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Abstract: Anticorrosive protection efficiency of novel tetrafunctional epoxy prepolymer, namely
2,3,4,5-tetraglycidyloxy pentanal (TGP), for mild steel in 1 M HCl medium was assessed through
potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), scanning elec-
tron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), contact angle (CA), adsorption
isotherm model, temperature effect and thermodynamic parameters. The synthesized TGP was
characterized and confirmed by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic
resonance (NMR). The inhibitory efficiencies found at lower concentration of the prepolymer TGP
were85% (PDP) and 87.17% (EIS). PDP measurement illustrated that the TGP behaved as a mixed-type
inhibitor in the realized solution. SEM and EDS analysis showeda significant decrease in the corrosion
of the MS surface in the presence of the inhibitory prepolymer compared with the blank (1 M HCl).
Langmuir adsorption isotherm is the most acceptable modelto describe the TGP epoxy prepolymer
on the MS area.

Keywords: synthesis; epoxy prepolymer TGP; FTIR/NMR characterization; anticorrosive protection;
PDP/EIS measurements; SEM/EDS/CA analyses; Langmuir adsorption

1. Introduction

Mild steel surfacesarewidely employed and investigated in large civil engineering
projects because of theiradvantages of availability and excellent tensile and mechanical
strength [1,2]. The introduction of organic inhibitors such as quinoxaline, quinoline, poly-
mer composites and epoxy prepolymers has become one of the most effective approaches
for retarding the corrosion of mild steel in different aggressive solutions [3–5]. Multifunc-
tional epoxy prepolymer molecules possessing oxygen, sulfur and nitrogen heteroatoms
and electronegative polar groups, as well as aldehydes, carboxyl, amino, oxirane groups
have been used to display excellent protective abilities ascorrosion inhibitors by forming
a chemical bond with the metallic surface [6–9]. Epoxy prepolymer molecules have π-
electrons and unsaturated donating and are able to accept electrons in their low-energy
empty orbitals [10,11]. Epoxy prepolymer compounds have been investigated as excellent
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corrosion inhibitors because of their ability to adsorb readily to ametallic surface [12–14].
This class of epoxy prepolymer molecules has been investigated as corrosion inhibitors
because of its synthesis by the condensation reaction of epichlorohydrin with compounds
having mobile hydrogen in the presence of sodium hydroxide (NaOH) as the basis [15–17].
The presence of an oxirane group, carbonyl compounds and oxygen heteroatoms en-
ables it to cooperate with an iron surface, facilitating the adsorption of epoxy prepolymer
on the metallic area and acting as a corrosion inhibitor [18–21]. Damej et al. studied
N,N-1-tri(oxiran-2-ylmethoxy)-5-((oxiran-2-ylmethoxy)thio)-1H-1,2,4-triazole-3-amine as
a potential corrosion inhibitor for steel in 1 M HCl solution and found ahigh inhibitory
efficiency of 92% at lower concentration (1mM) [6].

In this work, the novel tetrafunctional epoxy prepolymer, namely,2,3,4,5-tetraglycidyloxy
pentanal (TGP), was synthesized by the condensation reaction of arabinose with epichloro-
hydrin in the presence of triethylamine as the basis. The synthesized TGP was characterized
and confirmed by Fourier transform infrared (FTIR) spectroscopy and nuclear magnetic
resonance (NMR). Additionally, TGP was used and investigated as a potential corrosion
inhibitor for mild steel in 1 M HCl solution by potentiodynamic polarization technique,
electrochemical impedance spectroscopy measurements, scanning electron microscope
(SEM) analysis, energy dispersive X-ray spectroscopy (EDS) study and contact angle (CA)
technique [22]. The last two decades have witnessed great progress in the prediction of
the properties and chemical reactivity of different materials, despite their complexities,
due to the development and advancement of numerical simulation systems. In addition,
the adsorption isotherm model, temperature effect and thermodynamic parameters were
investigated and thoroughly discussed [23–25].

