
Citation: Li, F.-Y.; Zhang, Q.; Li, X.;

He, X.-T.; Sun, J.-Y. Polymer

Conductive Membrane-Based

Non-Touch Mode Circular Capacitive

Pressure Sensors: An Analytical

Solution-Based Method for Design

and Numerical Calibration. Polymers

2022, 14, 3087. https://doi.org/

10.3390/polym14153087

Academic Editors: Carmen Rial

Tubio and Pedro Costa

Received: 7 July 2022

Accepted: 26 July 2022

Published: 29 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Polymer Conductive Membrane-Based Non-Touch Mode
Circular Capacitive Pressure Sensors: An Analytical
Solution-Based Method for Design and Numerical Calibration
Fei-Yan Li 1, Qi Zhang 1, Xue Li 1, Xiao-Ting He 1,2 and Jun-Yi Sun 1,2,*

1 School of Civil Engineering, Chongqing University, Chongqing 400045, China;
202116131224t@cqu.edu.cn (F.-Y.L.); 202016021045@cqu.edu.cn (Q.Z.); 20161602025t@cqu.edu.cn (X.L.);
hexiaoting@cqu.edu.cn (X.-T.H.)

2 Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University),
Ministry of Education, Chongqing 400045, China

* Correspondence: sunjunyi@cqu.edu.cn; Tel.: +86-(0)23-65120720

Abstract: In this paper, an analytical solution-based method for the design and numerical calibration
of polymer conductive membrane-based non-touch mode circular capacitive pressure sensors is
presented. The accurate analytical relationship between the capacitance and applied pressure of the
sensors is derived by using the analytical solution for the elastic behavior of the circular polymer
conductive membranes under pressure. Based on numerical calculations using the accurate analytical
relationship and the analytical solution, the analytical relationship between the pressure as output
and the capacitance as input, which is necessary to achieve the capacitive pressure sensor mechanism
of detecting pressure by measuring capacitance, is accurately established by least-squares data fitting.
An example of how to arrive at the design and numerical calibration of a non-touch mode circular
capacitive pressure sensor is first given. Then, the influence of changing design parameters such as
membrane thickness and Young’s modulus of elasticity on input–output relationships is investigated,
thus clarifying the direction of approaching the desired input–output relationships by changing
design parameters.

Keywords: capacitive pressure sensor; polymer conductive membrane; large deflection; analytical
solution; numerical calibration

1. Introduction

Thin films are widely used in many engineering and technical fields, and most of
these have good elastic deformation ability and can exhibit large elastic deflection under
lateral loading [1–6], which provides the possibility for designing and developing thin
film elastic deflection-based devices [7–14]. Among them, capacitive pressure sensors
are a good example of physical quantity (pressure) detection by deflection measurement.
They have advantages of high performance-to-price ratio, high reliability, stability and
sensitivity, low power consumption, no turn-on temperature drift, and lower sensitivity to
side stress and other environment effects. In microelectromechanical systems (MEMS), they
usually use silicon or silicon carbide thin films [15–17], polymer/ceramic thin films [18] or
low-temperature co-fired ceramics thin films [19], or graphene-polymer heterostructure
thin films [20–23].

The basic structure and modes of operation of a membrane elastic deflection-based
capacitive pressure sensor are shown in Figure 1, where the fixed electrode plate on
a substrate forms a parallel plate capacitor together with the initially flat undeflected
conductive membrane (as a movable electrode plate of the capacitor). On application
of pressure q, the conductive membrane elastically deflects towards the fixed electrode
plate, making the initial parallel plate capacitor become a non-parallel plate capacitor and
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resulting in a change in capacitance of the capacitor. Before the conductive membrane
touches the insulator layer coating on the fixed electrode plate, the capacitive pressure
sensor is said to operate in non-touch mode or normal mode and called a non-touch mode or
normal mode capacitive pressure sensor [24–29], as shown in Figure 1b. Additionally, after
the conductive membrane touches the insulator layer, the capacitive pressure sensor is said
to operate in touch mode and called a touch mode capacitive pressure sensor [23,30–33], as
shown in Figure 1c. Obviously, the applied pressure q can be expected to be determined
by measuring the capacitance of the non-parallel plate capacitor, due to their one-to-one
correspondence (analytical relationship), which is the basic principle of such capacitive
pressure sensors.
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However, the analytical relationship between the capacitance of the non-parallel plate
capacitor and the applied pressure is very difficult to be exactly established due to the
strong nonlinearity of the elastic behavior of the deflected conductive membrane under
pressure. So, various approximation methods have to be used to obtain approximate ana-
lytical relationships between capacitance and pressure. In particular, the non-parallel plate
capacitor with touch mode of operation is often simplified as an equivalent parallel plate ca-
pacitor, where only the capacitance in the touched area of the insulator layer and conductive
membrane is considered and the capacitance in the untouched area is ignored [23,30,31],
because the effective gap between the fixed electrode plate and conductive membrane is
the thickness of the insulator layer, and the insulator layer can be designed to be very thin
and have a very large dielectric constant. Furthermore, the touched area was also assumed
to be approximately proportional to the applied pressure [30]. This makes it possible to
establish a nearly linear analytical relationship between capacitance and pressure. On the
other hand, because the non-parallel plate capacitor with non-touch mode of operation
has an intrinsic nonlinear capacitance–pressure relationship, many efforts have been made
to reduce its nonlinear characteristic either by modifying the shape of the fixed electrode
plate [25–27,34] or by using special nonlinear converter circuits [29,35]. However, the
existing studies often suggest that non-touch mode capacitive pressure sensors are far
inferior to touch mode capacitive pressure sensors in terms of the easy realization of nearly
linear capacitance–pressure relationships [30]. However, it should also be pointed out
that the nearly linear capacitance–pressure relationships of the touch mode or non-touch
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mode capacitive pressure sensors in the literature all apply only to a certain pressure range;
that is, these sensors are designed to linearly operate within a certain pressure range, and
beyond this pressure range, they are still nonlinear. In other words, their capacitance–
pressure relationships are nearly linear in a certain pressure range and, from a point of
view beyond this pressure range, are still nonlinear. However, such a segment of nearly
linear capacitance–pressure relationships is, in fact, not very difficult to achieve, as long as
the analytical solution for the elastic behavior of the circular conductive membrane under
pressure can be obtained, which can be seen later in Section 3.

In this study, an analytical solution-based method for design and numerical calibration
of polymer conductive membrane-based non-touch mode circular capacitive pressure
sensors is presented. The circular polymer conductive membranes are used as the pressure
sensing elements, the movable electrode plates, of capacitive pressure sensors. They are
usually fixed at their circular peripheries, thus will exhibit axisymmetric deformation with
large deflection when subjected to a uniform differential pressure between their upper
and lower opposite surfaces. By controlling the range of pressure applied, they do not
touch the fixed electrode plate of the sensors so as to keep the non-touch mode of operation.
Due to the fact that their upper and lower opposite surfaces are simultaneously stretched
during deflection, there is no compressive stress at all but only tensile stress on their cross
sections. Therefore, the elastic behavior of free deflection of the circular polymer conductive
membranes under pressure can be regarded as a problem of axisymmetric deformation with
large deflection of an initially flat, peripherally fixed circular membrane under uniformly
distributed transverse loads. Essential to the design and numerical calibration of such
non-touch mode circular capacitive pressure sensors is the analytical solutions of stress and
deflection for this axisymmetric deformation problem. In this paper, they are accurately
derived, and the obtained analytical solution of stress is used to determine the maximum
pressure allowed to be applied to the non-touch mode circular capacitive pressure sensors,
which depends on the yield strength of the circular membranes. The accurate analytical
relationship between the total capacitance and applied pressure of the sensors is derived
by using the analytical solution of deflection and is given in the form of the integral of the
membrane deflection that is a strongly nonlinear function of the applied pressure. Therefore,
in order to achieve the capacitive pressure sensor mechanism of detecting pressure by
measuring capacitance, the accurate analytical relationship between the pressure as output
and the capacitance as input is given by using the least-squares data fitting based on
numerical calculations.

The analytical solution-based method presented here can make the non-touch mode
circular capacitive pressure sensors be more accurately designed and numerically cali-
brated, thus greatly reducing the dependence on experimental calibrations. In comparison
with the methods in the literature such as modifying the shape of substrate electrode
plates [25–27,34] or using special nonlinear converter circuits [29,35], this novel method
has the advantages of intuition, clarity, strong tunability and operability. By changing
design parameters, including geometric parameters (such as the thickness of the circular
membranes and the initial gap between initially flat undeflected circular membranes and
fixed electrode plates) and physical parameters (such as the Poisson’s ratio and Young’s
modulus of elasticity of the circular membranes), it can easily realize the accurate analytical
relationships between the pressure as output and the capacitance as input, including linear
and non-linear relationships. Therefore, from this point of view, the view in the literature is
open to debate that non-touch mode capacitive pressure sensors are far inferior to touch
mode capacitive pressure sensors in the easy realization of nearly linear input–output
relationships [30]. This should be due to the lack of the exact analytical solutions and their
effective applications.

The paper is organized as follows. In the following section, the accurate analytical
relationship between the total capacitance and applied pressure of the non-touch mode
circular capacitive pressure sensors is derived in detail, the analytical solutions of stress and
deflection for the elastic behavior of free deflection of the circular conductive membranes
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under pressure are accurately derived, and how to design and numerically calibrate the
non-touch mode circular capacitive pressure sensors is described in detail. In Section 3,
an example is first given of how to arrive at a design and numerical calibration of non-
touch mode circular capacitive pressure sensors. Then, in order to clarify the direction of
approaching the desired pressure–capacitance relationships by changing design parameters,
the influence of changing design parameters on pressure–capacitance relationships is
investigated. Concluding remarks are given in Section 4.

