment is that different Staphylococci strains
express different antigens; therefore, finding a universal target is difficult, which renders
the antibody development quite challenging [49].

This review, therefore, aims to identify the most promising targets for anti-biofilm
IE treatment, with particular emphasis on antibody-based therapy. We will do so by
summarising and evaluating the potential targets for anti-biofilm IE treatment, highlighting
the most promising ones for antibody development and discussing the challenges in
antibody design and development for IE treatment.

2. Molecular Targets for Monoclonal Antibodies Targeting Staphylococcus Biofilms

So far, the natural immunological reactions triggered by biofilm-associated infection
are not well understood. Importantly, host antibodies stimulated by S. aureus antigens
show reduced efficiency in preventing a reinfection with this pathogen [50]. As mentioned
above, the process of biofilm formation can be summarised into three stages in which a
wide range of functional proteins are involved. Given the importance of biofilm formation
in the pathology of IE, current research on antibodies targeting S. aureus infections has
included anti-biofilm strategies. So far, some bacterial proteins contributing to S. aureus
biofilm formation have been considered as candidates for developing IE treatments, such as
adhesins, biofilm matrix components, cell wall-modifying enzymes, surface glycopolymers
and toxins (Figure 4).
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The functions of these candidates as well as their clinical studies are summarised
in Table 1.
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Table 1. Studies and clinical trials on potential anti-biofilm targets and antibodies. Adapted with permission from Raafat et al. [42]. 2019, Elsevier.

Antibody and Target Clinical Trial

Targets Antibody Functions Antibody Refs Name
[Company;

NCT Number]

Status Intervention Refs

ClfA
Block Fg binding/agglutination of

human plasma; displace FBG-bound
bacteria; promote OPK

Mu/mAb (mAb 12-9,
11H10);

Huz/mAb (Tefibazumab)

[44,51] Tefibazumab (Aurexis)
[Inhibitex]

Phase II (failed) Huz/mAb (IgG1) [52]

Tefibazumab
(Aurexis1)
[Inhibitex;

NCT00198289]

Phase IIa (failed) Huz/mAb (IgG1) [53]

FnBPB Block Fn binding; promote OPK and nGr
activation; reduce biofilm formation

Mu/mAb [54,55]

Cna Block CN binding; displace CN from
bacterial surface; promote OPK; block

laminin and C1q binding

Mu/pAb;
Mu/mAb

[56–58]

SasG Reduce biofilm formation Ra/pAb [43]

Atl Inhibit biofilm formation; promote OPK Mu/pAb [59–61]

Atl-Amd Promote OPK Mu/pAb [60]

Atl-Gmd Promote OPK; block bacterial division
(binary fission); induce agglutination

IgG1 Mu/mAb (1C11) [62]

IsaA Promote nGr activation (oxidative burst)
and OPK by nGr (UK-66); promote OPK
in whole blood (hUK-66); promote nGr
activation, but not phagocytosis (1D9)

Mu/mAb (UK-66);
Huz/mAb (hUK-66);

Hu/mAb (1D9)

[63–66]

WTA Promote C3 deposition and OPK by nGr
(Hu/pAb)

Hu/mAb;
IgG Hu/mAb
(THIOMAB)

[67,68] DSTA4637S
[Roche/Genentech;

NCT03162250]

Phase Ib (ongoing) THIOMABTM antibody
(Hu/mAb;

IgG1)-antibiotic conjugate

[69,70]

CP Promote OPK (Mu/mAb) Mu/mAb;
Ra/pAb;
Mu/pAb

[71,72] AltaStaphTM
[Nabi Biopharmaceuticals;

NCT00063089]

Phase II (halted) Polyclonal human IgG [73]

AltaStaphTM
[Nabi

Biopharmaceuticals;
NCT00066989]

Phase II (failed) Polyclonal human IgG [74]
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Table 1. Cont.

Antibody and Target Clinical Trial

Targets Antibody Functions Antibody Refs Name
[Company;

NCT Number]

Status Intervention Refs

LTA Promote OPK
Murine/human
chimeric mAb
(Pagibaximab)

[75] Pagibaximab1
[Biosynexus;

NCT00631800]

Phase II (finished) Murine/human
chimeric mAb

[76]

Pagibaximab1
[Biosynexus;

NCT00646399]

Phase III (failed) Murine/human
chimeric mAb

[77]

PNAG/
dPNAG

Promote OPK IgG1 Hu/mAb (F598) [78,79] SAR279356
[Sanofi-Aventis;
NCT01389700]

Phase IIa (terminated
due to difficulty in

patient recruitment)

Hu/mAb [80]

DNABII Disrupt established biofilms Native Hu/mAb
(TRL1068)

[81,82] TRL1068
[Trellis BioscienceLLC;

NCT04763759]

Phase I
(recruiting)

Hu/mAb [83]