2. Materials and Methods
2.1. Synthesis of 2,3,4,5-Tetraglycidyloxy Pentanal (TGP)

All chemical products used in this experimental section, such as arabinose (99%),
epichlorohydrin (99%), methanol (99%) and triethylamine (99.5%), were purchased from
Sigma Aldrich, Germany. All chemical products were employed without other purifica-
tion. Novel tetrafunctional epoxy prepolymer, namely, 2,3,4,5-tetraglycidyloxy pentanal
(TGP), was elaborated and developed by condensation reaction in two steps according to
the procedure reported in the literature [15,16,26,27]. In a balloon of 100 mL fitted with
refrigerant, 4.73 × 10−3 mol of the arabinose was dissociated in the methanol as solvent
after we added 2.42 × 10−2 mol of epichlorohydrin under magnetic stirring at 70 ◦C for
6 h (Scheme 1). Additionally, we condensed 2.54 × 10−2 mol of triethylamine as the basis
for thereaction mixture under magnetic stirring at 40 ◦C for 4 h (Scheme 1). Furthermore,
methanol and triethylamine excess was removed with a rotary evaporator. Finally, we
obtained a prepolymer of a brown color.
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2.2. Tested Material

The chemical composition of mild steel (MS) substrates used in the experimental
section were C(14.55%), Si(0.68%), S(0.41%), Cr(15.64%), Mn(1.94%), Fe(57.99%), Ni(7.92%)
and Mo(0.86%). The treatment of the MS electrode usedhas been widely reported in the
literature [1,2,22].



Polymers 2022, 14, 3100 3 of 14

2.3. Characterization Techniques

All functional groups of novel tetrafunctional epoxy prepolymer, namely, the 2,3,4,5-
tetraglycidyloxy pentanal (TGP) synthesized, were identified and characterized by Fourier
transform infrared (FTIR) and nuclear magnetic resonance (NMR), respectively. FTIR spec-
tra were obtained with a Bruker AVANCE (300 MHz) spectrometer at room temperature.
The light beam passed through the 5 mg sample. The analysis wascarried out between
4000 and 400 cm−1, which corresponds to the energy range of the vibration of chemical
bonds of organic molecules. Furthermore, NMR spectrometry was performed using a
Bruker AVANCE (300 MHz) apparatus. The sample was dissolved in deuterated DMSO
(DMSO-d6), and the chemical shifts wereexpressed in ppm. Additionally, the MS electrode
area plunged in 1 M HCl medium, bothunprotected and protected with a lower concen-
tration of TGP (10−3 M), was investigated by the scanning electron microscope (SEM)
technique, energy dispersive X-ray (EDS) analysis and contact angle (CA) measurements.
The SEM analysis was studied to make images of the MS electrode, both unprotected and
protected with 10−3 M of TGP, using a JEOL-JSM-5500 microscope Type. Then, EDS was
used to determine the elemental chemical composition. The conditions of the measurement
were as follows: the acceleration voltage was 15.00 kV, the magnification wasx 3500, the live
time was 30.00 s, the real time was 31.97 s, the dead time was 6.00% and the count rate was
19,403.00 CPS. In addition, the electrochemical study was carried out in a three-electrodes
cell using a Potentiostat/Galvanostat/SP-200 biological apparatus. The work electrode was
mild steel (MS), the counter electrode was platinum (Pt) and the reference electrode was a
saturated calomel electrode (SCE). Open circuit potential (OCP) was realized for 30 min
foreach assay after reaching the equilibrium state. The EIS study was carried out at OCP at
afrequency range from 100 KHz to 10 mHz with 10 mV of signal amplitude. In addition,
potentiodynamic polarization (PDP) was measured at 0.2 mV/s during potential range
from −900 to −0.1 mV. Furthermore, the inhibition efficiencies for potentiodynamic polar-
ization ηPDP and electrochemical impedance spectroscopy ηEIS were determined according
to Equations (1) and (2):

ηPDP (%) =
i0corr − icorr

i0corr
× 100 (1)

ηEIS (%) =
Rct − R0

ct
Rct

× 100 (2)

R0
ct, Rct, i0corr and icorr represent the charge transfer resistance unprotected, charge

transfer resistance protected with varying concentrations of TGP, unprotected corrosion
current densities and protected corrosion current densities with different concentrations of
TGP, respectively.

3. Results
3.1. FTIR Characterization

The novel tetrafunctional epoxy prepolymer, namely, the 2,3,4,5-tetraglycidyloxy
pentanal (TGP) synthesized, was recorded by utilizing Fourier transform infrared (FTIR)
spectroscopy (BRUKER type) to determine and characterize the varying functional groups.
The FTIR spectrum analysis of TGP is illustrated in Figure 1.

