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Abstract: Thermal aging is a common form of cable deterioration. In this paper, the effect of thermal
aging on cables is evaluated by analyzing the harmonic characteristics in cable leakage currents.
Cable samples were first fabricated and subjected to accelerated thermal aging tests at 120 ◦C. The
experimental circuits were built to test the dielectric loss factor and the AC leakage current of the cable
at different aging times. Then, the improved variational modal decomposition (VMD) algorithm
was used for the time–frequency analysis of the leakage current, and the relationship between
thermal aging and leakage current harmonics was investigated. Thermal aging was discovered
to increase the capacitance and dielectric loss factor of the cable as well as generate harmonics in
the leakage current, with harmonics at 150, 450, and 650 Hz being particularly sensitive to thermal
aging. The multidimensional characteristic parameters such as the time-domain, frequency-domain,
and relative energy and the sample entropy of the leakage current harmonics were calculated. The
results demonstrated thermal aging increased the relative energy and power spectrum energy of the
harmonics and increased the disorder of the harmonic sequence.

Keywords: XLPE cable; thermal aging; leakage current; harmonic characteristics; feature extraction

1. Introduction

With the development of urbanization and the increasing demand for reliability of
power supply, XLPE cables have been widely used in power networks because of their
excellent electrical performance, simple laying, and easy maintenance. Usually, the service
life of an XLPE cable is 20–30 years. However, with the extension of operation years, the
problems in the operation and maintenance process of the cable are gradually exposed. The
cables that were put into service earlier have started to show aging and deterioration [1,2].
Among them, thermal aging is considered as one of the most severe factors leading to
the degradation of the insulation performance of cables [3]. Therefore, it is important to
monitor the cable operation status, especially the thermal aging condition, to improve the
stability of the power supply system.

Thermal aging is a typical form of cable deterioration, and many scholars have studied
the mechanism of thermal aging. Kim C et al. [4] investigated the effect of thermal aging
on the insulation performance of XLPE and discovered that the insulation break-down
strength dropped as the aging period increased, while thermal aging caused a breaking of
the molecular chain structure. Kemari Y et al. [5] found that temperature can change the
crystalline state of XLPE, which leads to a decrease in the dielectric constant. Suo C et al. [6]
investigated the thermal aging stages of insulation and discovered that the properties of
the insulation did not change much in the first stage, whereas in the second stage, the XLPE
microscopic morphology was severely damaged due to crystalline disruption inside the
insulation, which reduced the electron binding effect. Andjelkovic D et al. [7] studied the
physicochemical properties of XLPE insulation. The results showed that the tensile strength
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and elongation at break of the XLPE cable’s insulation were affected by the crystallinity
under thermal aging conditions, and the trend was the same as that of the crystallinity.
Boukezzi L et al. [8] characterized the microstructure of XLPE insulation and found that
the high-temperature environment affected the crystallinity of XLPE but did not change
the crystalline phase. Mecheri, Y. et al. [9] investigated the changes in dielectric loss and
mechanical properties of cross-linked insulation under thermal aging and the test results
showed that the dielectric loss of XLPE specimens became larger and the mechanical
properties decreased after thermal aging.

Condition monitoring refers to the online monitoring of cable condition quantities
to obtain cable condition information. Common methods include DC superposition
method, DC component method, dielectric loss angle tangent method [10], partial dis-
charge method [11–13], grounding current method [14–16], etc. The DC superposition
method usually involves adding a DC power supply to the cable system, filtering out the
AC components, finding the insulation resistance, and evaluating the cable condition based
on the insulation resistance value. The DC component method, on the other hand, estimates
the degree of deterioration of XLPE-insulated cables by detecting the magnitude of the
DC component [17]. Zhu G et al. [18] proposed a novel method based on low-frequency
signal injection. This approach calculated the dielectric loss angle of the cable’s leakage
current and consequently evaluated the cable insulation. Rizzi A et al. [19] designed an
automatic diagnosis system for partial discharges in cable accessories, by selecting the
optimal subset of features in the partial discharge information set and then classifying
the complex discharge pulse patterns in different power cable terminals and joints. The
grounding current method can obtain information on the operating condition of the cable
by detecting changes in the grounding wire current.