AT Neutralise toxin activity; modestly
inhibit biofilm formation

Hu/mAb (MEDI4893) [84–86] MEDI4893
(Suvratoxumab)

[MedImmune LLC;
NCT02296320]

Phase II
(successful)

Hu/mAb (IgG1) [87]

AR-301 (Salvecin)
[Aridis Pharmaceuticals;

NCT01589185]

Phase IIa
(successful)

Hu/mAb (IgG1) [88]

LukAB Neutralise LukAB-mediated cytotoxicity;
inhibit LukAB binding to I domain

of CD11b

Hu/mAb (SA-13, -15
and -17)

[89]

GrfA Reduce colonies in organ Recombinant human scFv [90] Aurograb
[NeuTec Pharma

Ltd/Novartis Pharma
AG; NCT00217841]

Phase II (failed) Single-chain antibody
fragment

(Fab)

[57,90]

PhnD Inhibit biofilm formation under shear
flow (S. aureus and S. epidermidis),

promote OPK by nGr

Ra/pAb [91]
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3. Anti-Biofilm Strategies
3.1. Inhibition of Bacterial Attachment

The first stage of biofilm formation, bacterial attachment, relies on a number of staphy-
lococcal surface-binding proteins, including MSCRAMMs and other cell wall-associated
proteins [e.g., biofilm-associated protein (Bap), S. aureus surface proteins C (SasC) and G
(SasG)] (Figure 4) [92]. The initial attachment in vivo is mainly driven by the interaction be-
tween MSCRAMMs and the human extracellular matrix (Figure 4) [93]. Therefore, MSCRAMMs
are taken as candidates for IE antibody-based therapies and, ideally, their antibodies are sup-
posed to function via a mechanism that prevents the initial bacterial adherence to both abiotic
and biotic surfaces by neutralising adhesins and/or promoting OPK [50,84,94].

Among the family of MSCRAMMs, ClfA, ClfB and the fibronectin-binding proteins
(FnBPA and FnBPB), are widely found among the S. aureus strains, and other proteins
such as collagen-binding protein (Cna) only distribute in a subset of strains [95]. Importantly,
however, in comparison to MSCRAMM ClfA, ClfB presents a relatively high frequency of
pseudogenes (i.e., DNA sequences that resemble a gene but have been mutated into an inactive
form over the course of evolution). This reveals its decreasing importance in the MSCRAMMs
family, therefore indicating that ClfB is less suitable as a target for IE antibodies [96].

3.1.1. ClfA: Past Failure of Anti-ClfA Antibodies Enlightens Further Research

The MSCRAMM ClfA is a virulence factor that critically contributes to the colonisation
of S. aureus on protein-coated biomaterials and damaged endothelial surfaces by binding to
blood plasma protein fibrinogen (Fg). Further, ClfA is found to predominantly promote
staphylococcal adhesion under high shear stress [97]. To understand the properties of ClfA
that render it an effective target for IE, it is critical to consider its functional mechanism
and protein structure, as well as its genetic variations.

As a member of MSCRAMMs, ClfA shares a similar domain organisation and structure.
Starting from the N-terminus, ClfA contains a signal sequence followed by a ligand-binding
N-terminal A region (amino acids 40 to 559) subdivided into independently folded N1,
N2 and N3 subdomains, a region consisting of repeated serine-aspartate residues, and a
C-terminal region containing an LPXTG motif (Figure 5) [98–100].
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(red) binds to the trench between N2 and N3. Adapted from Herman-Bausier et al. [97].
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These components are responsible for its structural function and mechanism. The
junction between N2 and N3 is found as a binding trench where the ligand inserts and
binds with ClfA. The Sdr region links region A to the C-terminal wall-spanning region
and the sorting sequence. The LPXTG motif allows anchoring of the protein to cell wall
peptidoglycan by sortase A. The ClfA—Fg interaction occurs via ClfA binding its minimal
ligand-binding segment N2 and N3 to the carboxy-terminus of the γ-chain of Fg through
variations of a dynamic mechanism termed “Dock, Lock and Latch” (DLL): Firstly, the
carboxy-terminus of the γ-chain of Fg docks in a ligand-binding trench located between sub-
domains N2 and N3 (amino acids 221 to 559). Once the ligand peptide docks into the trench,
it is subsequently covered by a flexible C-terminal extension of the N3 domain and thus
“locked” in place [101]. After that, the C-terminal part of this extension interacts with the N2
domain and forms an extra β-strand, which complements the pre-existing β-sheet in the N2
domain, and together they serve as a latch to stabilise the MSCRAMM—ligand complex.