The absorption band in the FTIR spectrum of TGP appeared at 3324 cm−1, which is
attributed to the stretching vibrations of hydroxyl function (-OH) of an unclosed epoxy
group [15]. The absorption band situated at 2973 cm−1 correspondsto aliphatic methylene
(CH2) [15,16]. Furthermore, the absorption band assigned at 2845 cm−1 correspondsto C-H
of aldehyde function [16]. Then, the absorption band located at 1738 cm−1 correspond-
sto aldehyde function (C=O) [27]. Additionally, the absorption bands at 1432, 1396 and
1366 cm−1 correspond to the stretching vibrations of aliphatic C-H [28]. Furthermore, the
absorption bands which appeared at 1090, 1050 and 1005 cm−1 can be assigned to the
asymmetric stretching vibration of C-O-C aliphatic ether function [15]. In addition, the
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presence of the epoxy group is displayed by the characteristic absorption bands at 902 and
853 cm−1, which areattributed to stretching of C-O-C and C-O of oxirane group [15,27].
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Figure 1. IR spectrum of synthesized TGP.

3.2. NMR Characterization

The synthesized 2,3,4,5-tetraglycidyloxy pentanal (TGP) was characterized and con-
firmed using 13C NMR spectroscopy to determine the carbon atoms. The NMR spectrum
of TGP is illustrated in Figure 2.
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The attribution of varying chemical shifts of the synthesized epoxy prepolymer is
as follows:

13C RMN (ppm): 47 (s, CH2 of oxirane group), 52 (s, CH of oxirane group), 55 (s, CH2
related to oxirane and O-CH2) and 72 (s, CH2 linked to O and aliphatic CH).
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3.3. PDP Analysis

To know and understand the kinetics of the electrochemical reactions occurring at
the active centers of the MS electrode surface, both unprotected and protected by varying
concentrations of the studied epoxy prepolymer in 1 M HCl solution at 298 K, potentio-
dynamicpolarization curves were used and investigated as shown in Figure 3 and Table 1.
Theresults illustrated in Table 1 show that the corrosion current density (icorr) diminished
from 983.0 µA cm−2 for unprotected to 147.42 µA cm−2 for protected within the highest
concentration of studied epoxy prepolymer (10−3 M) [3,29]. Additionally, within the lowest
concentration (10−6 M), the inhibitory efficiency reached avalue of 76.88% and gradually
increased within the highest concentration (10−3 M) of the TGP epoxy prepolymer, reaching
a highest value of 85.0 % [16]. These results showedthat the TGP epoxy prepolymer at low
concentration could form a protective layer on the MS area by reducing the number of
active centers and be used and investigated as a good inhibitor. Furthermore, in this experi-
mental part, the difference between the potential (∆Ecorr) of the unprotected and protected
with varying concentrations of TGP (from 21 to 45 mV) was less than 85 mV, showing that
the investigated epoxy prepolymer actsas a mixed-type inhibitor [30,31]. These results
revealed that the TGP epoxy prepolymer was able to stop substrate electrode dissolution
at the anode as well as hydrogen gas evolution at the cathode. According to the data
displayed in Table 1, careful analysis of the anodic and cathodic Tafel slopes suggests that,
with the addition of the TGP prepolymer, both slopes were changed compared to the 1 M
HCl solution alone [32]. Additionally, the reaction mechanisms, both anodic and cathodic,
for the unprotected and protected by different concentrations of the epoxy prepolymer
were confirmed to be constant as the shape of the polarization curves remained the same,
showingthat the epoxy prepolymer synthesized adsorbed on the metallic area through
blocking the active centers [6,20].
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Table 1. PDP parameters for MS in 1 M HCl solution, both unprotected and protected, by varying
concentrations of TGP.

Con.
(M)

−Ecorr
(mVSCE)

icorr
(µA cm−2)

−βc
(mV dec−1)

Ba
(mV dec−1)

ηPDP
(%)

HCl 1 498 983.0 92.0 104.0 -

TGP

10−6 477 227.24 185.5 113.5 76.88
10−5 473 192.30 117.3 91.2 80.43
10−4 464 154.1 141.1 89.8 84.24
10−3 453 147.42 194.3 151.2 85.0
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3.4. EIS Analysis

