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Abstract: The current work presents a comparative study of hybrid models that use support vec-
tor machines (SVMs) and meta-heuristic optimization algorithms (MOAs) to predict the ultimate
interfacial bond strength (IBS) capacity of fiber-reinforced polymer (FRP). More precisely, a dataset
containing 136 experimental tests was first collected from the available literature for the development
of hybrid SVM models. Five MOAs, namely the particle swarm optimization, the grey wolf optimizer,
the equilibrium optimizer, the Harris hawks optimization and the slime mold algorithm, were used;
five hybrid SVMs were constructed. The performance of the developed SVMs was then evaluated.
The accuracy of the constructed hybrid models was found to be on the higher side, with R2 ranges
between 0.8870 and 0.9774 in the training phase and between 0.8270 and 0.9294 in the testing phase.
Based on the experimental results, the developed SVM–HHO (a hybrid model that uses an SVM and
the Harris hawks optimization) was overall the most accurate model, with R2 values of 0.9241 and
0.9241 in the training and testing phases, respectively. Experimental results also demonstrate that the
developed hybrid SVM can be used as an alternate tool for estimating the ultimate IBS capacity of
FRP concrete in civil engineering projects.

Keywords: interfacial bond strength; fiber-reinforced polymer; single-lap shear test; support vector
machine; meta-heuristic optimization algorithms

1. Introduction

As a result of the corrosion of traditional steel reinforcement, reinforced concrete
(RC) structures are required to undergo regular maintenance and repair [1]. Therefore,
strengthening existing structures is regarded as an increasing priority in the construction
industry, as it is necessary in order to comply with improved code designs and strength cri-
teria [2]. Hence, fiber-reinforced polymer (FRP) laminates are increasingly being employed
for the purpose of retrofitting and improving the current structural capacity of beams [3–5],
columns [6,7] and beam–column junctions [8–11] due to their high performance.

FRP plates may potentially replace steel plates in structural reinforcement due to
their light weight and high strength, as well as their superior resistance to corrosion [12],
creep/fatigue [13] and hygrothermal stresses [14]. However, notwithstanding those ben-
efits, FRP incorporation has some disadvantages, such as rupture, concrete crushing,
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shear cracks and debonding between concrete and laminates that propagates through
FRP-strengthened structures and causes more damage [15–17]. FRP rupture or concrete
crushing may occur if the ends of the reinforcing plates are not properly anchored [18].
Even before reaching full capacity, premature debonding can be observed and is the most
common recorded failure; it leads to the debonding of the FRP laminate and progresses
towards the center from the ends [19]. The diffusion of water molecules into the FRP plate
may produce irreversible interfacial debonding, resulting in a reduction in the interlaminar
shear strength of the FRP plate. Increased temperatures can also aggravate debonding [14].
There may be interfacial FRP debonding as a result of dynamic loads and thermal aging [20].
Strengthened constructions lose structural capacity when FRP laminates debond from one
another, and this is a serious problem [16]. In FRP-strengthened RC members, early plate
debonding from the concrete prism has been found in experiments. The composite action
between an FRP component and a concrete prism determines the failure model of a rein-
forced component. Plate-end debonding and intermediate crack-induced debonding may
occur if the composite process between the FRP and the concrete continues [21]. Interfacial
bond failures can also be caused by poor bond quality due to poor workmanship [22].

Existing laboratory studies have demonstrated that improper preparation of the
concrete-to-FRP interface is the most significant cause of early failure in the form of FRP
debonding [23]. It is possible to increase the strength of the bond between FRP and concrete
in several ways, including epoxy interlocking near the surface mounting. The need for a
flexible interface between concrete and FRP laminate for the flexural strengthening of a
beam has therefore been identified as a key requirement. Removing the damaged surface
layer of the concrete and exposing the coarse aggregate is a part of the surface preparation
process. As a result, the final rupture strength is increased due to the delayed debonding of
the FRP sheet from the concrete surface. The concrete is sandblasted, the dust is removed
with a brush and solvents are used to clean the surface; then, the FRP sheets are installed.
Surface mounting techniques are used for FRP strengthening; these include FRP rebars and
laminates placed in grooves and packed with high-adhesive materials [24–27]. Another op-
tion is to use FRP laminates that are externally bonded to the concrete’s surface in grooves
(Figure 1b). The surface area, material availability, cost, safety, and need for supporting
equipment are the major factors that affect the bond [28]. To quantify interfacial bond
strength (IBS), some basic experimental approaches, such as the single-lap shear test (SST),
have been utilized because of their reliability and simplicity [29–31]. Previous research has
led to the development of empirical and semi-empirical formulations for predicting IBS
based on experimental data from SSTs [17,32,33]. These formulations have been found to be
reasonably accurate. Despite the fact that the available models’ empirical relations have a
good level of congruence with the experimental data, these models have not been validated
using more recent data. In addition, in order to construct these empirical relations, some
fundamental simplifications and assumptions were made [34].