2. Materials and Methods

The geometry and configuration of a non-touch mode circular capacitive pressure
sensor is shown in Figure 2a, where the initially flat, undeflected, circular conductive
membrane with Poisson’s ratio v, Young’s modulus of elasticity E, thickness h and radius
a forms a parallel plate capacitor together with the electrode plate fixed to the substrate,
t denotes the thickness of the insulator layer coating on the substrate electrode plate, and
g denotes the initial gap between the insulator layer and the initially flat, undeflected,
circular conductive membrane. On application of pressure (the uniformly distributed
transverse loads q), as shown in Figure 2b, the initially flat, undeflected, circular conductive
membrane deflects towards the substrate electrode plate, making the initial parallel plate
capacitor become a non-parallel plate capacitor and resulting in a change in capacitance of
the capacitor. In Figure 2b, the dash-dotted line represents the plane in which the geometric
middle plane of the initially flat, undeflected, circular conductive membrane is located,
o denotes the origin of the introduced cylindrical coordinate system (r, ϕ, w), r is the radial
coordinate, ϕ is the angle coordinate but not represented in Figure 2b, and w is the axial
coordinate and denotes the deflection of the deflected conductive membrane.
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Before the pressure q is applied to the circular conductive membrane, the total initial
capacitance C0 of the initial parallel plate capacitor formed by the initially flat, undeflected,
circular conductive membrane and the substrate electrode plate comprises the capacitance
C1 and C2 of two series parallel plate capacitors, where C1 refers to the capacitance of the
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parallel plate capacitor with the insulator layer gap t and relative permittivity εr1, and
C2 refers to the capacitance of the parallel plate capacitor with the air gap g and relative
permittivity εr2. Therefore, if the vacuum permittivity is denoted by ε0, then

1
C0

=
1

C1
+

1
C2

, (1)

where

C1 =
ε0εr1πa2

t
(2)

and

C2 =
ε0εr2πa2

g
. (3)

Thus,

C0 =
C1C2

C1 + C2
=

ε0εr2πa2

t
ε0εr1πa2

g
ε0εr2πa2

t + ε0εr1πa2

g

=
ε0εr1εr2πa2

εr1t + εr2g
. (4)

After the pressure q is applied to the conductive membrane, the total capacitance C of
the non-parallel plate capacitor formed by the deflected circular conductive membrane and
the substrate electrode plate is still composed of the capacitance of two series capacitors:
one is the capacitance C1 of the parallel plate capacitor with the insulator layer gap t and
relative permittivity εr1, which is still given by Equation (2); the other is the capacitance C′2
of the air dielectric non-parallel plate capacitor with the relative permittivity εr2 and uneven
distribution of air gap g–w(r) (see Figure 2b). Therefore, the expression of capacitance C′2
needs to be further derived. To this end, let us take a micro area element, ABCD, from the
substrate electrode plate, as shown in Figure 3.
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The area of the micro area element ABCD is

∆S =
(r + ∆r)2∆ϕ

2
− r2∆ϕ

2
= r∆r∆ϕ +

1
2
(∆r)2∆ϕ. (5)

After ignoring the higher-order terms (the second term in Equation (5)), ∆S can be
approximated by r∆r∆ϕ, while the air gap between this micro area element ABCD on the
substrate electrode plate and the corresponding deflected conductive membrane can be
approximated by g − w(r), resulting in

∆C′2 = ε0εr2
r∆r∆ϕ

g− w(r)
(6)



Polymers 2022, 14, 3087 6 of 38

and

C′2 =
∫ a

0

∫ 2π

0
ε0εr2

r
g− w(r)

dϕdr = 2πε0εr2

∫ a

0

r
g− w(r)

dr. (7)

Thus, the total capacitance C of the non-parallel plate capacitor formed by the deflected
circular conductive membrane and the substrate electrode plate may finally be written as

C =
C1C′2

C1 + C′2
=

ε0εr1πa2

t 2πε0εr2
∫ a

0
r

g−w(r)dr
ε0εr1πa2

t + 2πε0εr2
∫ a

0
r

g−w(r)dr
. (8)

It can be seen from Equation (8) that the total capacitance C can be determined as
long as an analytical expression for deflection w(r) is available. Therefore, the analytical
solutions of deflection w(r) and stress σr(r) of the deflected circular conductive membrane
under pressure q is vital to the determination of the total capacitance C of the non-parallel
plate capacitor formed by the deflected circular conductive membrane under pressure q
and the substrate electrode plate.

To this end, we have to analytically solve the problem of axisymmetric deformation
with large deflection of the deflected circular conductive membrane under the uniformly
distributed transverse loads q. However, for the sake of coherence, the detailed derivation
of the analytical solution of this axisymmetric deformation problem is arranged in the
Appendix A. The analytical expressions for stress σr(r) and deflection w(r) can be written
as, from Equations (A16), (A22) and (A23),

σr(r) = E
∞

∑
i=0

b2i

a2i r2i (9)

and

w(r) =
∞

∑
i=0

c2i

a2i−1 r2i, (10)

where c2i and b2i are the coefficients of the power series, which are listed in Appendix B.
It can be seen from Appendix B that when i 6= 0 the coefficients c2i and b2i are expressed
into the polynomials with regard to the coefficients b0, Poisson’s ratio v and dimensionless
parameter Q (the dimensionless pressure, see Equation (A16)). The coefficients b0 and c0
are usually called undetermined constants. For a given Poisson’s ratio v, Young’s modulus
of elasticity E, thickness h, radius a and pressure q, the undetermined constant b0 can be
determined by solving Equation (A24). Additionally, with the known b0, all the coefficients
c2i and b2i when i 6= 0 can be determined (see Appendix B), such that the undetermined
constant c0 can be determined by Equation (A25). In this way, the deflection expression,
i.e., Equation (10), can be determined due to the known coefficient c2i (i = 0, 1, 2, 3 . . . ).
The maximum stress σm and maximum deflection wm of the axisymmetrically deflected
circular conductive membrane are at its center (i.e., at r = 0), hence given by

σm = Eb0 (11)

and
wm = ac0. (12)

For a given conductive membrane (given Poisson’s ratio v, Young’s modulus of
elasticity E, thickness h, radius a and yield strength σy), the maximum stress σm at any
pressure q can be determined by Equation (11). To ensure the strength of the material,
it is assumed that the working stress of the conductive membrane is always controlled
below 70% of the yield strength σy. So, if the pressure q at σm = 0.7σy is equal to the
maximum pressure of a given pressure measurement range, then the given conductive
membrane meets the design requirements; otherwise, a new conductive membrane (with
different design parameters such as membrane thickness h, Poisson’s ratio v and Young’s
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modulus of elasticity E) needs to be selected. On the other hand, the maximum deflection
wm at σm = 0.7σy can be determined by Equation (12) and is used primarily to determine
the initial gap g between the insulator layer and the initially flat, undeflected, circular
conductive membrane, see Figure 2a. The minimum value of the initial gap g should be
greater than but as close as possible to this maximum deflection wm.

After plugging the known deflection expression (i.e., for given Poisson’s ratio v,
Young’s modulus of elasticity E, thickness h, radius a and pressure q, the power series
coefficients c2i/a2i−1 in Equation (10) are known) into Equation (8), the total capacitance C
of the non-parallel plate capacitor, which is formed by the deflected circular conductive
membrane under the given pressure q and the substrate electrode plate, can finally be deter-
mined with the known initial gap g, vacuum permittivity ε0, and relative permittivities εr1
and εr2. In this way, a pair of numerical values of calculated capacitance C and given loads
q, having an intrinsic analytical relationship, is thus established. Additionally, with another
given value of pressure q, another pair of numerical values of calculated capacitance C and
given loads q can be further established.

Therefore, the numerical calculations of a progressive increase in the values of pres-
sure q will result in a data sequence (sequential number pairs) with respect to numerical
values of calculated capacitance C and given loads q, as shown in the next section. Addition-
ally, further, based on this data sequence, the analytical relationship between loads q and
capacitance C can be established by using least-squares data fitting, including straight line
fitting and curve fitting, as shown in the next section. In each fitting function, the ranges
of variation of loads q and capacitance C are affected by different requirements of fitting
accuracy (average sum of fitting error squares). On the other hand, for given requirements
of fitting accuracy, the ranges of variation of loads q and capacitance C can also be changed
by changing geometric parameters (such as the thickness h and radius a of the conductive
membranes and the initial gap g) and physical parameters (such as the Poisson’s ratio v and
Young’s modulus of elasticity E of the conductive membranes), as shown in Section 3.2.

All in all, with Equation (8) and the analytical solution in Appendix A, the non-
touch mode circular capacitive pressure sensors can be perfectly designed and numerically
calibrated, thus greatly reducing the dependence on experimental calibration.

3. Results and Discussion

In this section, an example is first given of how to use Equation (8) and the analytical
solution in Appendix A to realize the design and numerical calibration of non-touch mode
circular capacitive pressure sensors (see Section 3.1). Then, in order to clarify the direction of
approaching the desired pressure–capacitance relationships by changing design parameters,
the influence of changing design parameters on pressure–capacitance relationships is
comprehensively investigated, such as changing the initial gap g between the insulator
layer coating on the substrate electrode plate and the initially flat undeflected circular
conductive membrane, the thickness h of the circular conductive membranes, Young’s
modulus of elasticity E, Poisson’s ratio v and the thickness t of the insulator layers, see
Section 3.2.

In fact, Equation (8) has given the accurate analytical relationship between the capaci-
tance C and the pressure q, where q is included in the power series coefficients c2i of the
deflection w(r) (see Appendix B). However, in order to achieve the sensor mechanism of
detecting pressure by measuring capacitance, we need to know the accurate analytical
relationship between the pressure q as output and the capacitance C as input, that is, the
analytical expression of the capacitance C as independent variable and the pressure q as
dependent variable, q(C). Obviously, such an analytical expression cannot be directly given
due to the strong nonlinearity between the deflection w(r) and the applied pressure q.
Therefore, in this case, we have to perform a lot of numerical calculations using Equation (8)
and the analytical solution of deflection and use least-squares data fitting to arrive at the
analytical expression q(C), which may be seen in Section 3.1.
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On the other hand, the numerical calculations using Equation (8) and the analytical
solution of deflection can only be carried out on the premise that the circular conductive
membrane is known and the range of pressure q is specified. Therefore, the design of a
non-touch mode circular capacitive pressure sensor whose pressure range is beforehand
specified has to begin with a tentative choice of a circular conductive membrane, including
membrane thickness h, Poisson’s ratio v and Young’s modulus of elasticity E. If the result-
ing pressure–capacitance relationship, q(C), does not satisfy the desired usage or technical
requirements, especially the range of the input capacitance C and output pressure q, then
the design parameters, especially the membrane thickness h and Young’s modulus of elas-
ticity E, must be adjusted. Section 3.2 gives the direction of the adjustment for approaching
the desired usage or technical requirements.