To understand and evaluate the corrosion inhibition of MS electrode surfaces, the elab-
orated epoxy prepolymer was used and investigated. Figure 4 displays the Nyquist curves
for the anticorrosion protection property of the epoxy prepolymer inhibitor in an acidic so-
lution, bothunprotected and protected, with varying concentrations of the studied inhibitor.
Additionally, careful examination of the Nyquist curves suggests that the corrosion inhibi-
tion mechanism was the same for the unprotected and protected experiments owing to the
semicircle loops [7,33]. As indicated in Figure 4, judging from the significant increases in
the sizes of the semicircles and the charge transfer resistance in the different concentrations
of epoxy prepolymer, one could conclude that the TGP synthesized was able to adsorb on
the metallic substrates, forming a barrier and restricting the metal dissolution [34,35]. Then,
EIS results were subsequently fitted from an equivalent circuit comprising the constant
phase element (CPE), the solution resistance (Rs) and the charge transfer resistance (Rct),
as displayed in Figure 4. The EIS parameters are listed in Table 2, and the analysis of
the results reflected an important increase in the values of charge transfer resistance from
34.81 to 210.2 Ω cm2 for 1 M HCl alone and with the 10−3 M of TGP epoxy prepolymer,
respectively, showing the highest charge transfer resistance through the tested inhibitor at
the MS/electrolyte interface [17]. In addition, the highest charge transfer resistancevalues,
as shown in Table 2, confirmed the inhibitory efficiency of the epoxy prepolymer in the
corrosion inhibition of metallic surfaces in 1 M HCl solution. Furthermore, the phase
element constant values are revealed in the different concentrations of epoxy prepolymer
in the 1 M HCl solution, resulting in the formation of a covering layer on the MS surface
through epoxy prepolymer, and the increases in the thickness of protective layer as more
H2O molecules were replacedbythe epoxy prepolymer at highest concentrations [36–38].
As seenin Table 2, the ndl values were investigated to classify the CPE as well as revealing
the nature of the metallic substrates’ electrode area. According to data displayed in Table 2,
the ndl values of both the unprotected and protected MSby different concentrations of
epoxy prepolymer appeared to be lowerand close to 1, suggesting the pseudocapacitive
nature of the CPE. These results indicate that the TGP epoxy prepolymer is a good inhibitor
compared to other macromolecules used as corrosion inhibitors [39,40].
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1M HCl solution for unprotected (a) and protected by lower concentration (10−3 M) of used 
inhibitory resin (b). In fact, SEM images show that the surface of the MS electrode had-
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disappear with added TGP inhibitory prepolymer at a lower concentration. Furthermore, 
elemental oxygen content peaks appeared, and the carbon content increased in the pres-
ence of 10−3M of the studied inhibitor due to the oxygen heteroatoms and carbon present 
in the molecule of TGP prepolymer synthesized, resulting inthe inhibitory resin reducing 
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Table 2. EIS parameters for MS plunged in 1 M HCl solution, both unprotected and protected by
varying concentrations of TGP.

Concentrations
(M)

Rs
(Ω cm2)

Rct
(Ω cm2)

Q
(µF sn−1) ndl

Cdl
(µF/cm2) ηEIS (%)

HCl 1 1.107 34.81 420.0 0.772 121.0 -

TGP

10−6 1.903 165.9 183.4 0.810 74.31 79.01
10−5 1.622 166.5 180.9 0.808 73.00 79.09
10−4 1.930 194.5 149.7 0.804 63.00 82.14
10−3 2.271 210.2 133.1 0.798 54.33 87.17

3.5. SEM/EDS Characterization

To know and understand the adsorption mechanism between the MS electrode surface
and the synthesized inhibitory prepolymer, SEM and EDS techniques were investigated
and discussed. Figure 5 illustrates the SEM images of the MS electrode plunged in 1 M HCl
solution for unprotected (a) and protected by lower concentration (10−3 M) of used in-
hibitory resin (b). In fact, SEM images show that the surface of the MS electrode hadbecome
rough due to the deposition of a protective layer [22]. Figure 6 illustrates the X-ray energy
dispersive spectroscopy (EDS) analysis of the MS surface, for both unprotected and that
protected with a lower concentration of the used inhibitor, in 1 M HCl medium. According
to the results displayed in Figure 6, it can be seen that the iron content of the MS surface
increases from 66.03 to 66.16%, and the Cr, Mn, Ni and Mo elemental peaks disappear
with added TGP inhibitory prepolymer at a lower concentration. Furthermore, elemental
oxygen content peaks appeared, and the carbon content increased in the presence of 10−3 M
of the studied inhibitor due to the oxygen heteroatoms and carbon present in the molecule
of TGP prepolymer synthesized, resulting inthe inhibitory resin reducing the density of
active centers on the MS area by forming the protective layer and retarding corrosion
inhibition [40].
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3.6. Contact Angle Characterization