Hence, an alternative method of modeling was needed that could replace those com-
plex empirical relations and give more accurate results. Hence, the application of artificial
intelligence came into use. The term “artificial intelligence” (AI) refers to the widespread
application of computer programming techniques to solve complex engineering issues,
particularly those involving regression and classification [35–53]. AI models are not only
trained by using a large number of experimental observations but also validated using
a new dataset [44,54]. In addition, there are several successful applications of AI models
in the field of composite construction. According to Vu and Hoang [55], the least square
support vector machine was able to forecast the punching shear capacity of FRP-reinforced
concrete beams with a coefficient of determination (R2) equal to 0.99. An artificial neural
network (ANN) was utilized by Hoang [56] to forecast the punching shear capacity of steel-
fiber-reinforced concrete slabs. Research by Abuodeh et al. [57] used neural interpretation
diagrams (NIDs) and recursive feature elimination (RFEs) to analyze the shear capability of
RC beams.
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Finally, in order to improve the efficiency of engineering projects, AI models based
on available experimental data are needed to estimate the IBS of FRP plates attached to
a concrete prism. Su et al. [58] developed multilinear regression and ANN AI models
to forecast the IBS of FRP laminates to a concrete prism for two different cases; without
groove (Figure 1a) and with groove (Figure 1b), namely. The training and validation data
yielded R2 values of 0.81 and 0.91, respectively. However, an ANN’s inability to define
any meaningful relation between model input and output is a fundamental obstacle to its
successful deployment in real-world applications [59,60]. Over-fitting and local minimum
problems are two further issues that arise while using ANNs [61]. ANNs also have certain
inherent limitations. On the other hand, Vapnik invented support vector machines (SVMs),
a new artificial intelligence technique that uses statistical learning theory to solve structural
engineering issues [62]. SVMs employ the structured risk minimization (SRM) concept,
which outperforms the standard empirical risk minimization (ERM) principle used by
conventional neural networks in terms of generalization performance [63–67]. The number
of local minima, the sparseness of the solution and the number of support vectors are all
important parameters in SVMs. Hence, it has been concluded from past studies that the use
of hybrid SVMs is a new approach in this area; in the present work, using support vector
regression, an attempt was made to forecast the IBS of FRP laminates. Through the use
of 136 different experimental SST results, this study investigated the extent to which the
SVR model is able to estimate the IBS of FRP laminates that are externally connected to a
concrete prism using grooves (the anchorage made on one end of an FRP component to
a concrete prism is shown in Figure 1b). In the analysis, we used samples that had been
tested using FRP plates aligned in a direction parallel to the groove. On top of that, the
parametric analysis and visual interpretation (Taylor diagram) are shown to demonstrate
how the input factors affect IBS.
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Figure 1. Single-lap shear test: (a) FRP externally bonded on concrete; (b) FRP externally bonded on
the grooves of concrete (adapted with permission from Su et al. [58]).