In this paper, the relationship between the thermal aging of cables and harmonic
characteristics of leakage currents was investigated by a time–frequency domain analysis
and feature extraction methods. Cable samples were fabricated and subjected to thermal
aging tests at 120 ◦C. The effects of thermal aging on the dielectric properties of cable
insulation were analyzed by capacitance and dielectric loss factor tests. The leakage
currents of the cable samples were measured, and the harmonic characteristics of the
leakage currents were analyzed using the time–frequency domain method. Furthermore,
the time–frequency domain characteristic parameters of the harmonics were extracted, and
the distribution of the characteristic parameters was examined. The work done will provide
a reference for the insulation evaluation of in-service XLPE cables.

2. Samples and Experimentation
2.1. Sample Preparation

The experimental cable type was YJLV 8.7/15 kV–1 × 70 mm2, with an aluminum
conductive core and an XLPE insulation layer, and the nominal thickness of insulation layer
was 4.5 mm. Considering that the conductive core may discharge to the insulation shield
when an AC high voltage is applied, 60 mm of insulation shield was removed from each
end of the sample to maintain sufficient insulation spacing. The cable sample is shown
in Figure 1. Due to the size limitation of the air blast drying box, the total length of the
fabricated cable sample was 400 mm, of which the length of the insulation shield was
240 mm.
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The aging temperature was set to 120 ◦C. The HK-450A+ electric thermostat blast
drying box was applied to realize the thermal aging of the cable. The aging chamber was
adjusted to the required aging temperature, the sample was put in after the temperature in
the aging chamber reached the set value, and the sample was taken out for testing at the
aging time of 12 days, 24 days, and 48 days, respectively.

2.2. Experimental Setup

Before conducting the experimental test, we used clean alcohol cotton balls to wipe
the cable sample surface, we applied a conductive silver paint on the middle part of the
insulation shield of the cable sample, and we wound copper foil as the test electrode.

The HY 1110-type measuring device was used to test the capacitance and dielectric
loss factor of the cable. Each cable sample was grounded and discharged before testing.
The test wiring is shown in Figure 2. The HV output terminal of the HY1110 was connected
to the cable conductor through a HV shield wire, and the sample input terminal of the
HY1110 was connected to the test electrode of the cable sample through a shield wire; then,
the HY1110 was reliably grounded. After the wiring was completed, the test voltage was
set to 3 kV and each cable sample was tested 10 times. After the test of each cable was
completed, the cable sample was discharged using a discharge rod, and then the cable
sample was replaced for the next test.
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Figure 2. The cable capacitance and dielectric loss factor measurement device.

The leakage current test experimental setup is shown in Figure 3. The HVAC power
consisted of a voltage regulator and a test transformer, which could generate AC voltages
of up to 50 kV. The protection resistor had a resistance value of 1 MΩ to prevent short-
circuit overcurrent shocks to the test system. The high-voltage output was connected to the
cable sample conductor, while the test electrode of the cable sample was connected to the
sampling resistor. The sampling resistor with a resistance value of 10 kΩ, which was placed
in an electromagnetic shielding box to reduce external interference, converted the current
flowing through the insulation layer into a voltage signal to be collected by the acquisition
card and stored on a PC, where the sampling frequency range of the acquisition card was
adjustable from 0 to 250 MHz. Meanwhile, the voltage applied to the cable sample during
the experiment was 8.7 kV, and this synchronization signal was collected by means of a
voltage divider and an oscilloscope.
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2.3. Experimental Results

The change of capacitance and dielectric loss factor of cable sample with aging time
is shown in Figure 4. From the figure, it is seen that the capacitance and dielectric loss
factor increase gradually with the aging time. After 48 days of aging, the capacitance and
dielectric loss factor of the cable sample increase by 3.576% and 126.354%, respectively,
compared with those of the unaged sample. Therefore, the thermal aging makes the
dielectric properties of XLPE insulation deteriorate and the loss increase.
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The results of the cable leakage current test are shown in Figure 5. It can be seen from
the figure that for the unaged cable, the leakage current is approximately sinusoidal, while
after the accelerated aging experiment, there is a significant harmonic distortion in the
leakage current. In addition, the leakage current amplitude increases gradually with the
extension of the aging time, and the amplitude increases by 9.09%, 16.36%, and 38.18%
after 12, 24, and 48 days of aging, respectively, compared with that of the unaged sample.
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aging for 24 days; (d) aging for 48 days. 
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3. Time–Frequency Domain Analysis and Multidimensional Characteristic Parameter
Extraction of Leakage Current
3.1. Time–Frequency Domain Analysis of Leakage Current