The diversity of ClfA has been explored by studies on its variants. The results obtained
from structural mapping of CflA subdomains reveal a minimum pairwise identity of 86%,
which indicates a low level of structural differences among variants. Therefore, ClfA is
considered to be well-conserved, and also one single isolate is predicted to be able to
generate cross-reactive antibody responses against a wide range of variants [96]. However,
this predication is questioned by a further study, which has shown that ClfA strains present
lower binding affinities to heterologous antibodies elicited by their variants, with only
10% variation in aminoacid sequences [102]. This result highlights that small differences in
composition across S. aureus strains could result in large effects on antigenicity.

Interestingly, as a member of the MSCRAMM family, S. aureus ClfA shows force
sensitivity, and its binding to Fg is significantly enhanced by mechanical force, which shows
that the ClfA—Fg binding is increased 15-fold in the presence of mechanical tension [97].
According to the same study, ClfA interacts with Fg via two distinct binding sites, and the
stronger binding site is favoured by high shear stress [97]. This mechanical sensitivity of
ClfA shows high biological significance to PVE. As mentioned in Section 1.2, the pathology
of PVE is critically related to the changed haemodynamics after aortic valve replacement,
which causes turbulent flow that can lead to elevated shear stress levels in the ascending
aorta [103]. The elevated shear stress caused by the implantation of the prosthetic valve
has been proved by a series of past studies, and a maximal stress of 500 N/m2 has been
indicated [103,104]. This can probably benefit S. aureus attachment on the prosthetic valve
through enhancement in ClfA—Fg binding. However, the confirmation of a potential
association between the mechanical sensitivity of ClfA and the pathology of PVE would
require deeper investigations.

For the reasons mentioned above, antibody treatments targeting MSCRAMM ClfA
could possibly prevent the incidence of IE and especially PVE, and indeed, the therapeutic
potential of anti-ClfA antibodies has been evidenced by many studies [44,50,51,84,105].
The application of tefibazumab, a humanised anti-ClfA mAb, contributed to the prevention
of IE in a rabbit model [44]. However, tefibazumab has failed to achieve statistically
significant improvement in a phase II human clinical trial (ClinicalTrials.gov Identifier:
NCT00198289). Surprisingly, the tefibazumab epitope is shown to be located on top of the
N3 domain instead of the trench discussed above [106]. Strikingly, this is consistent with
the dual mechanisms model of ClfA under mechanical tension. Under low tensile force, Fg
binds to the top of the ClfA N3 domain via weak bonds, whereas under high mechanical
tension, extension and conformational changes in the ClfA molecule trigger the ultra-strong
DLL interaction by the N2 and N3 subdomains, and the γ-chain peptide of Fg inhibits
high forces but not low forces binding site model [97]. Therefore, it can be hypothesised
that tefibazumab inhibits the function of ClfA by disrupting its low tension-dependent
mechanism instead of the DLL mechanism that responds to a high shear stress environment.
This hypothesis, to some extent, could also explain the failure of the phase II clinical trial,
as S. aureus is exposed to many different levels of shear depending on its location and the
type of infectious disease in patients. Notably, although tefibazumab shows therapeutic
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efficiency in an IE rabbit model, the medical scenario in patients might be much more
complex due vascular ageing, calcification and the accompaniment of other cardiovascular
diseases [107]. Studies also show that tefibazumab inhibits binding of Fg to ClfA rather
than the Fg γ-chain, and residues P467A, Y512A and W518A in the N3 domain are shown
to be critically involved in this binding. This provides additional target sites for the future
design of effective inhibitors of the ClfA/Fg interaction. Further, as mentioned above, the
failure of tefibazumab could be partially explained by its weakened binding affinity when
confronting CflA variants from different strains of S. aureus [102,106]. A new anti-ClfA
mAb (11h10) was identified by the group of Tkaczyk et al., and its combination with anti-
toxin mAb shows more improved efficacy than single-neutralising mAb in responding to
S. aureus biofilm infection [50,84]. The same research group also reported another anti-ClfA
mAb (SAR114) with >100-fold increased affinity, as well as its combined construction with
anti-toxin mAb, in the form of a bispecific antibody (BisAb) [45]. However, to the best
of our knowledge, these two anti-ClfA mAbs have not been further investigated since
their last publication in 2017. Importantly, though, functional antibodies generated using
recombinant ClfA antigens can sufficiently alter the ligand-binding activity of ClfA [108].