2. Methodology
2.1. Overview of Optimization Algorithms

In this part, meta-heuristic approaches are investigated. In engineering, the use of
meta-heuristic optimization algorithms (MOAs) to tackle a variety of issues has grown
substantially. They are free gradient methods that can solve highly challenging optimiza-
tion problems more effectively than conventional approaches [68]. In addition, they are
simpler and faster to implement than conventional optimization methods [69]. There are
numerous inspiration sources for MOAs, which can be categorized into distinct group-
ings based on these inspiration sources. Among these groups are evolutionary algorithms
(EAs), swarm intelligence (SI) methodologies, natural phenomenon approaches and human-
inspired algorithms [70,71]. Figure 2 illustrates these divisions. The purpose of the first
group of algorithms, known as EAs, is the simulation of natural genetic processes such
as crossover, mutation, and selection. This category contains several MOAs, including
evolutionary programming [72], evolutionary strategy (ES) [73], the equilibrium optimizer
(EO), genetic algorithms [74], decision trees [75] and genetic programming (GP) [76]. The
second group, SI, mimics the swarming behavior observed in nature when searching for
food. The most notable algorithms in this area include the particle swarm optimization
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(PSO) [77], the artificial bee colony (ABC) [78], the grey wolf optimization (GWO) [79],
the ant colony optimization (ACO) [80], the salp swarm algorithm (SSA) [81], the marine
predators algorithm (MPA) [82], the Harris hawks optimization (HHO) [83], the slime
mold algorithm [84] and the whale optimization algorithm (WOA) [85]. This category
also includes the spiral optimization (SO) [86], the water cycle algorithm (WCA) [87], the
intelligent water drop (IWD) [88], the field of force (FOF) [89] and the electromagnetism
algorithm (EA) [90]. Furthermore, extra operations that adhere to physical rules fall un-
der this group. As an illustration, this group includes the field of force (FOF) [91], the
electromagnetism algorithm [92], the charged system search (CSS) [93], the gravitational
search algorithm (GSA) [94], simulated annealing [95], the aquila optimizer (AO) [96],
the electromagnetism-like mechanism, the flow regime algorithm (FRA) [97], the charged
system search (CSS) [98], the optics-inspired optimization (OIO) [99] and the chemical reac-
tion. In addition, human activities affect the fourth category [100]. This category includes
algorithms such as the teaching–learning-based optimization (TLBO) [101], the volleyball
premier league algorithm (VPL) [102], the soccer league competition (SLC) [103], the seeker
optimization algorithm (SOA) [104], the league championship algorithm (LCA) [105] and
the socio-evolution and learning optimization (SELO) [106].
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Figure 2. Metaheuristic model classification.

Five distinct SI algorithms, namely PSO, GWO, EO, HHO and SMA, were employed
to generate hybrid SVM models in this study. A brief discussion of these OAs is provided
in the subsections that follow. This section provides a theoretical background and a
short discussion of PSO, GWO, EO, HHO and SMA. Subsequently, the methodological
development of hybrid SVMs is presented and discussed. However, before presenting the
above details, the working principle of SVMs is briefly presented.

2.2. Support Vector Machines (SVMs)

A Support vector machine (SVM) is a supervised machine learning method that may
be used for both regression and classification. It was created by Vapnik in 1995 [107]
and is based on statistical learning theory. The SVM technique projects data into a
high-dimensional feature space and employs kernels to classify nonlinearly separable
datasets [108,109]. In multidimensional space, an SVM model is essentially a representation
of various classes in a hyperplane. The SVM generates the hyperplane in an iterative
manner in order to reduce errors. The SVM’s objective is to split datasets into classes such
that a maximum marginal hyperplane (MMH) may be found. The data points closest to
the hyperplane, or the points of a dataset that, if deleted, would change the location of
the dividing hyperplane, are called support vectors. As a result, they may be regarded
as important components of a collection of data. In general, the accuracy of the SVR
model is determined by the kernels used and their parameters. The radial basis function
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(RBF) has been shown to perform well as a kernel function for SVMs in several forecasting
experiments [110–112].

For a dataset ω = {(xi, yi)i = 1, 2 . . . n} where x ∈ Rd is a d-dimensional input vector
space, and y ∈ R is an output in a one-dimensional vector space, SVM regression can
estimate the relationship between x and y. In the SVM approach, the risk function is
minimized by minimizing both empirical risk and ‖ω‖2.

R =
1
2
‖ω‖2 + CC ∑

i=1
lε(yi − f

(
→
xi

)
) (1)

where the regression data vector is ‖ω‖, and loss is denoted by lε, which presents the

difference between yi (real output) and f
(
→
xi

)
. A positive constant value CC is needed to

fix the prior. lε

(
yi − f

(
→
xi

))
is 0 for yi− f

(
→
xi

)
< ε. Otherwise, it is equal to yi− f

(
→
xi

)
.

Minimizing the risk function can be accomplished with the following function:

f (x, α, α∗) =
l

∑
i=1

(α∗i − αi)(ϕ(xi), ϕ(x)) + b (2)

where α∗i .αi = 0 and α∗i .αi ≥ 0; ϕ(xi), ϕ(x) is a product of the kernel function, and b is a
bias term [111].