3.1. An Example of Design and Numerical Calibration Based on Analytical Solutions

A non-touch mode circular capacitive pressure sensor is assumed to use a circular con-
ductive membrane with Poisson’s ratio v = 0.47, Young’s modulus of elasticity E = 7.84 MPa,
radius a = 100 mm, thickness h = 1 mm and yield strength σy = 2.4 MPa. The maximum
value of the applied pressure q can be determined by the condition that the maximum
stress σm of the circular conductive membrane under pressure q does not exceed its yield
strength σy = 2.4 MPa. Table 1 shows the calculation results as the applied pressure q
progressively increases, where the undetermined constants b0 and c0 are calculated by
Equations (A24) and (A25), the maximum stress σm and maximum deflection wm are cal-
culated by Equations (11) and (12). It may be seen from Table 1 that when the maximum
stress σm approaches the yield strength σy = 2.4 MPa, the maximum value of the applied
pressure q is about 34 KPa. Figures 4 and 5 show the variations of wm and σm with the
applied pressure q.

Table 1. The calculation results of b0 and c0, wm and σm for a = 100 mm, h = 1 mm, E = 7.84 MPa and
ν = 0.47.

q/KPa b0 c0 wm/mm σm/MPa

0 0.000000 0.000000 0.000 0.000
0.5 0.015819 0.112374 11.237 0.124
1 0.025251 0.141729 14.173 0.198
2 0.040443 0.178839 17.884 0.317
4 0.065119 0.225793 22.579 0.511
6 0.086362 0.258841 25.884 0.677
8 0.105751 0.285194 28.519 0.829
10 0.123933 0.307465 30.747 0.972
12 0.141247 0.326937 32.694 1.107
14 0.157901 0.344351 34.435 1.238
16 0.174030 0.360175 36.018 1.364
18 0.189729 0.374732 37.473 1.487
20 0.205068 0.388252 38.825 1.608

21.225 0.214308 0.396696 39.670 1.680
22 0.220099 0.400906 40.091 1.726
24 0.234862 0.412826 41.283 1.841
26 0.249389 0.424116 42.412 1.955
28 0.263707 0.434859 43.486 2.067
30 0.277838 0.445123 44.512 2.178
32 0.291798 0.454965 45.496 2.288
34 0.305603 0.464432 46.443 2.396
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If the working stress of the circular conductive membrane is always controlled to
be less than or equal to 70% of the yield strength σy, that is, σm ≤ 0.7 σy ≈ 1.68 MPa,
then it can be seen from Table 1 that the maximum operation pressure should not exceed
21.225 KPa. Therefore, the values of the undetermined constants b0 at pressures less than
or equal to 21.225 KPa in Table 1 will be used to determine the values of the coefficients c2i
(see Appendix B for their expressions), as shown in Tables 2 and 3. Moreover, from
Table 1, we may also see that the value of the maximum deflection wm corresponding to
21.225 KPa pressure is about 39.67 mm. Therefore, the initial gap g between the initially
flat undeflected conductive membrane and the insulator layer coating on the substrate
electrode plate should be greater than or equal to 41 mm. For investigating the influence of
changing the initial gap g on the input–output relationship between the input capacitance C
and the output pressure q, the pressure–capacitance relationship q(C), here, the initial gap g
takes 41 mm, 46 mm and 51 mm, respectively.
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Table 2. The calculation results of the coefficients c2i (i = 0, 1, 2, 3) for a = 100 mm, h = 1 mm,
E = 7.84 MPa and ν = 0.47.

q/KPa c0 c2 c4 c6

0 0.000000 0.000000 0.000000 0.000000
0.5 0.112374 −0.100790 −0.009047 −1.854564 × 10−3

1 0.141729 −0.126281 −0.011851 −2.564440 × 10−3

2 0.178839 −0.157694 −0.015787 −3.678232 × 10−3

4 0.225793 −0.195873 −0.021459 −5.497780 × 10−3

6 0.258841 −0.221541 −0.025922 −7.084793 × 10−3

8 0.285194 −0.241228 −0.029749 −8.541169 × 10−3

10 0.307465 −0.257299 −0.033155 −9.905430 × 10−3

12 0.326937 −0.270910 −0.036253 −1.119777 × 10−2

14 0.344351 −0.282727 −0.039109 −1.243081 × 10−2

16 0.360175 −0.293170 −0.041768 −1.361335 × 10−2

18 0.374732 −0.302525 −0.044262 −1.475200 × 10−2

20 0.388252 −0.310997 −0.046617 −1.585194 × 10−2

21.225 0.396696 −0.315815 −0.047998 −1.650838 × 10−2

Table 3. The calculation results of the coefficients c2i (i = 4, 5, 6, 7) for a = 100 mm, h = 1 mm,
E = 7.84 MPa and ν = 0.47.

q/KPa c8 c10 c12 c14

0 0.000000 0.000000 0.000000 0.000000
0.5 −4.789369 × 10−4 −1.389200 × 10−4 −4.326591 × 10−5 −1.414301 × 10−5

1 −7.036597 × 10−4 −2.176087 × 10−4 −7.241011 × 10−5 −2.532468 × 10−5

2 −1.094379 × 10−3 −3.682477 × 10−4 −1.335929 × 10−4 −5.100339 × 10−5

4 −1.810971 × 10−3 −6.767557 × 10−4 −2.731357 × 10−4 −1.161416 × 10−4

6 −2.497975 × 10−3 −1.000748 × 10−3 −4.333885 × 10−4 −1.978624 × 10−4

8 −3.169617 × 10−3 −1.337792 × 10−3 −6.107136 × 10−4 −2.940391 × 10−4

10 −3.829440 × 10−3 −1.684867 × 10−3 −8.021195 × 10−4 −4.028732 × 10−4

12 −4.478700 × 10−3 −2.039522 × 10−3 −1.005254 × 10−3 −5.228583 × 10−4

14 −5.118047 × 10−3 −2.399892 × 10−3 −1.218271 × 10−3 −6.527353 × 10−4

16 −5.747980 × 10−3 −2.764584 × 10−3 −1.439715 × 10−3 −7.914557 × 10−4

18 −6.368975 × 10−3 −3.132569 × 10−3 −1.668442 × 10−3 −9.381483 × 10−4

20 −6.981522 × 10−3 −3.503093 × 10−3 −1.903546 × 10−3 −1.092091 × 10−3

21.225 −7.352749 × 10−3 −3.731051 × 10−3 −2.050382 × 10−3 −1.189700 × 10−3

If the insulator layer is assumed to take 0.1 mm of polystyrene, then t = 0.1 mm and
the relative permittivity εr1 = 2.5. In addition, the vacuum permittivity ε0 = 8.854 × 10−12

F/m = 8.854 × 10−3 pF/mm, and the air relative permittivity εr2 = 1.00053. The deflection
expressions describing the shape of the deflected conductive membrane under different
pressures q can be determined by Equation (10) with the values of the coefficients c2i in
Tables 2 and 3. Therefore, the values of the total capacitance (at rest) of the non-parallel
plate capacitor formed by the deflected circular conductive membrane and the substrate
electrode plate may finally be determined by Equation (8), which are listed in Table 4, where
the definite integral in Equation (8) was calculated by using Maple 2018 software package.

Figure 6 shows the variations of pressure q with capacitance C, showing that the
increase in the initial gap g will increase the degree of linearity of the pressure–capacitance
relationship q(C). From this point of view, the view in the literature is open to debate
that non-touch mode capacitive pressure sensors are far inferior to touch mode capacitive
pressure sensors in the easy realization of nearly linear input–output relationships [30].
The linearization in such a way, however, will narrow the range of the input capacitance
and eventually increase the output pressure per unit capacitance, in addition to increasing
the edge effect in capacitance of the non-parallel plate capacitor. So, it is best not to do so
unless necessary. In fact, it can be imagined from Figure 6 that the nearly linear pressure–
capacitance relationship q(C) can also be realized by least-squares data fitting of the data
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for g = 41 mm. Figure 7 shows the results of least-squares fitting, where Functions 1–4 are
the results for g = 41 mm, Function 5 is the result for g = 46 mm, Function 6 is the result for
g = 51 mm and Functions 1, 5 and 6 are fitted by straight lines, and Function 2 is fitted by a
quadratic function, Function 3 by a cubic function and Function 4 by a quartic function.
The resulting fitting functions are listed in Table 5, and the average sum of fitting error
squares of each fitting function is shown in the footer of Table 5.

Table 4. The calculation results for a = 100 mm, h = 1 mm, E = 7.84 MPa, ν = 0.47, t = 0.1 mm, and
g = 41 mm, 46 mm and 51 mm.

q/KPa wm/mm σm/MPa
C/pF

g = 41 mm g = 46 mm g = 51 mm

0 0 0 6.775 6.039 5.447
0.5 11.237 0.124 7.965 6.961 6.182
1 14.173 0.198 8.384 7.273 6.424
2 17.884 0.317 9.013 7.730 6.772
4 22.579 0.511 10.040 8.446 7.301
6 25.884 0.677 11.002 9.081 7.753
8 28.519 0.829 11.993 9.698 8.178
10 30.747 0.972 13.068 10.326 8.594
12 32.694 1.107 14.281 10.982 9.012
14 34.435 1.238 15.707 11.683 9.439
16 36.018 1.364 17.468 12.448 9.883
18 37.473 1.487 19.794 13.298 10.349
20 38.825 1.608 23.239 14.266 10.843

21.225 39.670 1.680 26.585 14.935 11.164
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As can be seen from Table 5 and Figure 7, the above design and numerical calibra-
tion can realize five non-touch mode circular capacitive pressure sensors with different
pressure–capacitance relationships, two linear (Functions 1 and 6) and three nonlinear
(Functions 2–4). Obviously, Function 1 should be preferred to Function 6 if a 1~8 KPa
pressure range is sufficient for use, because the output pressure per unit capacitance is
about 1.940 KPa/pF for Function 1 but 4.267 KPa/pF for Function 6 (which are calculated
from Table 5). However, for today’s advanced digital technologies, the emphasis on nearly
linear input–output relationships makes no sense, because in most cases, using digital
technologies is feasible. Therefore, in this sense, Function 4 should be one of the best
choices for pressure monitoring microcomputer systems based on such non-touch mode
circular capacitive pressure sensing devices.
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Table 5. The range of pressure q and capacitance C, and the analytical expressions of Functions 1–6 in
Figure 7.