3.1.2. FnBP: The Possibility of Developing FnBP Antibody Is Waiting to Be Addressed

FnBP plays multivalent roles in biofilm-associated S. aureus infection, as it not only
contributes to bacterial adhesion by binding to human plasma proteins, but also promotes
bacterial invasion, intercellular accumulation and biofilm maturation [54,93]. In accordance
with MSCRAMM ClfA, FnBP shares a similar protein composition, and it also follows the DLL
mechanism mediated by the A domain binding site when interacting with Fg (Figure 6).
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FnBPA and FnBPB proteins also contain a signal sequence at the N-terminus and an
A domain composed of three separately folded subdomains, termed N1, N2 and N3, as
well as a wall-spanning region and a sorting signal at the C-terminus. Interestingly, an
extra binding site of Fg on the top of the N3 subdomain is also identified in FnBP [106].
In contrast to ClfA, it contains a binding site of fibronectin (Fn) in the repeat region, and
it has another binding site of plasminogen (Plg) in the A domain, as a single subdomain
was required for Plg binding to FnBPs: subdomain N2 for FnBPA and subdomain N3 for
FnBPB [109]. Additionally, it exhibits a much greater level of diversity in its subdomains
in comparison to ClfA [110,111]. Noticeably, FnBP can promote biofilm formation, but
the underlying multivalent mechanisms are still unclear. This has been firstly explained
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by a low affinity binding between the A domains of FnBP on adjacent bacteria, which
can contribute to the aggregation of bacteria [54]. However, a recent study shows that
FnBP can contribute to biofilm formation through a previously unknown mechanism that
is distinct from its ligand-binding ability as a member of the MSCRAMMs family [112].
Considering its multivalent functions, FnBP is suggested to be a potent candidate to prevent
S. aureus infection.

Early studies have highlighted the potential of FnBP antibody therapies, as well as its
OPK activity [108,113]. Later, the efficacy of FnBP antibodies was investigated in vivo. An
anti-FnBPB mAb (15E11) has been identified in a murine model, with a successful inhibition
of bacterial attachment by 70% [114]. The mAb 15E11 binds to an epitope shared by the
repeated regions in both FnBPA and FnBPB, which is proximal to (though distinct from) the
Fn binding site. Furthermore, the sequence KYEQ(H)GGNIV(I)D in the epitope is thought
to be crucial. The authors suggested that the steric hindrance or a conformational change
elicited by 15E11 reduces the accessibility of Fn to its binding site. This also provides an
extra pathway of interference with the action of FnBP, although further studies are required
to clarify its underlying mechanism. In addition, an extra binding site of the Fg ligand
on the top of the N3 subdomain is also observed in FnBP, and a force-induced binding
mechanism similar to that of ClfA has been suggested [115]. So far, though, no FnBP
antibodies are being investigated in clinical trials.

3.2. Decomposition of Biofilm Matrix

After successful attachment to the surface, bacteria start to proliferate and build
biofilm by producing a series of EPSs, including polysaccharides (e.g., PNAG), nucleic
acids [e.g., environmental DNA (eDNA)], proteins, lipids and other biomolecules (Figure 4).
These matrix proteins support the structural integrity of the biofilm by developing a three-
dimensional architecture, which in turn enhances biofilm tolerance to both antimicrobial
agents and immune cells. So far, two EPSs, PNAG and DNABII, have been extensively con-
sidered as potential candidates for IE antibody-based treatment against biofilm-associated
infections. They are currently evaluated as candidates for broad-spectrum antimicrobial
therapeutics. This is partly due to the critical roles they play in biofilm composition, as well
as their wide distributions and conserved properties observed among a variety of microbes,
including bacteria, fungi and protozoa [33,113,116,117].

3.2.1. PNAG: The Antibody against PNAG/dPNAG Shows Optimal Anti-Biofilm Effect

PNAG is a major component of the biofilm EPS, also known as polysaccharide inter-
cellular adhesin. PNAG critically mediates intercellular adhesion, thereby leading to the
accumulation of bacterial cells, which eventually promote the establishment of biofilms.
PNAG not only contributes to the biofilm matrix architecture on the implanted material
surface, but also slows down the host defensive responses [118]. The chemical structure of
PNAG is shown in Figure 7.

In the case of Gram-positive bacteria, the PNAG synthesis is mediated by the icaADBC
locus consisting of four genes, which express four proteins assembling the intercellular
adhesion system (Ica) including IcaA, IcaB, IcaC and IcaD (Figure 7). IcaA and IcaD exert
primary roles in the exopolysaccharide synthesis. IcaA is a transmembrane enzyme with
N-acetylglucosaminyl transferase activity, necessary for the synthesis of the PNAG polymer.
However, the enzymatic activity of the product of the icaA gene becomes significant, and
oligomers longer than 20 residues are synthesised only when co-expressed with the product
of the icaD gene. IcaC translocates the PNAG polymer to the bacterial cell surface, and IcaB
operates the deacetylation of the molecule.
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Deacetylation of PNAG enables its fixation to the outer bacterial surface, promoting
the structural development of exopolysaccharide-based biofilm. Importantly, although
PNAG is certainly a critical element of biofilm formation in S. aureus, the existence of
PNAG-independent biofilms has also been confirmed. Furthermore, it has been shown that
a minor proportion of S. aureus strains can form biofilms even in the absence of the ica locus,
which further suggests the existence of ica-independent PNAG-synthesis pathways [120].
As a carbohydrate antigen, the epitope of PNAG is expected to encompass parts of more
than one repeating unit, and is often located at the ends of polysaccharide chains [121].