2.3. Particle Swarm Optimization (PSO)

It was Kennedy and Eberhart [113] who first introduced PSO to the scientific com-
munity as part of the swarm-based community in 1995. It is the primary goal of PSO to
find global optimal solutions in a multidimensional setting. PSO begins by implementing
the random speeds and locations of objects. Next, each object adjusts its position to pick
the appropriate status in a multidimensional environment based on its speed, personal
best position and global best position. This process continues until the optimal solution
is found. It has been determined that the best position that can be gained by individual
particles is the ideal status on a global scale; nevertheless, the most desired alternative that
can be obtained by the particle is the ideal position on a personal scale. The location of the
particle shifts as a result of considering both its optimal personal position and the optimal
orientation for its optimal global location. At the same time, the speeds of the objects are
altered in accordance with the disparity that exists between their best personal and best
global positions. The particles move closer and closer to the optimal location as a result
of a combination of exploring and exploiting. The acceleration coefficients c1 (cognitive
coefficient) and c2 (social coefficient), which have fixed values of 1 and 2, respectively, are
dependent on the situation at hand and reflect the level of confidence an element possesses
in comparison to its personal and global status. Previous studies [114] provide information
regarding the PSO operating principle in greater depth.

2.4. Grey Wolf Optimization (GWO)

Grey wolf optimization is based on the rigid hierarchy of grey wolves’ hunting behav-
ior [79]. An alpha (α) group, consisting of a small number of males and females, makes
major decisions such as hunting and is considered the ideal solution. The second level of
the pack, which makes choices and follows orders from the alpha wolves, is known as beta
(β). When alphas die or are too old and must be replaced, the best candidate is a female
beta. Delta (δ) wolves are the third level of wolves, and they serve as sentinels and scouts
and are used in the hunt. Omega (ω), the final level of the pack, is considered the most
vulnerable and is tasked with keeping an eye on the young wolves. Grey wolf hunting
was described by Muro et al. [115] in three stages: (a) recognizing, following and closing
in on the target; (b) encircling the target; and (c) charging the target. These distinct social
behaviors are treated by the GWO algorithm as separate variables to consider. A good
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starting point for this algorithm’s modeling stage is alpha, followed by beta, delta and
omega. Detailed information about GWO can be found in Mirjalili et al. [79].

2.5. Equilibrium Optimizer (EO)

Faramarzi et al. [75] were the first to present an EO algorithm based on dynamic
mass balance. The concentration of a nonreactive component in a control volume can be
determined using various source and sink methods according to the EO methodology. For
the preservation of mass entering, leaving and producing, mass balance equations are
essential. Every particle (solution) in EO is a search agent, and its concentration (position)
determines how effective the search is. To achieve equilibrium, the search agents randomly
adjust their concentration to the best-so-far solutions, namely the equilibrium candidates
(optimal result). The ability of EO to conduct exploration, exploitation and local minima
avoidance is supported by a well-defined concept of “generation rate”. The main advantage
of EO is that it has a straightforward framework that is easy to implement.

2.6. Harris Hawks Optimization (HHO)

Using SI-based optimization, Heidari et al. [83] developed HHO, a method that relates
the hunting habits of Harris hawks to computer systems. Attacking prey (typically rabbits)
from multiple directions and employing dynamic and sophisticated strategies that adapt to
the prey’s fleeing pattern results in exhausted, bewildered prey. There are three steps to
the algorithm. An exploratory phase is the first step, in which the birds represent possible
solutions; they chase the chosen challenge and make observations. The prey’s type and
energy determine the second step, which is the transition from exploration to exploitation.
In the third step, the identified prey is assaulted and besieged from all sides during the
exploitation process. The energy level of the prey, which is determined in the second stage,
determines the difficulty of the siege.

2.7. Slime Mold Algorithm (SMA)

Meta-heuristics are influenced by nature, such as with SMA [84], which was developed
recently and incorporates mathematical simulations of slime mold propagation waves that
determine the optimal path for connecting foodstuffs. Slime mold, a eukaryotic organism
found in nature, uses multiple food sources simultaneously to build a venous network
connecting said food sources; this mold has unique characteristics and patterns. Slime
mold can reach a size of over 900 cm2 if it is provided with enough food. The bio-oscillator
creates a spreading wave that boosts the cytoplasmic flow into the veins, resulting in thicker
veins by increasing the pace of cytoplasmic flow. In light of both its positive and negative
reactions, slime may serve as an optimal conduit for food interaction. Since the wave
propagation of slime mold has been replicated mathematically through the use of path
networks and graph theory, the code has also been modeled in this way. Slime molds can
also alter their dynamic search patterns based on the quality of the food they eat. One level
of the slime mold algorithm is based on the behavior of slime when acquiring food based
on the smell of the air, and the other level is based on the behavior of slime when it executes
the contraction of its venous structure when food is warped around it. The initial work by
Li et al. [84] provides comprehensive information about SMA, including the basic theory
behind it.