Functions q/KPa C/pF Functional Expressions

Function 1 1~8 8.384~11.993 q = −15.57 + 1.960C
Function 2 0.5~12 7.965~14.281 q = −14.59 + 1.856C − 0.001137C2

Function 3 0.5~18 7.965~19.794 q = −9.867 + 0.3584C + 0.1562C2 − 0.005222C3

Function 4 0~21.225 6.775~26.585 q = −16.64 + 1.865C + 0.06435C2 − 0.004878C3 + 0.00006859C4

Function 5 1~21.225 7.273~14.935 q = −18.73 + 2.743C
Function 6 1~21.225 6.424~11.164 q = −27.93 + 4.421C

Note: The average sum of fitting error squares of Functions 1–6 is 0.0088, 0.0259, 0.0233, 0.0481, 0.2590 and
0.0626, respectively.

Of course, Functions 1–4 and 6 may also not satisfy the usage or technical requirements
of the input capacitance and output pressure under consideration. In this case, the design
parameters, other than the initial gap g, should further be adjusted to meet the desired
requirements, as shown in the next section.

3.2. Parametric Analysis

As mentioned above, although the increase in the initial gap g between the initially flat
undeflected conductive membrane and the substrate electrode plate can increase the degree
of linearity of the analytical relationship between input capacitance C and output pressure q,
it is not a preferred option to encourage adoption. On the other hand, however, we should
also see that decreasing the initial gap g can increase the range of input capacitance C,
see Figure 6. The main purpose of this section is to show the influence of changing the
design parameters other than the initial gap g on the analytical relationship between input
capacitance C and output pressure q. To this end, we take the design parameters used
in Section 3.1 as reference and change each parameter one by one on this basis, such as
changing the thickness h of the conductive membranes, Young’s modulus of elasticity E,
Poisson’s ratio v, and the thickness t of insulator layers.

3.2.1. Effect of Membrane Thickness on Input–Output Relationships

The design parameters used in Section 3.1 are used as reference, that is, Poisson’s ratio
v = 0.47, Young’s modulus of elasticity E = 7.84 MPa, circular conductive membrane radius
a = 100 mm, circular conductive membrane thickness h = 1 mm, insulator layer thickness
t = 0.1 mm, vacuum permittivity ε0 = 8.854× 10−12 F/m = 8.854× 10−3 pF/mm, air relative
permittivity εr2 = 1.00053, insulator layer relative permittivity εr1 = 2.5, membrane yield
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stress σy = 2.4 MPa and membrane maximum stress σm ≤ 0.7 σy ≈ 1.68 MPa. In this section,
the thickness h of the circular conductive membrane is first increased from the reference
thickness of 1 mm to 1.5 mm and then is further increased to 2 mm. When h = 1.5 mm,
the calculation results are listed in Table 6, the relationships between input capacitance
C and output pressure q are shown in Figure 8, the results of least-squares fitting are
shown in Figure 9, the fitting functions are listed in Table 7, and the average sum of fitting
error squares of each fitting function is shown in the footer of Table 7. When h = 2 mm,
the calculation results are listed in Table 8, the input–output relationships are shown in
Figure 10, the results of least-squares fitting are shown in Figure 11, the fitting functions
are listed in Table 9, and the average sum of fitting error squares of each fitting function is
shown in the footer of Table 9. The effects of an increase in the membrane thickness h from
1 mm to 1.5 mm and then to 2 mm on the fitting functions (Functions 1–4) are summarized
in Figures 12–15.

Table 6. The calculation results for a = 100 mm, h = 1.5 mm, E = 7.84 MPa, ν = 0.47, t = 0.1 mm, and
g = 41 mm, 46 mm and 51 mm.

q/KPa wm/mm σm/MPa
C/pF

g = 41 mm g = 46 mm g = 51 mm

0 0.000 0.000 6.775 6.039 5.447
0.5 9.812 0.094 7.782 6.822 6.074
1 12.373 0.151 8.120 7.077 6.273
2 15.608 0.241 8.612 7.440 6.553
4 19.699 0.386 9.373 7.986 6.963
6 22.579 0.511 10.040 8.446 7.301
8 24.877 0.624 10.682 8.874 7.607
10 26.820 0.729 11.327 9.287 7.897
12 28.519 0.829 11.993 9.698 8.178
14 30.040 0.925 12.697 10.114 8.455
16 31.422 1.018 13.453 10.540 8.732
18 32.694 1.107 14.281 10.982 9.012
20 33.874 1.195 15.202 11.443 9.295
22 34.978 1.281 16.249 11.930 9.585
24 36.018 1.364 17.468 12.448 9.883
25 36.516 1.406 18.164 12.720 10.035
26 37.001 1.447 18.933 13.004 10.191
27 37.373 1.487 19.794 13.298 10.349
28 37.934 1.528 20.772 13.606 10.510
29 38.185 1.568 21.902 13.928 10.675
30 38.825 1.608 23.239 14.266 10.843

31.84 39.611 1.680 26.591 14.936 11.164

Table 7. The range of pressure q and capacitance C, and the analytical expressions of the Functions 1–6
in Figure 9.

Functions q/KPa C/pF Functional Expressions

Function 1 1~12 8.120~11.993 q = −22.81 + 2.889C
Function 2 0.5~18 7.782~14.281 q = −19.88 + 2.425C + 0.01752C2

Function 3 0.5~27 7.782~19.794 q = −12.73 + 0.08131C + 0.2674C2 − 0.008633C3

Function 4 0~31.84 6.775~26.591 q = −22.87 + 2.312C + 0.1379C2 − 0.008860C3 + 0.0001237C4

Function 5 1~31.84 7.077~14.936 q = −28.34 + 4.146C
Function 6 1~31.84 6.273~11.164 q = −41.83 + 6.632C

Note: The average sum of fitting error squares of Functions 1–6 is 0.0393, 0.0715, 0.0614, 0.0958, 0.4674 and
0.1774, respectively.
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Table 8. The calculation results for a = 100 mm, h = 2 mm, E = 7.84 MPa, ν = 0.47, t = 0.1 mm, and
g = 41 mm, 46 mm and 51 mm.

q/KPa wm/mm σm/MPa
C/pF

g = 41 mm g = 46 mm g = 51 mm

0 0.000 0.000 6.775 6.039 5.447
0.5 8.913 0.078 7.673 6.739 6.008
1 11.237 0.124 7.965 6.961 6.182
2 14.173 0.198 8.384 7.273 6.424
4 17.884 0.317 9.013 7.730 6.772
6 20.496 0.419 9.545 8.106 7.052
8 22.579 0.511 10.040 8.446 7.301
10 24.342 0.596 10.522 8.769 7.533
12 25.884 0.677 11.002 9.081 7.753
14 27.264 0.755 11.491 9.390 7.967
16 28.519 0.829 11.993 9.698 8.178
18 29.674 0.901 12.517 10.010 8.386
20 30.747 0.972 13.068 10.326 8.594
22 31.750 1.040 13.653 10.649 8.802
24 32.694 1.107 14.281 10.982 9.012
26 33.587 1.173 14.961 11.325 9.224
28 34.435 1.238 15.707 11.683 9.439
30 35.594 1.302 16.535 12.056 9.659
32 36.018 1.364 17.468 12.448 9.883
34 36.760 1.426 18.538 12.860 10.113
36 37.473 1.487 19.794 13.298 10.349
38 38.161 1.548 21.315 13.765 10.592
40 38.825 1.608 23.239 14.266 10.843
42 39.468 1.667 25.847 14.807 11.104

42.45 39.610 1.680 26.585 14.935 11.164
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Table 9. The range of pressure q and capacitance C, and the analytical expressions of Functions 1–6 in
Figure 11.

Functions q/KPa C/pF Functional Expressions

Function 1 1~16 7.965~11.993 q = −30.00 + 3.813C
Function 2 1~24 7.965~14.281 q = −29.645 + 3.7645C + 0.001365C2

Function 3 1~36 7.965~19.794 q = −21.30 + 1.011C + 0.2956C2 − 0.01017C3

Function 4 0~42.45 6.775~26.585 q = −30.96 + 2.917C + 0.2205C2 − 0.01388C3 + 0.0002010C4

Function 5 1~42.45 6.961~14.935 q = −37.33 + 5.481C
Function 6 1~42.45 6.182~11.164 q = −55.36 + 8.791C

Note: The average sum of fitting error squares of Functions 1–6 is 0.0991, 0.0915, 0.0854, 0.0987, 0.9849 and
0.4131, respectively.
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Figure 15. The effect of changing the membrane thickness h on Function 4 in Tables 5, 7 and 9 (fitted
by a quartic function).

It can be seen from Figures 12–15 that the change in the membrane thickness h only
affects the range of output pressure q (increasing with the increase in the membrane
thickness h) and does not affect the range of input capacitance C on the premise of ensuring
the basically same fitting accuracy (the average sum of fitting error squares of each fitting
function (e.g., Function 1, 2, 3 or 4) is basically the same (see the footers of Tables 5, 7 and 9)).
It should also be noted, however, that an increase in the membrane thickness h increases
the range of output pressure q, but it also moderately increases the output pressure per
unit capacitance because the input capacitance C remains constant. For instance, as the
membrane thickness h increases from the reference value of 1 mm to 1.5 mm and then to
2 mm, the output pressure per unit capacitance of Function 1 increases from 1.940 KPa/pF
to 2.840 KPa/pF and then to 3.724 KPa/pF, while the output pressure per unit capacitance
of Function 4 increases from 1.071 KPa/pF to 1.607 KPa/pF and then to 2.143 KPa/pF,
which are calculated from Tables 5, 7 and 9.