The feasibility of targeting PNAG has been illustrated by many studies [113,122]. Fur-
ther, different from antibodies against PNAG that aim to decompose biofilm, the antibodies
against dPNAG (deacetylated poly-N-β-(1-6)-acetyl-glucosamine) present marked efficacy
in the opsonisation and killing of S. aureus [81,123,124]. Thus, dPNAG is so far considered a
significant target for the development of antibodies aimed at treating IE. However, PNAGs
naturally expressed on bacterial surfaces are highly acetylated (>90%) [125]. Structural
studies of PNAG indicate that the acetates are on the polymer’s surface and sticking out-
wards into environment, exposing themselves as the primarily accessible antigens and thus
enabling the immunodominance of the acetate-dependent epitopes [126].

As further shown by recent studies, the conjugation of anti-PNAG and anti-dPNAG
antibodies achieving significant OPK and protective effects in vitro and in vivo shows the
potential of combined antibodies therapy [117,127]. A human IgG1 mAb (F598, formerly
SAR 279356) targeting both PNAG and dPNAG is undergoing preclinical and clinical
assessments as a broad-spectrum antimicrobial therapy, since it triggers superior OPK and
protective activities against a wide range of microbial pathogens compared to two mAbs
that bound optimally to PNAG and minimally to dPNAG (mAbs F628 and F630) [79]. This
phenomenon has been explained on the basis of the mAbs’ conformational significance.
Once the two Fc regions from two antigen-bound antibodies bind to a C1 complex, the
classical pathway of complement cascade is initiated, which is the main killing pathway
for many Gram-positive bacterial species (Figure 3C). In the case of PNAG antibodies, as
mentioned before, due to the outward positions of their acetate epitopes, the distances
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between the two Fc regions might not be adequate to bind to a C1 complex and thus fail
to activate the complement cascade. However, the binding between the Fc regions of
antibodies against both PNAG and dPNAG to the C1 complex is less restricted since their
epitopes are located more randomly [126].

F598 recognises PNAG through a large groove-shaped binding site accommodating
five N-acetyl-D-glucosamine (GlcNAc) residues as a penta-saccharide epitope, and their
interaction is stabilised by two hydrogen bonds linking Asp-109H of F598 to the O3 and O4
atoms of the core GlcNAc (Figure 8).
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The Fab arms can span at least 40 GlcNAc residues on an extended PNAG chain [128].
Unfortunately, the clinical trial of F598/SAR 279356 was terminated due to difficulty in
patient recruitment (ClinicalTrials.gov Identifier: NCT01389700). Recently, though, the
advantage of the anti-biofilm strategy mentioned above has been proved by two studies
showing that antibodies against PNAG do not perturb host microbial diversity [129,130].
The current research trends are aimed to develop antibodies against PNAG towards bac-
terial clearance instead of neutralisation, and both acetate-dependent and -independent
epitopes are involved. This, however, brings difficulty to the antibody production process,
since the ideal products are proposed to bind both the antigen and C1 complex.

3.2.2. DNABII: A Promising Antibody Target for Anti-Biofilm Treatment

Similar to PNAG, eDNA is also widely distributed among various microbes and criti-
cally involved in the construction of biofilm matrix as a part of EPS. The eDNA potentially
acts as an electrostatic polymer that anchors cells to a surface via the negative charge it
carries [129]. The structural integrity of those eDNAs in the biofilm matrix is conversely
supported by bacterial DNA-binding proteins (DNABII family). The DNABII family in-
cludes HU proteins and integration host factor (IHF), condensing bacterial DNA and also
acting as regulators in many cellular processes. HU and IHF have conserved homologs in a
wide variety of bacterial species, and they share structural features and the key activity of
DNA-bending [131].

The members of the HU family are typically small bacterial proteins (16~20 KDa) and
exist as homodimers in Gram-positive bacteria such as S. aureus. The S. aureus HU (SHU)
consists of a hydrophobic core composed of two α-helices and two negatively charged
β-sheets arms, and therefore can be divided into two portions: the α-helical “body” and the
β-ribbon “arms”. HU acts similarly to a histone through binding and supercoiling DNA
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into a circular structure; in addition, it also critically acts as a molecular glue, packing eDNA
and stabilising the bacterial biofilm by similar patterns [132,133]. This glue-like ability
for eDNA is supported by functional characteristics of HU, including a non-specific DNA
binding profile [134], high abundance [135] and its ability to migrate into the extracellular
medium through multiple mechanisms [124,136,137]. Another DNABII member, IHF, is
also known as a DNA-“bending” protein that can create kinks in DNA strands. The
DNA-binding events of IHF are more sequence-specific and are only observed in Gram-
negative bacteria [138]. Overall, HU can be considered a potential target to decompose
S. aureus biofilms, and the study of its interactions with DNA can assist the development of
anti-DNABII antibodies.