2.8. Hybridization Procedure for SVMs and OAs

SVR parameters must be properly defined in order for the model to be successfully
implemented and for good performance to be achieved. It is necessary to discover the global
optimal solution to attain the greatest possible performance in order to ensure the accuracy
of the SVR model’s performance. This can be considered an optimization problem. The
SVR model’s two key parameters (the regularization parameter (γ) and the penalty factor
(C)) were found using metaheuristic techniques. Choosing the optimum SVM settings
is not possible without additional data. Model identification (the search for parameters)
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is, therefore, an important step. The algorithms proposed here were evaluated based on
the RMSE value in the training stage to predict unknown data with sufficient accuracy
and with minimal error between the predicted and target variables. In the exponential
space, the parameters γ and C were explored. Five hybrid models (SVM–PSO, SVM–GWO,
SVM–EO, SVM–HHO and SVM–SMA) were created by combining the SVR model with the
metaheuristic algorithms PSO, GWO, EO, HHO and SMA.

3. Data Processing and Analysis
3.1. Descriptive Statistics and Statistical Analysis

A collection of 136 experimental results for the single-lap shear test was obtained
from previous studies by Moghaddas and Mostofinejad [116], as reported by [58]; these
results were used to develop a hybridized SVM model. The specimens were prepared such
that FRP laminates were bonded to a concrete prism with the help of grooves, as shown
in Figure 1b. Subsequently, the samples were subjected to the single-lap shear test. The
elastic modulus of FRP multiplied by the thickness of the fiber (Ef tf, GPa-mm), which is
also known as the axial stiffness; the width of the FRP (bf, mm); the concrete’s compressive
strength (fc, MPa); the width of the groove (bg, mm) and the depth of the groove (hg, mm)
were all been utilized as input variables, while the ultimate capacity (P, KN) was regarded
a target variable to train the hybrid models. Table 1 shows the descriptive statistics of
the input and output parameters, where it can be seen that the Ef tf varies from 12.90 to
78.20 with a skewness of 0.58, bf varies from 60 to 6270, bg and hg vary from 10 to 1405,
fc varies from 48.20 to 4585.40 and the output value p varies from 4.76 to 25.49 with a
skewness of 0.80; these values indicate the wide variety of experimental data. Statistical
analysis was undertaken in order to measure the degree of correlation (DOC) using the
Pearson correlation (Figure 3) between the above parameters after the descriptive analysis
described above. Statistical analysis revealed that the collected database had a wide range
of experimental data. When all parameters were evaluated, the DOCs between p and other
parameters (excluding Ef tf and bf) were smaller, according to the information provided by
the Pearson correlation in Figure 3. The DOCs between p and both Ef tf and bf were, on the
other hand, shown to be significantly higher. Hence, the availability of a wide range of data,
as seen from descriptive analysis, confirms that it can be utilized as an input parameter for
the desired output.
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Table 1. Descriptive statistics of the collected dataset.

Descriptive
Statistic

Inputs Target
Variable

Elastic
Modulus of FRP ×
Thickness of FRP,

Ef tf

Width of FRP,
bf

Concrete
Compressive
Strength, fc

Width of
Groove, bg

Depth of
Groove, hg

Ultimate
Capacity, p

Unit GPa ×mm mm Mpa mm mm KN

Mean 40.33 46.10 33.72 7.94 10.33 12.05
Standard Error 2.18 1.01 0.73 0.21 0.30 0.37

Median 39.10 50.00 32.70 10.00 10.00 11.11
Mode 78.20 60.00 26.70 10.00 10.00 9.87

Standard Deviation 25.41 11.81 8.49 2.47 3.45 4.32
Sample Variance 645.42 139.52 72.15 6.10 11.93 18.65

Kurtosis −1.23 −1.49 −1.11 −1.90 −0.88 0.30
Skewness 0.58 −0.13 0.49 −0.36 −0.09 0.80

Range 65.30 30.00 25.50 5.00 10.00 20.73
Minimum 12.90 30.00 22.70 5.00 5.00 4.76
Maximum 78.20 60.00 48.20 10.00 15.00 25.49

Sum 5484.80 6270.00 4585.40 1080.00 1405.00 1638.72
Count 136.00 136.00 136.00 136.00 136.00 136.00

Confidence Level
(95.0%) 4.31 2.00 1.44 0.42 0.59 0.73

3.2. Performance Parameters

Eight different performance indices (Equations (3)–(10)), namely the determination
coefficient (R2), the performance index (PI), the variance account factor (VAF), Willmott’s
index of agreement (WI), the root mean square error (RMSE), the mean absolute error
(MAE), the RMSE observation standard deviation ratio (RSR) and the weighted mean
absolute percentage error (WMAPE), were determined to evaluate the performance of
the developed models [38,44,117–133]. For a flawless prediction model, the values of
these indices should be identical to their ideal values, as shown in Table 2. Note that
the generalization capacity of any predictive model is evaluated by determining various
metrics, such as the degree of correlation, the associated error, the amount of variation, etc.,
from these diverse aspects.