3.2.2. Effect of Young’s Modulus of Elasticity on Input–Output Relationships

The design parameters used in Section 3.1 are still used as reference, that is, v = 0.47,
E = 7.84 MPa, a = 100 mm, h = 1 mm, t = 0.1 mm, ε0 = 8.854× 10−12 F/m = 8.854× 10−3 pF/mm,
εr1 = 2.5, εr2 = 1.00053, σy = 2.4 MPa and σm ≤ 0.7 σy ≈ 1.68 MPa. In this section, the Young’s
modulus of elasticity E of the conductive membrane is first decreased from the reference
value of 7.84 MPa to 5 MPa and then further decreased to 2.5 MPa. When E = 5 MPa, the
calculation results are listed in Table 10, the relationships between input capacitance C and
output pressure q are shown in Figure 16, the results of least-squares fitting are shown in
Figure 17, the fitting functions are listed in Table 11, and the average sum of fitting error
squares of each fitting function is shown in the footer of Table 11. When E = 2.5 MPa,
the calculation results are listed in Table 12, the input–output relationships are shown in
Figure 18, the results of least-squares fitting are shown in Figure 19, the fitting functions
are listed in Table 13, and the average sum of fitting error squares of each fitting function is
shown in the footer of Table 13. The effects of a decrease in the Young’s modulus of elasticity
E from 7.84 MPa to 5 MPa and then to 2.5 MPa on the fitting functions (Functions 1–4) are
summarized in Figures 20–23.
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Table 10. The calculation results for a = 100 mm, h = 1 mm, E = 5 MPa, ν = 0.47, t = 0.1 mm and
g = 50 mm, 55 mm and 60 mm.

q/KPa wm/mm σm/MPa
C/pF

g = 50 mm g = 55 mm g = 60 mm

0 0.000 0.000 5.556 5.051 4.631
0.5 13.063 0.107 6.478 5.798 5.248
1 16.481 0.171 6.799 6.050 5.452
2 20.804 0.275 7.277 6.419 5.745
4 26.274 0.445 8.048 6.995 6.192
6 30.121 0.593 8.756 7.503 6.575
8 33.185 0.729 9.467 7.992 6.934
10 35.774 0.857 10.217 8.485 7.286
12 38.036 0.980 11.035 8.996 7.639
14 40.061 1.099 11.954 9.537 8.000
16 41.904 1.214 13.020 10.119 8.375
18 43.603 1.326 14.305 10.757 8.769
20 45.186 1.437 15.932 11.471 9.187
22 46.673 1.545 18.158 12.284 9.637
24 48.079 1.652 21.659 13.235 10.127

24.54 48.447 1.680 23.062 13.523 10.267
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Table 11. The range of pressure q and capacitance C, and the analytical expressions of the fitting
functions in Figure 17.

Functions q/KPa C/pF Functional Expressions

Function 1 1~10 6.799~10.217 q = −17.349 + 2.672C
Function 2 0.5~14 6.478~11.954 q = −16.73 + 2.644C − 0.004760C2

Function 3 0.5~20 6.478~15.932 q = −9.282 − 0.03216C + 0.3101C2 − 0.01213C3

Function 4 0~24.54 5.556~23.062 q = −18.81 + 2.632C + 0.09652C2 − 0.009415C3 − 0.0001647C4

Function 5 1~24.54 6.050~13.523 q = −18.10 + 3.262C
Function 6 1~24.54 5.452~10.267 q = −26.97 + 5.075C

Note: The average sum of fitting error squares of Functions 1–6 is 0.0123, 0.0375, 0.0273, 0.0634, 0.678 and
0.129, respectively.

Table 12. The calculation results for a = 100 mm, h = 1 mm, E = 2.5 MPa, ν = 0.47, t = 0.1 mm and
g = 68 mm, 73 mm and 78 mm.

q/KPa wm/mm σm/MPa
C/pF

g = 68 mm g = 73 mm g = 78 mm

0 0.000 0.000 4.086 3.807 3.563
0.5 16.481 0.086 4.708 4.338 4.023
1 20.801 0.138 4.921 4.517 4.175
2 26.274 0.223 5.237 4.779 4.396
4 33.185 0.365 5.738 5.185 4.732
6 38.036 0.490 6.187 5.540 5.020
8 41.904 0.607 6.627 5.879 5.290
10 45.186 0.718 7.079 6.219 5.555
12 48.079 0.826 7.560 6.570 5.824
14 50.698 0.930 8.084 6.941 6.102
16 53.114 1.032 8.671 7.340 6.394
18 55.376 1.132 9.345 7.779 6.706
20 57.518 1.230 10.142 8.269 7.044
22 59.566 1.327 11.119 8.828 7.415
24 61.539 1.422 12.378 9.480 7.828
26 63.450 1.516 14.127 10.261 8.296
28 65.313 1.609 16.912 11.232 8.834

29.55 66.728 1.680 21.112 12.180 9.314
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Table 13. The range of pressure q and capacitance C, and the analytical expressions of the fitting
functions in Figure 19.

Functions q/KPa C/pF Functional Expressions

Function 1 1~12 4.921~7.560 q = −20.16 + 4.248C
Function 2 0.5~16 4.708~8.671 q = −19.13 + 4.098C − 0.001996C2

Function 3 0.5~22 4.708~11.119 q = −6.704 − 1.874C + 0.9372C2 − 0.04836C3

Function 4 0~29.55 4.086~21.112 q = −35.72 + 9.574C − 0.5129C2 + 0.01150C3 − 0.00008396C4

Function 5 1~29.55 4.517~12.180 q = −14.94 + 3.964C
Function 6 1~29.55 4.175~9.314 q = −22.78 + 5.878C

Note: The average sum of fitting error squares of Functions 1–6 is 0.0206, 0.0548, 0.0332, 0.0961, 3.1043 and
1.1813, respectively.
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From Figures 20–23, it can be seen that the change in the Young’s modulus of elas-
ticity E affects both the range of output pressure q (increasing with the decrease in the
Young’s modulus of elasticity E) and the range of input capacitance C (decreasing with the
decrease in the Young’s modulus of elasticity E) on the premise of ensuring the basically
same fitting accuracy (the average sum of fitting error squares of each fitting function (e.g.,
Function 1, 2, 3 or 4) is basically the same (see the footers of Tables 5, 11 and 13)). Therefore,
as the Young’s modulus of elasticity E decreases from the reference value of 7.84 MPa to
5 MPa and then to 2.5 MPa, the output pressure per unit capacitance of Function 1 increases
from 1.940 KPa/pF to 2.633 KPa/pF and then to 4.168 KPa/pF, while the output pressure
per unit capacitance of Function 4 increases from 1.071 KPa/pF to 1.402 KPa/pF and then
to 1.736 KPa/pF, which are calculated from Tables 5, 11 and 13.

3.2.3. Effect of Poisson’s Ratio on Input–Output Relationships

The design parameters used in Section 3.1 are still used as reference, that is, v = 0.47,
E = 7.84 MPa, a = 100 mm, h = 1 mm, t = 0.1 mm, ε0 = 8.854× 10−12 F/m = 8.854× 10−3 pF/mm,
εr1 = 2.5, εr2 = 1.00053, σy = 2.4 MPa and σm ≤ 0.7 σy ≈ 1.68 MPa. In this section, the
Poisson’s ratio v of the conductive membrane is first decreased from the reference value of
0.47 (for such as polymer films) to 0.32 (for such as metal films) and then further decreased
to 0.16 (for such as graphene films). When v = 0.32, the calculation results are listed in
Table 14, the relationships between input capacitance C and output pressure q are shown in
Figure 24, the results of least-squares fitting are shown in Figure 25, the fitting functions
are listed in Table 15, and the average sum of fitting error squares of each fitting function is
shown in the footer of Table 15. When v = 0.16, the calculation results are listed in Table 16,
the input–output relationships are shown in Figure 26, the results of least-squares fitting
are shown in Figure 27, the fitting functions are listed in Table 17, and the average sum of
fitting error squares of each fitting function is shown in the footer of Table 17. The effects of
a decrease in the Poisson’s ratio v from 0.47 to 0.32 and then to 0.16 on the fitting functions
(Functions 1–4) are summarized in Figures 28–31.

Table 14. The calculation results for a = 100 mm, h = 1 mm, E = 7.84 MPa, ν = 0.32, t = 0.1 mm and
g = 45 mm, 50 mm and 55 mm.

q/KPa wm/mm σm/MPa
C/pF

g = 45 mm g = 50 mm g = 55 mm

0 0.000 0.000 6.173 5.556 5.051
0.5 12.048 0.118 7.236 6.398 5.734
1 15.196 0.189 7.607 6.682 5.959
2 19.177 0.303 8.164 7.099 6.283
4 24.212 0.488 9.067 7.750 6.775
6 27.755 0.648 9.903 8.325 7.197
8 30.579 0.795 10.754 8.882 7.592
10 32.966 0.932 11.664 9.446 7.980
12 35.054 1.064 12.672 10.033 8.369
14 36.922 1.190 13.830 10.657 8.767
16 38.623 1.312 15.211 11.334 9.181
18 40.189 1.432 16.944 12.082 9.615
20 41.647 1.548 19.283 12.926 10.077
22 43.014 1.663 22.876 13.899 10.574

22.31 43.219 1.680 24.548 14.065 10.654

Table 15. The range of pressure q and capacitance C, and the analytical expressions of the fitting
functions in Figure 25.