The structure and the DNA-binding mechanisms of SHU have been established (PDB
ID: 4QJU). The high flexibility of β-arm is observed in the binding of DNA, and the
residue Arg55 positioned in the hinge region of the β-arm exhibits a critical role in their
flexible nature. The C atom of Arg55 from chain D is used as the vertex of the angle
(Figure 9A,B) [139].
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complex, as determined by MD simulation. The three Arg residues (Arg53, Arg55 and Arg61) that
show low free energies are marked with red points. Adapted from Kim et al. [139].
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Further, as shown by molecular dynamics analysis on the SHU—DNA complex, the
β-arms residues Arg53, Arg55 and Arg61 present low free energy, especially for the Arg61,
which suggests their essential role in recognising and binding DNA (Figure 9C). Based
on these results, it can be summarised that these three arginine residues on the β-arms
are essential for β-arm flexibility, which affects the DNA binding as well as the biological
function. Additionally, the involvement of the arginine residues on the β-arms is universal
in HU homologues. Interestingly, though, the two essential residues, Arg55 and Arg61, are
not completely conserved, whereas Arg58 is conserved in all HU homologues even though
it exhibits a relatively small affinity contribution to DNA binding. Further understanding
the mechanism of these essential residues might provide us with helpful indications for the
design of anti-biofilm agents including but not limited to anti-DNABII antibodies.

Based on its abundance and promising eDNA binding function among different
bacteria, DNABII is considered a potent candidate for the development of antibodies.
Neutralising of DNABII by specific antibodies has been shown to decompose the biofilm
and thus promote the clearance of bacteria by antibiotics and immune cells [140]. Further,
targeting DNABII attains high therapeutic efficiency in a wide range of biofilm-associated
infections in vivo, which significantly indicates its therapeutic potential for polymicrobial
IE in a clinical scenario [123,130,132,140]. So far, a native human mAb (TRL1068) generated
by Estellés et al. shows anti-biofilm efficacy in two biofilm-associated infectious models
that are in the setting of medical devices invasion [81,85]. The epitope of TRL1068 is part
of the β-sheet capped with a β-turn in HU, and a specific binding sequence of AARK-
GRNPQTGKEID within the DNA-binding domain of HU has been identified [81]. This is
consistent with the functional importance of β-arm mentioned before. Currently, TRL1068
is undergoing clinical trials (ClinicalTrials.gov Identifier: NCT04763759).

3.3. Targeting S. aureus Toxins as Supplemental Therapy

The formation of biofilms is partly assisted by various bacterial toxins, such as pore-
forming toxins (e.g., α-toxin (AT), Leukocidin A/B (LukAB) and γ-hemolysin (HlgAB
and HlgCB)), and some even produced higher amounts than that by planktonic cells
(Figure 4) [85]. Since the pore-forming toxins could counter anti-biofilm immune response
via mediating lysis of host immune cells, it has been postulated that mAbs neutralising
toxins might promote host defences and clearance of planktonic and biofilm cells. AT is the
most extensively studied target among these bacterial toxins.

AT Antibody: The Only Type of Antibody Currently Successful in Clinical Trials

S. aureus AT is a molecule of ~33 kDa, which exerts its virulence upon a two-step-
mediated mechanism. It first binds to its receptor (ADAM10) on the surface of host immune
cells and endothelial cells. After that, AT molecules undergo a conformational change
to promote oligomerisation, which in turn results in the formation of membrane pores,
followed by cell lysis and tissue damage. The AT heptameric complex is comprised of two
cylinders: a wider cylinder that comprises the cap and rim domains, and a narrow cylinder
called the “pore-forming region” (Figure 10).
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The N-terminal 20 amino acids in the cap region of seven monomers interact with
each other to lock in a heptameric conformation, and each monomer contributes two β-
strands to assemble a fourteen-stranded anti-parallel β-barrel that forms a pore in the cell
membrane. The rim domains appear to be proximal to the membrane, as they are directly
involved in AT binding to cell [86]. The important residues involved in its pore-forming
mechanism have been identified, including N-terminal Arg66 and Glu70 and C-terminal
Arg200, Asp254, Asp255 and Asp276 [142]. Furthermore, a determinative sequence of AT
pore forming is identified, which could be referred to as a linear neutralising epitope: it is
located in the β-barrel pore-forming region of AT, likely including residues 122 to 137 [141].