R2 =
∑n

i=1 (yi − ymean)
2 −∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − ymean)

2 (3)

PI = adj.R2 + 0.01VAF− RMSE (4)

VAF (%) =

(
1− var(yi − ŷi)

var(yi)

)
× 100 (5)

WI = 1−
[

∑n
i=1 (yi − ŷi)

2

∑n
i=1{|ŷi − ymean|+ |yi − ymean| }2

]
(6)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (7)

MAE =
1
n

n

∑
i=1
|(ŷi − yi)| (8)

RSR =
RMSE√

1
n ∑n

i=1 (yi − ymean)
2

(9)
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WMAPE =
∑n

i=1

∣∣∣ yi−ŷi
yi

∣∣∣× yi

∑n
i=1 yi

(10)

where yi is the actual value, ŷi is the predicted value and ymean is the mean of the actual value.

Table 2. Ideal values of different performance parameters.

Indices R2 PI VAF WI RMSE MAE RSR WMAPE

Ideal Value 1 2 100 1 0 0 0 0

4. Results and Discussion
4.1. Parametric Configuration

As mentioned earlier, to construct optimum hybrid models, it is necessary to prespecify
the hyper-parameters of the SVM. The values of γ and C were set (using trial and error) as
shown in Table 3 for different hybrid SVM models. Following a trial-and-error approach,
the most appropriate values for the swarm size (NS) and the number of iterations (Itr)
were set at 30 and 200, respectively, and were kept constant for other hybrid SVM models.
It is also important to note that the convergence behavior of any OA is essential when
evaluating performance. This is because the convergence behavior exposes the ability of
OAs to break out of local minima and arrive at a faster solution. Figure 4 exhibits the
convergence curves that were calculated using the hybrid models that were built. All of
the models constructed are compared here in terms of the best and worst convergence
behaviors. It can be concluded from the Figure 4 that the best model in terms of convergence
was SVM–EO and the worst was SVM–SMA.

Table 3. Parametric configuration of hybrid SVM models.

Models SVM–PSO SVM–GWO SVM–EO SVM–HHO SVM–SMA

NS 30 30 30 30 30
Itr 200 200 200 200 200
C 0.05 0.10064 0.1 12.5253 71.2704
γ 8.73 100 100 99.3516 71.2704
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Five-fold cross-validation was performed for both the training and testing phases, as
shown in Tables 4 and 5. However, the model was selected based on the lowest RMSE
achieved in the testing phase. From Table 5, it can be observed that the SVM–HHO
achieved an RMSE of 0.642, which was the lowest among all the cross-validations in the
testing phase.

Table 4. Performance of five-fold cross-validation (training phase).

Phase TR TR TR TR TR

Models CV-1 CV-2 CV-3 CV-4 CV-5

SVM–PSO 0.0334 0.0531 0.0561 0.0553 0.0549
SVM–GWO 0.0307 0.0474 0.0499 0.0492 0.0500

SVM–EO 0.0307 0.0474 0.0500 0.0492 0.0500
SVM–HHO 0.0563 0.0571 0.0600 0.0613 0.0550
SVM–SMA 0.0697 0.0696 0.0754 0.0773 0.0691

Table 5. Performance of five-fold cross-validation (testing phase).