Functions q/KPa C/pF Functional Expressions

Function 1 1~8 7.607~10.754 q = −16.243 + 2.247C
Function 2 0.5~12 7.236~12.672 q = −13.84 + 1.816C + 0.01848C2

Function 3 0.5~18 7.236~16.944 q = −5.703 − 0.8907C + 0.3141C2 − 0.01058C3

Function 4 0~22.31 6.173~24.548 q = −13.26 + 0.9157C + 0.2073C2 − 0.01209C3 + 0.0001844C4

Function 5 1~22.31 6.682~14.065 q = −18.52 + 2.974C
Function 6 1~22.31 5.959~10.654 q = −27.45 + 4.697C

Note: The average sum of fitting error squares of Functions 1–6 is 0.0112, 0.0245, 0.0182, 0.03928, 0.3715 and
0.0729, respectively.
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Figure 24. Variations of pressure q with capacitance C, when a = 100 mm, h = 1 mm, E = 7.84 MPa,
ν = 0.32, t = 0.1 mm and g = 45 mm, 50 mm and 55 mm.
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Figure 25. Least-squares fitting of the relationships between q and C in Figure 24.

Table 16. The calculation results for a = 100 mm, h = 1 mm, E = 7.84 MPa, ν = 0.16, t = 0.1 mm and
g = 48 mm, 53 mm and 58 mm.

q/KPa wm/mm σm/MPa
C/pF

g = 48 mm g = 53 mm g = 58 mm

0 0.000 0.000 5.787 5.242 4.790
0.5 12.756 0.114 6.783 6.041 5.446
1 16.091 0.182 7.131 6.312 5.663
2 20.307 0.292 7.653 6.709 5.976
4 25.639 0.472 8.498 7.331 6.453
6 29.390 0.627 9.279 7.881 6.863
8 32.381 0.769 10.072 8.414 7.248
10 34.910 0.903 10.918 8.955 7.627
12 37.126 1.031 11.854 9.520 8.009
14 39.113 1.154 12.924 10.122 8.402
16 40.925 1.274 14.196 10.778 8.812
18 42.598 1.390 15.780 11.506 9.246
20 44.160 1.504 17.892 12.331 9.711
22 45.630 1.616 21.054 13.290 10.215

23.173 46.455 1.680 23.397 13.937 10.532
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Figure 26. Variations of pressure q with capacitance C, when a = 100 mm, h = 1 mm, E = 7.84 MPa,
ν = 0.16, t = 0.1 mm and g = 48 mm, 53 mm and 58 mm.
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Figure 27. Least-squares fitting of the relationships between q and C in Figure 26.

Table 17. The range of pressure q and capacitance C, and the analytical expressions of the fitting
functions in Figure 27.

Functions q/KPa C/pF Functional Expressions

Function 1 1~8 7.131~10.072 q = −16.29 + 2.404C
Function 2 0.5~12 6.783~11.854 q = −13.65 + 1.889C − 0.02428C2

Function 3 0.5~18 6.783~15.780 q = −5.029 − 1.161C + 0.3782C2 − 0.01347C3

Function 4 0~23.173 5.787~23.397 q = −17.29 + 2.232C + 0.09929C2 − 0.008501C3 − 0.0001417C4

Function 5 1~23.173 6.312~13.937 q = −17.62 + 3.031C
Function 6 1~23.173 5.663~10.532 q = −26.15 + 4.735C

Note: The average sum of fitting error squares of Functions 1–6 is 0.0117, 0.0245, 0.0177, 0.0597, 0.5367 and
0.1019, respectively.
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Figure 28. The effect of changing the Poisson’s ratio v on Function 1 in Tables 5, 15 and 17 (fitted by a
straight line).
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Figure 29. The effect of changing the Poisson’s ratio v on Function 2 in Tables 5, 15 and 17 (fitted by a
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Figure 30. The effect of changing the Poisson’s ratio v on Function 3 in Tables 5, 15 and 17 (fitted by a
cubic function).
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Figure 31. The effect of changing the Poisson’s ratio v on Function 4 in Tables 5, 15 and 17 (fitted by a
quartic function).

As can be seen from Figures 28–31, especially from Figure 31, the change of the
Poisson’s ratio v from 0.47 to 0.32 and then to 0.16 results in only a small nearly parallel
shift of the q(C) curves along the horizontal coordinate axis; that is, such a large change in
the Poisson’s ratio v from 0.47 to 0.32 and then to 0.16 does not have much effect on both
the range of output pressure q and the range of input capacitance C. This means that when
choosing a polymer conductive membrane as the movable electrode plate of a capacitor in a
non-touch mode circular capacitive pressure sensor, it is sufficient to know the approximate
range of Poisson’s ratio rather than its exact value.
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3.2.4. Effect of Insulator Layer Thickness on Input–Output Relationships

The design parameters used in Section 3.1 are still used as reference, that is, v = 0.47,
E = 7.84 MPa, a = 100 mm, h = 1 mm, t = 0.1 mm, ε0 = 8.854× 10−12 F/m = 8.854× 10−3 pF/mm,
εr1 = 2.5, εr2 = 1.00053, σy = 2.4 MPa and σm ≤ 0.7 σy ≈ 1.68 MPa. In this section, the
thickness t of the insulator layer is first increased from the reference value of 0.1 mm to
1 mm and then to 10 mm. When t = 1 mm, the calculation results are listed in Table 18, the
relationships between input capacitance C and output pressure q are shown in Figure 32,
the results of least-squares fitting are shown in Figure 33, the fitting functions are listed in
Table 19, and the average sum of fitting error squares of each fitting function are shown
in the footer of Table 19. When t = 10 mm, the calculation results are listed in Table 20,
the input–output relationships are shown in Figure 34, the results of least-squares fitting
are shown in Figure 35, the fitting functions are listed in Table 21, and the average sum of
fitting error squares of each fitting function are shown in the footer of Table 21. The effects
of an increase in the thickness t of the insulator layer from 0.1 mm to 1 mm and then to
10 mm on the fitting functions (Functions 1–4) are summarized in Figures 36–39.

Table 18. The calculation results for a = 100 mm, h = 1 mm, E = 7.84 MPa, ν = 0.47, t = 1 mm and
g = 41 mm, 46 mm and 51 mm.

q/KPa wm/mm σm/MPa
C/pF

g = 41 mm g = 46 mm g = 51 mm

0 0.000 0.000 6.716 5.992 5.409
0.5 11.237 0.124 7.884 6.899 6.133
1 14.173 0.198 8.293 7.205 6.371
2 17.884 0.317 8.909 7.654 6.713
4 22.579 0.511 9.911 8.355 7.233
6 25.884 0.677 10.848 8.976 7.676
8 28.519 0.829 11.810 9.578 8.092
10 30.747 0.972 12.850 10.189 8.499
12 32.694 1.107 14.022 10.828 8.908
14 34.435 1.238 15.394 11.509 9.325
16 36.018 1.364 17.082 12.250 9.758
18 37.473 1.487 19.300 13.073 10.212
20 38.825 1.608 22.560 14.007 10.693

21.225 39.670 1.680 25.700 14.651 11.005
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Table 19. The range of pressure q and capacitance C, and the analytical expressions of the fitting
functions in Figure 33.

Functions q/KPa C/pF Functional Expressions

Function 1 1~8 8.294~11.810 q = −15.82 + 2.012C
Function 2 0.5~12 7.884~14.022 q = −14.56 + 1.850C + 0.003927C2

Function 3 0.5~18 7.884~19.300 q = −9.152 + 0.1343C + 0.1818C2 − 0.006018C3

Function 4 0~21.225 6.716~25.700 q = −14.44 + 1.227C + 0.1336C2 − 0.007816C3 + 0.0001108C4

Function 5 1~21.225 7.205~14.651 q = −19.15 + 2.822C
Function 6 1~21.225 6.371~11.005 q = −28.36 + 4.522C

Note: The average sum of fitting error squares of Functions 1–6 is 0.0093, 0.0258, 0.0226, 0.0431, 0.2428 and
0.0641, respectively.

Table 20. The calculation results for a = 100 mm, h = 1 mm, E = 7.84 MPa, ν = 0.47, t = 10 mm and
g = 41 mm, 46 mm and 51 mm.

q/KPa wm/mm σm/MPa
C/pF

g = 41 mm g = 46 mm g = 51 mm

0 0.000 0.000 6.178 5.561 5.055
0.5 11.237 0.124 7.154 6.333 5.682
1 14.173 0.198 7.489 6.590 5.886
2 17.884 0.317 7.987 6.964 6.176
4 22.579 0.511 8.784 7.539 6.613
6 25.884 0.677 9.512 8.041 6.982
8 28.519 0.829 10.243 8.521 7.325
10 30.747 0.972 11.017 9.002 7.656
12 32.694 1.107 11.867 9.496 7.986
14 34.435 1.238 12.836 10.016 8.321
16 36.018 1.364 13.988 10.573 8.663
18 37.473 1.487 15.441 11.181 9.019
20 38.825 1.608 17.460 11.857 9.393

21.225 39.670 1.680 19.283 12.315 9.632

Table 21. The range of pressure q and capacitance C, and the analytical expressions of the fitting
functions in Figure 35.

Functions q/KPa C/pF Functional Expressions

Function 1 1~8 7.489~10.243 q = −18.39 + 2.566C
Function 2 0.5~12 7.154~11.867 q = −13.80 + 1.634C − 0.04658C2

Function 3 0.5~18 7.154~15.441 q = 0.3096 − 3.154C + 0.5811C2 − 0.01963C3

Function 4 0~21.225 6.178~19.283 q = 0.005001 − 3.930C + 0.8241C2 − 0.04285C3 + 0.0007059C4

Function 5 1~21.225 6.590~12.315 q = −23.29 + 3.673C
Function 6 1~21.225 5.886~9.632 q = −32.63 + 5.593C

Note: The average sum of fitting error squares of Functions 1–6 is 0.0150, 0.0251, 0.0168, 0.0281, 0.1352 and
0.0876, respectively.
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From Figures 36–39, it can be seen that increasing the thickness t of the insulator
layer has no effect on the range of output pressure q, and it only reduces the range of
input capacitance C, resulting in an increase in the output pressure per unit capacitance.
Taking Function 4 as an example, when the thickness t of the insulator layer increases from
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0.1 mm to 10 mm, the output pressure per unit capacitance increases from 1.071 KPa/pF
(calculated from Table 5) to 1.620 KPa/pF (calculated from Table 21). As a result, it is
generally welcome for the thickness t of the insulator layer to be as thin as possible.