In addition to lysing immune and host cells, AT can contribute to biofilm formation
by promoting bacterial survival, destroying the host epithelium and facilitating bacterial
cell-to-cell interactions. Therefore, the antibody against AT is suggested to be a multi-
mechanistic anti-biofilm strategy. This suggestion is strongly supported by studies on
human mAb (MEDI4893) [85]. This study shows MEDI4893 could exert its neutralising
effect through a dual mechanism, as it not only blocks the binding between AT and
its cellular receptor ADAM10, but it also inhibits its heptameric conformational change
that enables cell lysis [85]. Furthermore, MEDI4893 has been extensively tested in a
series of biofilm-associated infection models [84,85]. So far, a phase II clinical trial of
MEDI4893 has been completed, which confirms its efficacy in preventing S. aureus infection
(ClinicalTrials.gov Identifier: NCT02296320). In addition, another AT-neutralising antibody
named as AR-301 has successfully passed its phase IIa clinical trial on patients with hospital-
acquired bacterial pneumonia (ClinicalTrials.gov Identifier: NCT01589185). Overall, AT
antibodies show promising effects on reducing S. aureus virulence, which can be used in
conjunction with anti-biofilm therapy for achieving higher therapeutic effects.

The molecular interaction between AT and MEDI4893 has been studied by
Oganesyan et al. [86]. MEDI4893 binds to a novel epitope that is a rim domain of AT,
comprised of residues Asn177 to Arg200 and Thr261 to Lys271, and the residues within
these regions were further confirmed as both functionally and structurally important
for MEDI4893 binding. The attachment between the rim and AT is mediated by several
hydrogen bonds (Figure 11).
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Figure 11. Interface between MEDI4893 HC (green) and AT (olive) (A) and MEDI4893 LC (blue) and
AT (olive) (B). Both HC and LC are in close contact with the rim of AT and create several hydrogen
bonds (dotted lines) and one stacking interaction between MEDI4893 Fab Trp32 (LC) and AT Trp187.
AT residues in contact with MEDI4893 are shown in orange. Adapted from Oganesyan et al. [86].
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Further, this study interpreted the dual mechanism of action of MEDI4893. In addition
to its ability to inhibit AT binding to its receptor, MEDI4893 can also bind to the opposite
side of the rim domain when compared with another AT mAb named LTM14 (Figure 12).

Polymers 2022, 14, x FOR PEER REVIEW 21 of 30 
 

 

 
Figure 12. Superimposition of monomeric AT bound to MEDI4893 Fab (green) with monomeric AT 
bound to mAb LTM14 (PDB code 4IDJ, blue). Both Fab molecules bind to the same rim domain, 
though on opposite sides. Residues known to be critical for AT interaction with the cell surface 
receptor are shown as red spheres. Adapted from Oganesyan et al. [86]. 

This reveals another plausible mechanism in which MEDI4893 prevents pore for-
mation by preventing AT molecules from occupying neighbouring positions. In particu-
lar, the MEDI4893 light chain creates a steric hindrance with the neighbouring AT pro-
tomer in the rim region, and its heavy chain restricts two additional AT protomers from 
extending their stem. According to a previous study, which described the importance of 
residue Arg200 for AT binding to cell membranes and cell lysis [142], Oganesyan et al. 
supposed in response that Arg200 is the functional site blocked by MEDI4893. Later, these 
hypotheses were verified by introducing specific mutations [109]. According to the re-
sults, residues K266 and N188 critically contribute to MEDI4893 binding affinity to AT, 
and residue R200 was important for AT cell lysis, in agreement with the previous study 
[142]. 

3.4. Other Targets for Anti-Biofilm Treatment 
In addition to the targets and their corresponding antibodies mentioned above, there 

are other types of anti-biofilm targets, including: (i) the cell wall-modifying enzymes and 
proteins, (ii) capsule and cell wall components and (iii) ATP-binding cassette (ABC) trans-
porters. The first category includes the S. aureus autolysin (Atl) and immunodominant 
staphylococcal antigen A (IsaA), which are involved in cell division, growth and biofilm 
formation [143,144]. In the second category, lipoteichoic acid (LTA) and wall teichoic acid 
(WTA), as well as the capsular polysaccharides (CP) all contribute to the fundamental 
aspects of Gram-positive bacterial physiology [145,146]. As for the final category, the ABC 
transporter is responsible for cellular transport processes and drug resistance [147]. Stud-
ies on their antibodies are summarised in Table 1. 

4. Conclusion and Future Outlook 
This review aimed to illustrate the possibility of generating anti-biofilm antibodies 

for IE treatment, and a range of potential targets are mentioned and discussed above. Ac-
cording to the current studies, it can be summarised that biofilm formation is one of the 
major barriers that cause the persistence and drug resistance of IE. The S. aureus biofilm 
can form on both native and prosthetic valves. It has been shown that surface roughness 

Figure 12. Superimposition of monomeric AT bound to MEDI4893 Fab (green) with monomeric AT
bound to mAb LTM14 (PDB code 4IDJ, blue). Both Fab molecules bind to the same rim domain,
though on opposite sides. Residues known to be critical for AT interaction with the cell surface
receptor are shown as red spheres. Adapted from Oganesyan et al. [86].