Phase TS TS TS TS TS

Models CV-1 CV-2 CV-3 CV-4 CV-5

SVM–PSO 0.0936 0.1090 0.0979 0.0688 0.0953
SVM–GWO 0.0829 0.1078 0.0944 0.0688 0.0654

SVM–EO 0.0830 0.1078 0.0942 0.0786 0.0765
SVM–HHO 0.0642 0.1012 0.0981 0.0833 0.0915
SVM–SMA 0.0820 0.0993 0.1029 0.0777 0.0835

4.2. Model Performance

The predictive outcomes of the developed hybrid SVM models for estimating the
interfacial bond strength of externally bonded FRP laminates are presented in this section.
The performance of the models in predicting the training and testing outputs are reported
in Tables 6 and 7, respectively. It should be noted that each model’s performance with
the training subset was used to express the goodness of fit of the constructed models.
Based on the experimental results, SVM–GWO and SVM–EO attained the highest R2 and
the lowest RMSE values (R2 = 0.9774 and RMSE = 0.0307), respectively, in the training
phase. Among the developed hybrid SVM models, SVM–HHO attained the most desired
accuracy, with an R2 of 0.9294 and an RMSE of 0.0642 in the training phase. On the other
hand, SVM–HHO achieved a prediction performance of R2 = 0.9241 and RMSE = 0.0563 in
testing. These findings demonstrate that, among the proposed hybrid models, SVM–HHO
had good predictive performance in both phases of prediction. In addition, the MAE and
WMAPE values of the developed SVM–HHO were determined to be 0.0414 and 0.1169
in training and 0.0520 and 0.1507 in testing, respectively. SVM–GWO and SVM–EO were
next-best compared to the above model in training (MAE = 0.0217 and WMAPE = 0.0614),
and SVM–SMA was the second-best model (MAE = 0.0647 and WMAPE = 0.1876) in testing.
SVM–SMA and SVM–PSO were the worst performing models compared to others in both
training and testing. The same results are reported in Figures 5 and 6, which depict the
actual versus predicted graphs for both phases.
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Table 6. Performance indices for the training dataset.

Indices SVM–PSO SVM–GWO SVM–EO SVM–HHO SVM–SMA

R2 0.9763 0.9774 0.9774 0.9241 0.8870
PI 1.9151 1.9229 1.9229 1.7877 1.6949

VAF 97.3227 97.7341 97.7343 92.3648 88.3036
WI 0.9928 0.9942 0.9942 0.9794 0.9661

RMSE 0.0334 0.0307 0.0307 0.0563 0.0697
MAE 0.0260 0.0217 0.0217 0.0414 0.0504
RSR 0.1636 0.1505 0.1505 0.2763 0.3420

WMAPE 0.0730 0.0614 0.0614 0.1169 0.1417

Table 7. Performance indices for the testing dataset.

Indices SVM–PSO SVM–GWO SVM–EO SVM–HHO SVM–SMA

R2 0.8270 0.8633 0.8631 0.9294 0.8794
PI 1.5185 1.6082 1.6078 1.7690 1.6356

VAF 82.6247 86.0428 86.0258 92.0625 86.6904
WI 0.9480 0.9635 0.9634 0.9757 0.9580

RMSE 0.0936 0.0829 0.0830 0.0642 0.0820
MAE 0.0758 0.0675 0.0676 0.0520 0.0647
RSR 0.4216 0.3737 0.3739 0.2895 0.3694

WMAPE 0.2196 0.1957 0.1958 0.1507 0.1876

4.3. Taylor Diagrams

As demonstrated in Figures 7 and 8, the Taylor diagram can be used to study the
performance of the hybrid SVM models for both the training and testing datasets [134]. The
ability of the models to predict the intended output is determined by this diagram. For the
relative quantification of the models, we look at three different statistical metrics (RMSE,
correlation coefficients and standard deviation ratios). The center RMSE (the distance from
the measured point) is taken as the reference point. The standard deviation and correlation
coefficient are both set to 1 for the reference model. On the graph, it can be seen that the
standard deviation and correlation coefficient values for all five hybrid models were close
to 1 for the training phase. It can be concluded from the graph that SVM–SMA had the
lowest correlation in training, whereas both SVM–GWO and SVM–EO showed the best
performance in the training phase. For the testing dataset, the SVM–HHO model performed
the best among all five models, followed by SVM–SMA, SM–GWO and SVM–EO. Hence, it
can be concluded that the overall best-performing model was SVM–HHO as it provided
good results for both training and testing.

4.4. Regression Error Characteristic Curve

The regression error characteristic (REC) curve plots the graph of error tolerance
versus the percentage of predicted points that fall inside the tolerance. The x and y axes
show the regression function’s tolerance for errors and its accuracy, respectively. The area
over the REC curve (AOC) serves as a good approximation of the projected inaccuracy.
The better a model performs, the lower the AOC. Thus, the ROC curve provides a visual
representation of a model’s performance that is both quick and precise. Figures 9 and 10
show the REC curves for both stages of the models. A visual interpretation alone shows
that SVM–SMA was the least accurate model in the training phase in terms of the accuracy
of prediction. We compare the AOC values of different models in order to see how well
they function. Table 8 depicts the AOC results. The SVM–GWO and SVM–EO models
outperformed the competition during the training phase (with an AOC value of 0.4407); for
testing, the SVM–HHO model outperformed the others with an AOC value of 0.0486. For
SVM–GWO and SVM–EO, the lines virtually overlap (the black and green lines), and the
AOC values were also the same for both training and testing.
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Table 8. Values of AOC.