4. Concluding Remarks

In this paper, an analytical solution-based method for the design and numerical
calibration of polymer conductive membrane-based non-touch mode circular capacitive
pressure sensors is presented. This novel method can provide effective theoretical support
for the design and fabrication of such sensors. From this study, the following conclusions
can be drawn.

The so-called nearly linear input–output relationships of non-touch mode capacitive
pressure sensors can be easily realized by using the presented analytical solution-based
method. It can be seen from Section 3 that the desired nearly linear input–output relation-
ships can be easily achieved by changing design parameters, such as membrane thickness,
Young’s modulus of elasticity and the initial gap between the initially flat undeflected
conductive membrane and the insulator layer coating on the substrate electrode plate.
Therefore, the view in the literature is open to debate that non-touch mode capacitive
pressure sensors are far inferior to touch mode capacitive pressure sensors in the easy
realization of nearly linear input–output relationships.

The change in membrane thickness has no effect on the range of input capacitance
and only affects the range of output pressure, which increases with the increase in mem-
brane thickness.

The change in Young’s modulus of elasticity affects both the range of output pressure
and the range of input capacitance, where the range of output pressure increases with the
decrease in Young’s modulus of elasticity, and the range of input capacitance decreases
with the decrease in Young’s modulus of elasticity.

The change in Poisson’s ratio has a very limited effect on input–output relationships.
Therefore, it is sufficient to know the approximate range of Poisson’s ratio rather than its
exact value when choosing a polymer conductive membrane as the movable electrode plate
of a capacitor of a non-touch mode circular capacitive pressure sensor.

The change in insulator layer thickness has no effect on the range of output pressure
and only affects the range of input capacitance, which decreases with the increase in
insulator layer thickness.
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Appendix A

A peripherally fixed, initially flat and taut linearly elastic circular membrane with
Young’s modulus of elasticity E, Poisson’s ratio ν, thickness h, and radius a is subjected to
a uniformly distributed transverse loads q, as shown in Figure A1, where r is the radial
coordinate, w is the transversal displacement, o is and the original point of the introduced
cylindrical coordinates system (r, φ, w) (where the polar coordinate plane (r, φ) is located
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in the plane in which the geometric middle plane of the initially flat circular membrane is
located). Let us take a free body with radius 0≤ r≤ a from the deflected circular membrane
under uniformly distributed transverse loads q, as shown in Figure A2, to study its static
problem of equilibrium.
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Figure A2. Sketch of a free body with radius 0 ≤ r ≤ a.

In the vertical direction perpendicular to the initially flat circular membrane, there are
two vertical forces acting the free body, that is, the πr2q produced by the loads q within r,
and the 2πrσrhsinθ produced by the membrane force σrh, where σr is radial stress. So, the
out-of-plane equilibrium condition is

2πrσrh sin θ = πr2q, (A1)

where
sin θ = 1/

√
1 + 1/ tan2 θ = 1/

√
1 + 1/(−dw/dr)2. (A2)

Substituting Equation (A2) into Equation (A1) yields

1
2

rq
√

1 + 1/(dw/dr)2 = σrh. (A3)

While in the direction parallel to the initially flat circular membrane, the equilibrium
condition may be written as [36]

d(rσr)

dr
− σt[1 + (−dw

dr
)

2
] = 0, (A4)

where σt denotes circumferential stress. The derivation of Equation (A4) is detailed in [36].
If the radial and circumferential strain and the radial displacement are denoted by er, et and
u, respectively, then the relationships between strain and displacement for large deflection
problems may be written as [37]

er = [(1 +
du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− 1 (A5)

and
et =

u
r

. (A6)

Moreover, the relationships between stress and strain are still assumed to satisfy linear
elasticity and expressed in terms of generalized Hooke’s law [38]
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σr =
E

1− ν2 (er + νet) (A7)

and
σt =

E
1− ν2 (et + νer). (A8)

Substituting Equations (A5) and (A6) into Equations (A7) and (A8) yields

σr =
E

1− ν2 {[(1 +
du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− 1 + ν
u
r
} (A9)

and

σt =
E

1− ν2 {
u
r
+ ν[(1 +

du
dr

)
2
+ (

dw
dr

)
2
]

1/2

− ν}. (A10)

By means of Equations (A4), (A9) and (A10), one has

u
r
=

1
E
(σt − νσr) =

1
E
[

d(rσr)
dr

1 + (−dw
dr )

2 − νσr]. (A11)

After substituting the u in Equation (A11) into Equation (A9), we obtain an equation
containing only the radial stress σr and deflection w(r)

{1 + 1
E

d(rσr)
dr

1+(− dw
dr )

2 − νσr
E + r

E
d
dr [

d(rσr)
dr

1+(− dw
dr )

2 ]− rν
E

dσr
dr }

2

+ (dw
dr )

2

−[ σr
E −

ν
E

d(rσr)
dr

1+(− dw
dr )

2 + 1]
2

= 0
. (A12)

Equations (A3) and (A12) are two equations for solving the radial stress σr and
deflection w(r). The boundary conditions, under which the particular solutions of the
radial stress σr and deflection w(r) can be determined, are

w = 0 at r = a, (A13)

u = 0 at r = a (A14)

and
dw
dr

= 0 at r = 0. (A15)

Let us introduce the following dimensionless variables

Q =
qa
Eh

, W =
w
a

, Sr =
σr

E
, St =

σt

E
, x =

r
a

, α =
b
a

, (A16)

and transform Equations (A3), (A12), (A13)–(A15) into

(4S2
r − x2Q2)(−dW

dx
)

2
− x2Q2 = 0, (A17)

{1 +
d(xSr)

dx

1+(− dW
dx )

2 − νSr + x d
dx [

d(xSr)
dx

1+(− dW
dx )

2 ]− xν dSr
dx }

2

+ (dW
dx )

2

−[Sr − ν
d(xSr)

dx

1+(− dW
dx )

2 + 1]
2

= 0
, (A18)

W = 0 at x = 1, (A19)

St − νSr =
d(xSr)

dx

1 + (−dW
dx )

2 − νSr = 0 at x = 1 (A20)
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and
dW
dx

= 0 at x = 0. (A21)

Since the values of stress and deflection are both finite at x = 0, Sr and W can be
expanded into the power series of the x, i.e., letting

Sr =
∞

∑
i=0

bixi, (A22)

and
W =

∞

∑
i=0

cixi. (A23)

After substituting Equations (A22) and (A23) into Equations (A17) and (A18), it is
found that bi ≡ 0 and ci ≡ 0 when i is odd, and when i is even, bi and ci can be expressed into
the polynomial of the first coefficient b0, which are listed in Appendix B. The remaining two
coefficients, b0 and c0, are often called undetermined coefficients, which can be determined
by using the boundary conditions Equations (A19) and (A20). From Equations (A22) and
(A23), Equation (A20) gives

(1− ν)
∞

∑
i=0

bi +
∞

∑
i=1

ibi − ν
∞

∑
i=0

bi(−
∞

∑
i=1

ici)
2

= 0, (A24)

and from Equation (A23), Equation (A19) gives

c0 = −
∞

∑
i=1

ci. (A25)

After substituting all expressions of bi and ci (i = 2, 4, 6, . . . ) in Appendix B into Equa-
tion (A24), an equation which contains only the undetermined constant b0 can be obtained.
Therefore, the undetermined constant b0 can be determined by solving this univariate
variable equation. So, with the known b0, all the coefficients ci (i = 2, 4, 6, . . . ) can be
determined, and the undetermined constant c0 can thus be determined by Equation (A25).
The problem under consideration is thus solved.

Appendix B

b2 =
1

64
Q2[(2v2 + 4v− 6)b2

0 + (−2v− 6)b0 + 1]
(vb0 − b0 − 1)b2

0
,

b4 = Q4

12288(vb0−b0−1)3b5
0
[(4v5 + 20v4 − 24v3 − 88v2 + 148v− 60)b5

0 + (−12v4

−72v3 + 264v− 180)b4
0 + (4v3 + 108v2 + 60v− 172)b3

0 + (6v2 − 64v− 38)b2
0

+(−7v + 21)b0 + 2]

,

b6 = − Q6

4718592b8
0(νb0−b0−1)5 [(48ν8 + 336ν7 − 432ν6 − 2544ν5 + 4080v4

+3312v3 − 10896v2 + 8812v− 2016)b8
0 + (−240ν7 − 1920ν6 + 240ν5

+12960v4 − 7440v3 − 24000v2 + 30480v− 10080)b7
0 + (412ν6 + 5696ν5

+396v4 − 20704v3 − 3404v2 + 36384v− 18780)b6
0 + (−440v5 − 9400v4

−432v3 + 16016v2 + 9064v− 14808)b5
0 + (196v4 + 10044v3 − 396v2

−7084v− 2760)b4
0 + (64v3 − 6508v2 + 328v + 1508)b3

0 + (−139v2

+2492v− 365)b2
0 + (70v− 414)b0 − 13]

,
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b8 = − Q8

3019898880b11
0 (νb0−b0−1)7 [(3360ν10 + 24960ν9 − 80160ν8 − 199680ν7

+840000ν6 − 349440ν5 − 2103360ν4 + 4085760ν3 − 3354720ν2 + 1353600v

−220320)b11
0 + (−23520ν9 − 198240ν8 + 362880ν7 + 1760640ν6 − 4119360ν5

−1673280ν4 + 13050240v3 − 15550080v2 + 7932960v− 1542240)b10
0

+(1144ν9 + 10392ν8 + 972096ν7 − 998912ν6 − 5469840ν5 + 7437936v4

+10223488v3 − 26362176v2 + 18746712v− 4560840)b9
0 + (3536ν8

+159280ν7 − 2551472ν6 + 1399344ν5 + 9325040ν4 − 6036976ν3

−17004560v2 + 21988752v− 7282944)b8
0 + (−11700v7 − 575948v6

+4167164v5 − 1060860v4 − 9371740v3 + 1693660v2 + 11673108v− 6513684)b7
0

+(15080v6 + 979400v5 − 4425584v4 + 382096v3 + 5710216v2 + 148136v

−2809344)b6
0 + (−7734v5 − 1038294v4 + 3202252v3 − 52244v2 − 2084822v

−19158)b5
0 + (−2064v4 + 715572v3 − 1522436v2 − 9076v + 357204)b4

0

+(5851v3 − 319097v2 + 451169v− 24635)b3
0 + (−3872ν2 + 83624ν

−61360)b2
0 + (1249ν− 9867)b0 − 170]