This reveals another plausible mechanism in which MEDI4893 prevents pore formation
by preventing AT molecules from occupying neighbouring positions. In particular, the
MEDI4893 light chain creates a steric hindrance with the neighbouring AT protomer in
the rim region, and its heavy chain restricts two additional AT protomers from extending
their stem. According to a previous study, which described the importance of residue
Arg200 for AT binding to cell membranes and cell lysis [142], Oganesyan et al. supposed in
response that Arg200 is the functional site blocked by MEDI4893. Later, these hypotheses
were verified by introducing specific mutations [109]. According to the results, residues
K266 and N188 critically contribute to MEDI4893 binding affinity to AT, and residue R200
was important for AT cell lysis, in agreement with the previous study [142].

3.4. Other Targets for Anti-Biofilm Treatment

In addition to the targets and their corresponding antibodies mentioned above, there
are other types of anti-biofilm targets, including: (i) the cell wall-modifying enzymes
and proteins, (ii) capsule and cell wall components and (iii) ATP-binding cassette (ABC)
transporters. The first category includes the S. aureus autolysin (Atl) and immunodominant
staphylococcal antigen A (IsaA), which are involved in cell division, growth and biofilm
formation [143,144]. In the second category, lipoteichoic acid (LTA) and wall teichoic acid
(WTA), as well as the capsular polysaccharides (CP) all contribute to the fundamental
aspects of Gram-positive bacterial physiology [145,146]. As for the final category, the ABC
transporter is responsible for cellular transport processes and drug resistance [147]. Studies
on their antibodies are summarised in Table 1.

4. Conclusions and Future Outlook

This review aimed to illustrate the possibility of generating anti-biofilm antibodies
for IE treatment, and a range of potential targets are mentioned and discussed above.
According to the current studies, it can be summarised that biofilm formation is one



Polymers 2022, 14, 3198 19 of 26

of the major barriers that cause the persistence and drug resistance of IE. The S. aureus
biofilm can form on both native and prosthetic valves. It has been shown that surface
roughness is an important factor in stabilising cellular attachment to surfaces followed by
biofilm formation [17]. In the case of NVE, bacterial infection causes vegetations on valve
leaflets and the surrounding areas, which can increase the roughness of cardiac tissue and
thus further promote the biofilm formation (see Section 1.2). Further, the most common
material used to produce bioprosthetic valves is either bovine or pig pericardium, which
are characterised by highly fibrous surfaces [104]. On the other hand, in comparison with
antibiotic treatments, the major benefit of the antibody-based anti-biofilm strategy is the
lower selection pressure it effects on bacteria, thus preventing further development of drug
resistance. Moreover, it can both prevent the incidence of infection and directly intervene in
the ongoing development of infections, and it can also be used as a supplementary therapy
with antibiotics.

Amongst these candidates, two members of MSCRAMMs (ClfA and FnBP), two
components of the biofilm matrix (PNAG and HU) and AT are mainly discussed. The first
two candidates from the MSCRAMM family have been considered as the least promising
for producing antibodies due to their poorly clarified shear stress-dependent binding
mechanism. Furthermore, small differences in their composition can have large effects on
antigenicity, shown as ClfA presenting lower binding affinities to antibodies elicited by
other ClfA variants. As for the FnBPs, they even exhibit a much greater level of diversity in
the A region subdomain to which their ligands Fg and Fn bind.

The three other targets, PNAG, HU and AT, are all considered promising candidates for
generating antibodies due to their high accessibility of epitopes and conserved expression
amongst different Staphylococci strains, which could also be combined in multimechanistic
therapies (e.g., bispecific antibodies neutralising both HU and AT or bi-antibodies targeting
both DNAP and dDNAP) [148]. Antibodies against S. aureus AT have been applied as a
part of a combination therapy for IE in some previous studies, together with antibiotics and
anti-ClfA antibodies [45,50,149]. AT is a reliable target for developing antibodies, with a
robust body of evidence built since 1951. Furthermore, two anti-AT antibodies have already
successfully completed a phase II clinical trial.

Taking all data together, targeting biofilms using antibodies can be considered an
extremely promising treatment option for IE. Nonetheless, the development of natural
antibodies is burdened by several limitations, such as short shelf-life, high costs of manufac-
turing and relatively low stability [150–154]. The ongoing development of nanotechnology
tools for medical use might provide a suitable solution. Recently, the use of molecularly
imprinted polymeric nanoparticles (MIP NPs) has been considered a reliable alternative
strategy to conventional antibodies for their antibody-mimicking properties. Although this
technology is still in its infancy for therapeutic applications, there is a growing body of
evidence that indicates the potential feasibility of this approach [155–164].
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