The layer that forms on the MS electrode surface and its hydrophilic or hydrophobic
characteristics can be understood through contact angle analysis of MS surfaces that are
both unprotected and protected by 10−3 M of TGP prepolymer after being in contact with
a 1 M HCl solution (Figure 7). The unprotected MS area in diiodomethane, water and
formamide had contact angles of 12.5, 30.2 and 19.6◦, respectively. These data can be
explained by the hydrophilicity characteristic (favors water). The formation of some polar
inorganic corrosion products is responsible for the hydrophilic phenomena. However, the
contact angles of the MS surface protected by 10−3 M of TGP in diiodomethane, water and
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formamide were 65.4, 89.9 and 62◦, respectively. These data indicate that the MS surface
protected by 10−3 M of TGP has a hydrophobic character (does not favor water). This result
confirms the formation of a hydrophobic layer on the MS electrode area. By comparing
between the unprotected MS and that protected by 10−3 M of TGP, we can conclude that
the MS electrode surface protected with 10−3 M of TGP inhibitor has a more hydrophobic
character than the unprotected MS, leading to more prevention of corrosion attacking
the steel surface. Additionally, the total energy of the MS surfaces, both unprotected and
that protected with 10−3 M of TGP, was 54.7 and 28.6 mJ/m2, respectively. The results in
Figure 7 confirm that ahydrophilic layer has formed on the MS area [22].
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3.7. Adsorption Study

To know the adsorption mechanism between the TGP epoxy prepolymer and a mild
steel electrode surface in 1 M HCl medium, experimental results obtained from both PDP
and EIS measurements were calculated usingthe various adsorption isotherm equations
and the best fit, which, in this case, was the Langmuir adsorption isotherm model, as
shown in Figure 8. The results from PDP and EIS analysis indicate that the TGP prepolymer
synthesized was adsorbed on the metallic substrates by forming a protective layer that
protects the mild steel against corrosion [40]. The obtained parameters from the studied
Langmuir adsorption for theinhibitory resin are illustrated in Table 3. According to the
results obtained from the two techniques (PDP and EIS), the coefficient values (R2) are 1 and
0.9999 for PDP and EIS, respectively, which conformed well to the Langmuir adsorption
isotherm. These results show that the inhibitory prepolymer can be adsorbed on the mild
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steel area accordingto the best model that can be used to interpret this particular phe-
nomenon. Adsorption Gibbs energy variation values (∆Gads) give more information about
the adsorption mode of the inhibitor and the MS area. Additionally, the ∆Gads values were-
higher than −40 KJ mol−1 and less than −20 kJ mol−1, indicating the chemisorption and
physisorption modes, respectively [22]. The Langmuir adsorption isotherm model and the
adsorption Gibbs energy variation could be calculated according to Equations (3) and (4):

Cinh
θ

=
1

Kads
+ Cinh (3)

∆G
◦

ads= −R × T × Ln(55.5 × Kads

)
(4)
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Table 3. Adsorption and thermodynamic parameters for the corrosion of mild steel in the presence of
the TGP at 303 k in acidic media.

TGP Techniques R2 Slopes Intercept
(10−6)

Kads
(M−1) ∆Gads (KJ mol−1)

PDP 1 1.1759 0.622719 3.87 −42.13
EIS 0.9999 1.14491 2.71049 1.95 −43.74

Cinh, θ, Kads, R and T are the inhibitory concentration, the surface coverage degree, the ad-
sorption equilibrium constant, the perfect gas constant and the used temperature, respectively.
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As the data displayed in Table 3 show, the ∆Gads values for PDP and EIS analyses were
42.13 and 43.74, respectively, suggesting that the epoxy prepolymer inhibitory adsorbed
on the MS area by chemisorption mode. Furthermore, the chemisorption model of the
TGP prepolymer could be due to the bond types between iron ions and the bond double of
carbonyl compound (C=O) and free electron pairs of oxygen heteroatoms present in the
synthesized prepolymer.