In order to further extract the information contained in the leakage current, the leakage
current was analyzed using the time–frequency analysis method. Dragomiretskiy et al. [20]
proposed a variational mode decomposition (VMD) as a variational mode-based signal
processing method that could decompose the signal x(t) into a sequence of intrinsic mode
function (IMF(t)) and residuals (res(t)). The original signal x(t) is the sum of IMF(t) and
res(t), as shown in Equation (1) [21].

x(t) =
k

∑
i=1

IMFi(t) + res(t) (1)

Before performing the VMD on the signal, two parameters, the modal number K and
the quadratic penalty factor α, need to be preset, where K determines the number of IMFs
obtained by VMD, and α determines the bandwidth of each IMF. K and α have a significant
impact on the VMD results, so this paper used particle swarm optimization (PSO) to find
the optimal K and α in the VMD. The flow chart of the PSO–VMD algorithm is shown in
Figure 6. The fitness function was the standard deviation of the fuzzy entropy of a set of
IMFs obtained after the VMD, and its expression is shown in Equation (2). The specific
procedure for calculating the fuzzy entropy is given by Reference [22]. The standard
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deviation can reflect the degree of data dispersion, and the fitness function is minimized
when the optimal combination of K and α is obtained.

Fitness(K, α) =

√
1
K

K
∑

i=1
(FuzzyEni − µ)2

µ = 1
K

K
∑

i=1
FuzzyEni

(2)
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We set the range of K to 5~30 and the range of α to 1500~6000 and executed the
optimization process. Figure 7 illustrates the change process of the fitness of the leakage
current after aging for 12 days. From the figure, it can be seen that the fitness curve shows
a trend of first decreasing and then converging, and the convergence is completed in the
35th generation. The optimal fitness was 0.186103, and the K and α at that time were 11
and 5070.33, respectively.
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After the VMD, K IMF components can be obtained, and the instantaneous frequency
and instantaneous amplitude of IMF components can be obtained by applying the Hilbert
transform on the IMF components. For the time signal x(t), its Hilbert transform expres-
sion [23] is

∧
x(t) = H[x(t)] =

1
π

∫ +∞

−∞

x(t)
t− τ

dτ (3)

The time-domain diagram and the time-frequency diagram of the leakage currents
signal after the VMD are shown in Figure 8. The time-domain diagram shows that each
IMF obtained after the VMD is a sinusoidal wave, and the time-frequency diagram further
illustrates that these IMFs are actually fundamental and odd harmonics, so that the leakage
currents is composed of a fundamental and a series of odd harmonics. As aging proceeds,
the amplitude of each odd harmonic increases compared to the unaged sample, which can
indicate that there is a certain connection between aging and harmonic generation.
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3.2. Harmonic Selection and Signal Reconstruction

From the analysis in the previous section, the thermal aging cable leakage currents
has a series of odd harmonics, which hold information about the cable’s thermal aging
condition. A feature extraction can calculate and select some complete and nonredundant
feature quantities from the leakage current, which can effectively indicate the thermal aging
condition of cables.

Before feature extraction, the degree of correlation between each order of odd harmon-
ics and the thermal aging state of the cable was evaluated to screen out specific harmonics
that were more sensitive to changes in the thermal aging state. In this paper, Pearson’s
correlation coefficient ρ and the harmonic current content rate HRI were used as evaluation
indexes.

The expression of Pearson’s correlation coefficient ρ is [24]

ρX,Y =

n
∑

i=1

(
Xi −

−
X
)(

Yi −
−
Y
)

√√√√ n
∑

i=1

(
Xi −

−
X
)2
√

n
∑

i=1

(
Yi −

−
Y
)2

(4)

where ρX,Y is the correlation coefficient between series X and Y, which reflects the degree
of linear correlation between series X and Y.

The expression of the harmonic current content rate HRIh is

HRIh =
Ih
I1
× 100% (5)

where Ih is the effective value of the h-order harmonic current, I1 is the effective value of
the fundamental current, and HRI reflects the content of the harmonics of each order.