Model
AOC Value

Training Testing

SVM–PSO 0.5264 0.0716
SVM–GWO 0.4407 0.0648

SVM–EO 0.4407 0.0648
SVM–HHO 0.8358 0.0486
SVM–SMA 1.0158 0.0601



Polymers 2022, 14, 3097 15 of 21

Polymers 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

formed the competition during the training phase (with an AOC value of 0.4407); for test-

ing, the SVM–HHO model outperformed the others with an AOC value of 0.0486. For 

SVM–GWO and SVM–EO, the lines virtually overlap (the black and green lines), and the 

AOC values were also the same for both training and testing. 

 

Figure 9. REC curves for training. 

 

Figure 10. REC curves for testing. 

Table 8. Values of AOC. 

Model 
AOC Value 

Training Testing 

SVM–PSO 0.5264 0.0716 

SVM–GWO 0.4407 0.0648 

SVM–EO 0.4407 0.0648 

SVM–HHO 0.8358 0.0486 

SVM–SMA 1.0158 0.0601 

5. Conclusions 

It is relevant to mention that an accurate and trustworthy prediction of the interfacial 

bond strength of FRP laminates bonded on grooves with concrete prisms will make the 

Figure 9. REC curves for training.

Polymers 2022, 14, x FOR PEER REVIEW 15 of 21 
 

 

formed the competition during the training phase (with an AOC value of 0.4407); for test-

ing, the SVM–HHO model outperformed the others with an AOC value of 0.0486. For 

SVM–GWO and SVM–EO, the lines virtually overlap (the black and green lines), and the 

AOC values were also the same for both training and testing. 

 

Figure 9. REC curves for training. 

 

Figure 10. REC curves for testing. 

Table 8. Values of AOC. 

Model 
AOC Value 

Training Testing 

SVM–PSO 0.5264 0.0716 

SVM–GWO 0.4407 0.0648 

SVM–EO 0.4407 0.0648 

SVM–HHO 0.8358 0.0486 

SVM–SMA 1.0158 0.0601 

5. Conclusions 

It is relevant to mention that an accurate and trustworthy prediction of the interfacial 

bond strength of FRP laminates bonded on grooves with concrete prisms will make the 

Figure 10. REC curves for testing.

5. Conclusions

It is relevant to mention that an accurate and trustworthy prediction of the interfacial
bond strength of FRP laminates bonded on grooves with concrete prisms will make the
construction process more economical. In the current study, a collection of 136 experimental
SST datasets with five input parameters was obtained from a literature survey. Some
recently developed MOAs were employed in the creation of models using an SVM. Among
the models, SVM–GWO and SVM–EO (R2 = 0.9774, RSME = 0.0307, WI = 0.9942) were
the best performing models in the training stage, followed by SVM–PSO and SVM–HHO;
SVM–HHO (R2 = 0.9294, RSME = 0.0642, WI = 0.9757) was the best performing model in
the testing stage. In addition, SVM–SMA and SVM–PSO were the most underperforming
models in the training and testing phases, respectively. The experimental validation of
SVM–HHO demonstrates that it has a higher prediction accuracy in both the training and
testing stages. These results are significantly better than those obtained from other hybrid
SVMs. Based on the experimental outcomes, the proposed SVM–HHO has the potential
to assist structural engineers in estimating the ultimate capacity of FRP during the design
phase of civil engineering projects. Similar results were also obtained via analysis using
Taylor diagrams and REC curves. It is important to note that this study only illustrated the
performance efficiency of the models; however, the authors opine that subsequent studies
should present detailed parametric and sensitivity analyses for the practical implications of



Polymers 2022, 14, 3097 16 of 21

FRP laminates. For now, engineers may use the dataset of the reported study to train the
SVM–HHO hybrid model to test new data related to the bond strength of FRP laminates
bonded to concrete prisms. However, since this study used hybrid SVM models to predict
the bond strength of externally bonded FRP laminates, therefore, the future direction
of related work may include the development of an empirical engineering model for a
comparative assessment.
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