3.8. Temperature Effect and Thermodynamic Parameters

From the experimental data (PDP and EIS measurements), it was established that the
used inhibitoryepoxyresin was adsorbed on the MS area by forming aprotective layer that
protects the metal against corrosion. So, the inhibitory efficiency needs to be used and
investigated at different temperatures (298, 308, 318 and 328K) using the PDP technique.
Figure 9 illustrates the PDP plots forthe MS electrode both unprotected and protected by
10−3 M of the studied inhibitor. As the data illustrate in Table 4, the corrosion current
density of the MS electrode, bothunprotected and protected by 10−3 M, increases with
increasing temperatures and its inhibitory efficiency decreased, showingthat the increases
in temperature accelerated the corrosion of the MS surface in the 1 M HCl medium, and it
was found that the inhibitory efficiency of the MS electrode in 1 M HCl solution after adding
thelowest concentration decreases from 85 to 81.62% for 298 and 328K, respectively [22].
This behavior can be explained by the weakening bond of the inhibitory TGP prepolymer,
resulting in areduction inthe coverage surface and its inhibitory efficiency decreasing.
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Figure 9. PDP curves of MS electrode in 1 M HCl solution, both unprotected and protected with
10−3 M of TGP at varying temperatures.

Table 4. PDP and thermodynamic parameters of MS in 1 M HCl medium, both unprotected and
protected with 10−3 M of TGP at 298, 308, 318 and 328 K.

T
K

−Ecorr
mVAg/AgCl

icorr
µA cm−2

−βc
mV dec−1

ηPC
%

Ea
kJ mol−1

∆Ha
kJ mol−1

−∆Sa
J mol−1K−1

MS electrode/1 M HCl solution

298 498 983 92 -

21.0 18.5 126.0308 491 1200 184 -
318 475 1450 171 -
328 465 2200 161 -

Inhibitory resin/MS electrode/1 M HCl solution

298 453 147.42 194.3 85.0

26.53 23.14 123.37308 486 798.0 157.2 83.5
318 494 255.0 167.1 82.2
328 499 404.19 171.4 81.6
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The Arrhenius model was usedto determine the activation energy of the MS electrode
surface according to Equation (5). Additionally, the enthalpy and entropy activation were
calculated by the following Equation (6):

icorr= Aexp
(
− Ea

RT

)
(5)

icorr =
RT
hN

exp
(

∆Sa

T

)
exp

(
−∆Ha

RT

)
(6)

N, T, Ea, R, H, K, ∆Ha and ∆Sa are Avogadro’s number, the absolute temperature, the
activation energy, the perfect gas constant, Planck’s constant, the pre-exponential factor,
the activation enthalpy and the activation entropy, respectively.

Figure 10 illustrates the Log(icorr) as a function of 1000/T and Log (icorr/T) as a function
of 1000/T curves. As the data display in Table 4, Ea reflects the minimum energy required
for an effective collision between inhibitory resin and MS surface. According to the results
listed in Table 4, the Ea value significantly increases, indicating that the corrosion of the
MS surface increases in the presence of the inhibitory resin due to the TGP prepolymer
being adsorbed on the metallic surface, which occupiesthe active centers ofthe reaction and
inhibits the corrosion reaction. Furthermore, the activation energy of the synthesized resin
is higher than that of the 1 M HCl alone, reflecting that the investigated molecule has good
anticorrosive protection. Furthermore, the activation enthalpy positively indicates that the
dissolution of the MS surface added to corrosion inhibition is a heat absorption process.
The activation entropy negatively indicates the activation complex is an interaction phase
and not a dissociation phase in the rate-determining phase. According to the presented
data in Table 4, with the inhibitoryprepolymer, the ∆Sa value is higher than that of the 1 M
HCl only, resulting in the formation of aprotective layer on the MS surface.
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4. Conclusions

The corrosion inhibition of a tetrafunctional epoxy prepolymer (TGP) has been studied
via electrochemical measurements, surface analyses and calculation studies. The results
from the PDP data suggest that the TGP adsorbed strongly onto the MS surface, behaving
as a mixed-type corrosion inhibitor. The Langmuir adsorption isotherm and slope indicate
monolayer adsorption with R2 value approaching unity. PDP and EIS have high inhibitory
efficiencies at lower concentration of the TGP. The Gibbs free energy values for the adsorp-
tion of the TGP prepolymer indicates chemisorption. SEM and EDS analysis reveal the
potential ability of TGP in the 1 M HCl solution. Additionally, the adsorption isotherm
obeys the Langmuir model.
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