Table 1 shows the calculation results of ρ and HRI between each order of harmonics
and leakage current. As can be seen from the table, for the unaged cable, the ρ of the 150 Hz
harmonic is the highest, but it is only 0.0273, and its HRI is 2.0761%. With the increasing of
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harmonic order, the ρ and HRI gradually decrease. For the cable after aging for 12 days,
the harmonics with a higher ρ and HRI are 450 Hz, 150 Hz, and 650 Hz in order; for cables
with 24 and 48 days of thermal aging, they are 650 Hz, 150 Hz, and 450 Hz and 150 Hz,
450 Hz, and 650 Hz, respectively.

Table 1. The ρ and HRI between each order of harmonics and leakage current.

Harmonic Frequency (Hz)
Unaged Aging 12 Days Aging 24 Days Aging 48 Days

ρ HRI (%) ρ HRI (%) ρ HRI (%) ρ HRI (%)

150 0.0273 2.0761 0.1348 13.2395 0.1445 14.4843 0.1478 14.7071
250 0.0127 0.8584 0.0363 2.6265 0.0586 5.8067 0.0379 3.0394
350 0.0081 0.4936 0.0705 7.5498 0.0469 4.6530 0.0496 4.6078
450 0.0064 0.4367 0.1363 14.8848 0.0984 10.7732 0.1334 14.4038
550 0.0069 0.4311 0.0621 6.6498 0.0540 5.7957 0.0513 5.3084
650 0.0051 0.4188 0.0770 8.4036 0.1424 15.8693 0.0852 9.0979
750 0.0049 0.4198 0.0648 7.0084 0.0784 8.5950 0.0600 6.4019
850 0.0057 0.4246 0.0686 7.4309 0.04132 4.4566 0.0260 2.5617
950 - - 0.0508 5.5170 0.0329 3.5663 0.0497 5.2813

From the above analysis, it can be seen that the harmonics that are sensitive to the
thermal aging state were at 150 Hz, 450 Hz, and 650 Hz. In this paper, the harmonics of
these three frequencies were superimposed to obtain the reconstructed signal, and the
features of the reconstructed signal were extracted.

3.3. Multidimensional Characteristic Parameter Extraction

In this section, for the leakage current data of the unaged cable and the cable after
aging for 12 days, 24 days, and 48 days, 500 groups of reconstructed signals x(i), i = 1, 2, . . . ,
N (N = 4000) were obtained, respectively, according to the above method. The time-domain,
frequency-domain, and relative energy and the sample entropy characteristic parameters
of these reconstructed signals were calculated, and the variation and distribution of these
characteristic parameters were analyzed by using a statistical graph.

(1) Time-domain characteristic parameters

The time-domain characteristic parameters are shown in Table 2 [25].

Table 2. The time-domain characteristic parameters.

Characteristic Parameter Expression Characteristic Parameter Expression

Mean value X = 1
N

N
∑

i=1
x(i) Root-mean-square value Xrms =

√
1
N

N
∑

i=1
x(i)

Variance σ2 = 1
N−1

N
∑

i=1
(x(i)− X)

2 Square root amplitude Xr = [ 1
N

N
∑

i=1

√
|x(i)|]

2

Absolute mean value ∣∣X∣∣ = 1
N

N
∑

i=1
|x(i)| Crest factor C f =

Xmax
Xrms

Maximum value Xmax = max{x(i)} Waveform factor S f =
Xrms

|X|
Minimum value Xmin = min{x(i)} Pulse factor I f =

Xmax

|X|
Peak-to-peak value Xpp = Xmax − Xmin Margin factor CL f =

Xmax
Xr

For the reconstructed signal, the maximum value, peak-to-peak value, waveform factor,
peak factor, pulse factor, and margin factor were extracted, where the maximum value and
peak-to-peak value were dimensioned characteristic parameters, and their distributions are
shown in Figure 9. From the figure, it can be seen that thermal aging makes the maximum
and peak-to-peak values of the reconstructed signals increase significantly, and the degree
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of increase is also greater with the increase of the aging time. In addition, thermal aging
makes their distribution range larger.
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The distribution of the waveform factor, peak factor, pulse factor, and margin factor
of the reconstructed signal is shown in Figure 10. It can be seen from the figure that
the waveform factor shows an increasing-decreasing-increasing trend as the aging time
increases, while the peak factor, pulse factor, and margin factor show an increasing trend in
fluctuation.
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(2) Frequency-domain characteristic parameters

First, the power spectrum P(m) of the reconstructed signal was calculated, m = 1, 2, . . . ,
M, M was the number of spectral lines, and then the mean frequency, standard deviation
frequency, center of gravity frequency, and root-mean-square frequency of the reconstructed
signal were calculated, and their expressions are given in Table 3 [26]. The mean frequency
reflects the magnitude of the power spectrum energy, the standard deviation frequency
describes the degree of dispersion or concentration of the spectrum, while the center
of gravity frequency and root-mean-square frequency reflect the variation of the main
frequency band position.

Table 3. The frequency-domain characteristic parameters.

Characteristic Parameter Expression

Mean frequency −
f = 1

M

M
∑

m=1
P(m)

Standard deviation frequency fσ =

√
M
∑

m=1

{
[ fk − fc]

2 × P(m)
}

/m

Center of gravity frequency
fc =

M
∑

m=1
[ fk×P(m)]

M
∑

m=1
P(m)

Root-mean-square frequency fRMS =

√
M
∑

m=1

[
fk

2 × P(m)
]
/

M
∑

m=1
P(m)

As can be seen in Figure 11, thermal aging causes the frequency-domain parameters
of the reconstructed signal to increase. The increase of the mean frequency indicates that
the power spectrum energy of the reconstructed signal increases, and the increase of the
frequency standard deviation indicates that the frequency distribution of the reconstructed
signal tends to be dispersed. The changes in the center of gravity frequency and root-mean-
square frequency indicate that the thermal aging shifts the position of the main band of the
reconstructed signal to the high-frequency direction.
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(3) Relative energy and sample entropy

The expression of the relative energy REk is

REk =
Ek
E0
× 100% (6)

where Ek is the energy of the reconstructed signal after 12, 24, and 48 days of aging, and E0
is the energy of the reconstructed signal that the unaged.

The sample entropy of the reconstructed signal was also calculated, which reflects the
complexity of the reconstructed signal. The procedure for calculating the sample entropy
can be obtained from the reference [27]. The value of the sample entropy is related to the
values of the pattern dimension m and the similarity tolerance r. The results of previous
studies have shown [28] that the sample entropy calculated by taking m = 1 or m = 2 and
r = 0.1–0.25 Std (Std is the standard deviation of the original data) has more reasonable
statistical properties. Therefore, we set m = 2 and r = 0.2 Std.

The distributions of the relative energy and sample entropy are shown in Figure 12.
From the figure, it can be seen that the relative energy of the reconstructed signal gradually
increases with the extension of the thermal aging time, and the two show a positive
correlation, which indicates that the thermal aging drives the generation and development
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of harmonics. In addition, the sample entropy of the reconstructed signal becomes larger
after thermal aging, which indicates that thermal aging makes the reconstructed signal
sequence disorder increase.
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4. Conclusions

In this paper, cable samples were fabricated and accelerated aging experiments were
conducted, test circuits were built, and the dielectric loss factor and leakage current tests
were performed on cables under different aging times. Further, a time–frequency analysis
of the leakage current signal was carried out, focusing on the variation of harmonics in the
leakage current, and the multidimensional characteristic parameters of sensitive harmonics
were extracted and analyzed. The main conclusions obtained were as follows:

(1) The capacitance of the cable sample, the dielectric loss factor, and the amplitude of
the leakage current of the cable sample gradually increased with the extension of the
aging time. This indicated that the thermal aging made the dielectric properties of
XLPE insulation deteriorate and the losses increase.

(2) Thermal aging drove the generation of odd harmonic components in the cable leakage
current and the amplitude of these harmonic components correlated with the degree
of thermal aging. Among the odd harmonic components, the harmonics at 150 Hz,
450 Hz, and 650 Hz were more sensitive to the changes in the degree of thermal aging.

(3) Thermal aging increased the relative energy and power spectrum energy of the
sensitive harmonics and increased the disorder of the sensitive harmonic sequence.
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