,

b10 = Q10

2899102924800b14
0 (νb0−b0−1)9 [(22400ν14 + 409920ν13 + 1014720ν12 − 9726080ν11

−3521280ν10+86385600ν9 − 111330240ν8 − 171037440ν7 + 582744960ν6

−550034240ν5 + 35112000ν4 + 348136320v3 − 304353280v2 + 112365120v

−16188480)b14
0 + (−201600ν13 − 3890880ν12 − 13023360ν11 + 74511360v10

+106202880ν9 − 671267520ν8 + 330704640ν7 + 1870041600ν6 − 3374663040ν5

+1575645120ν4 + 1259637120ν3 − 1873589760ν2+865589760v− 145696320)b13
0

+(877424ν12 + 13856448ν11 + 97175520ν10 − 341615296ν9 − 489544432ν8

+2072814464ν7 + 273949760ν6 − 6299616640ν5 + 6738156176v4 − 14196288v3

−4216050208v2 + 2722935872v− 558742800)b12
0 + (−1833472ν11 − 28624640ν10

−377462272ν9 + 970592000ν8 + 1233044480ν7 − 3745627648v6 − 2152600576v5

+10025887232ν4 − 5730388480ν3 − 3346656000v2 + 4325224960v− 1171555584)b11
0

+(2530256ν10 + 27659168ν9 + 948859856ν8 − 1906270080ν7 − 2010922592ν6

+4592590016ν5 + 3483742752v4 − 8686119296v3 + 1747844240v2 + 3209060512v

−1408974832)b10
0 + (−2272896ν9 + 10991840ν8 − 1652145088v7 + 2664400960ν6

+2358232384ν5 − 4169356544ν4 − 2792458560v3 + 4314276288v2 + 146218560v

−877886944)b9
0 + (1293024ν8 − 83384976v7 + 2090074736ν6 − 2716072144ν5

−2029579664ν4 + 2826419792ν3 + 1222698832v2 − 1193075440v− 118374160)b8
0

+(−412456v7 + 144241880v6 − 1941687272v5 + 2014558744v4 + 1251889736v3

−1368033976v2 − 231963960v + 131407304)b7
0 + (223816v6 − 151574252v5

+1326402684v4 − 1088660824v3 − 512170784v2 + 437971268v− 12191908)b6
0

+(−430984v5 + 108223300v4 − 651169928v3 + 410820848v2 + 124004176v

−68861812)b5
0 + (514053v4 − 53453864v3 + 219557418v2 − 101677512v− 8835455)b4

0

+(−350854v3 + 17631250v2 − 45524858v+12106846)b3
0 + (145077ν2 − 3525540ν

+4378799)b2
0 + (−34588v + 326224) + 3700]

,
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b12 = 1
1376256b0

12(vb0−b0−1){(−2752512 v + 9830400)b6
2b0

12 − 3584 Q6b2
3b0

3

+[(−24576 Q2v2 − 237568 Q2v + 1179648 Q2)b0
7 + (−18432 Q2v− 239616 Q2)b0

6

−6144 Q2b0
5]b2

5 + [(−1280 Q4v2 + 109824 Q4)b0
6 + 8960 Q4b0

4]b2
4 + 576 Q8b2

2b0
2

+{(1280 Q4v2 − 5376 Q4)b0
8 + 2560 Q4b0

6 + [(−90112 Q2v2 − 696320 Q2v

+5308416 Q2)b0
9 + (−55296 Q2v− 718848 Q2)b0

8 − 12288 Q2b0
7]b2}b4

2 − 40 Q10b2b0

+[(−3670016 v + 8912896)b2b0
12 + (40960 Q2v2 + 286720 Q2v− 983040 Q2)b0

11

+(−18432 Q2v− 239616 Q2)b0
10 − 2048 Q2b0

9]b10 + {(−5046272 v + 16580608)b4b0
12

+(−3584 Q4v2 + 118272 Q4)b0
9 − 1024 Q4b0

7 + [(24576 Q2v2 + 106496 Q2v

−1769472 Q2)b0
10 + (36864 Q2v + 479232 Q2)b0

9 + 6144 Q2b0
8]b2}b8

+{(−384 Q6b0
5 + [(−73728 Q2v2 − 548864 Q2v + 4227072 Q2)b0

9 + (−55296 Q2v

−718848 Q2)b0
8 − 12288 Q2b0

7]b2
2 + [(57344 Q2v2 + 303104 Q2v− 3932160 Q2)b0

10

+(36864 Q2v + 479232 Q2)b0
9 + 6144 Q2b0

8]b4 + [(4608 Q4v2 − 121344 Q4)b0
8

+5120 Q4b0
6]b2}b6 + (2688 Q6b2b0

4 + {(106496 Q2v2 + 942080 Q2v− 5603328 Q2)b0
8

+(73728 Q2v + 958464 Q2)b0
7 + 20480 Q2b0

6)b2
3 − 128 Q8b0

3 + [(−1024 Q4v2

−101376 Q4)b0
7 − 15360 Q4b0

5]b2
2}b4 + Q12}

,

b14 = 1
7340032 b0

14(vb0−b0−1){(196608 Q2v2b12 + 1572864 Q2vb12 − 5505024 Q2b12)b0
13

+(−90112 Q2vb12 − 1351680 Q2b12)b0
12 − 8192 Q2b12b0

11 + 32256 Q6b2
4b0

4

+[(131072 Q2v2 + 1540096 Q2v− 7274496 Q2)b0
8 + (90112 Q2v + 1351680 Q2)b0

7

+28672 Q2b0
6]b2

6 − 7680 Q8b2
3b0

3 + [(26624 Q4v2 − 2004992 Q4)b0
7 − 57344 Q4b0

5]b2
5

+880 Q10b2
2b0

2 + [(−196608 Q2v2 − 1835008 Q2v + 14417920 Q2)b0
11 + (−90112 Q2v

−1351680 Q2)b0
10 − 16384 Q2b0

9]b4
3 + [(196608 Q2v2 + 1277952 Q2v− 16711680 Q2)b0

12

+(90112 Q2v + 1351680 Q2)b0
11 + 12288 Q2b0

10]b6
2 + {5376 Q6b0

6 + [(983040 Q2v2

+10125312 Q2v− 65077248 Q2)b0
10 + (540672 Q2v + 8110080 Q2)b0

9

+122880 Q2b0
8]b2

2 + [(20480 Q4v2 − 2502656 Q4)b0
9 − 61440 Q4b0

7]b2}b4
2

+{(−28311552 v + 99090432)b4b0
14 + (−18432 Q4v2 + 718848 Q4)b0

11 − 4096 Q4b0
9

+((131072 Q2v2 + 720896 Q2v− 10878976 Q2)b0
12 + (180224 Q2v + 2703360 Q2)b0

11

+24576 Q2b0
10)b2}b10 + [(−32505856 v + 130023424]b6b0

14 − 1536 Q6b0
7 + [(−393216 Q2v2

−3342336 Q2v + 27131904 Q2)b0
11 + (−270336 Q2v− 4055040 Q2)b0

10 − 49152 Q2b0
9]b2

2

+[(327680 Q2v2 + 2097152 Q2v− 27000832 Q2)b0
12 + (180224 Q2v + 2703360 Q2)b0

11

+24576 Q2b0
10]b4 + [(22528 Q4v2 − 649216 Q4)b0

10 + 20480 Q4b0
8]b2}b8

+{10752 Q6b2b0
6 − 512 Q8b0

5 + [(589824 Q2v2 + 5898240 Q2v− 38535168 Q2)b0
10

+(360448 Q2v + 5406720 Q2)b0
9 + 81920 Q2b0

8]b2
3 + [(4096 Q4v2 − 1355776 Q4)b0

9

−61440 Q4b0
7]b2

2 + {(6144 Q4v2 + 497664 Q4)b0
10 + 20480 Q4b0

8 + [(−1048576 Q2v2

−9306112 Q2v + 76808192 Q2)b0
11 + (−540672 Q2v− 8110080 Q2)b0

10

−98304 Q2b0
9]b2}b4}b6 + {−43008 Q6b2

2b0
5 + 4608 Q8b2b0

4 + [(−720896 Q2v2

−7995392 Q2v + 43515904 Q2)b0
9 + (−450560 Q2v− 6758400 Q2)b0

8 − 122880 Q2b0
7]b2

4

+[(−61440 Q4v2 + 5296128 Q4)b0
8 + 143360 Q4b0

6]b2
3 − 160 Q10b0

3}b4

+[(−19922944 vb12 + 49807360 b12)b0
14 − 48 Q12b0]b2 + Q14}

,

c2 = − Q
4 b0

,
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c4 =
Q3

512 b04(vb0 − b0 − 1)
[(2 v2 − 4 v + 2 )b0

2 + (2 − 2 v)b0 + 1],

c6 = − Q5

147456 b0
7(vb0−b0−1)3 [(8 v5 − 128 v4 + 240 v3 − 32 v2 − 184 v + 96) b0

5

+(−24 v4 + 360 v3 − 360 v2 − 264 v + 288 )b0
4 + (44 v3 − 420 v2 + 132 v + 244 )b0

3

+(232 v− 42 v2 + 2 )b0
2 + (22 v− 60 )b0 − 5]

,

c8 = − Q7

75497472 b0
10(vb0−b0−1)5 [(3216 v7 − 15408 v6 + 24912 v5 − 6000 v4 − 29520 v3

+39024 v2 − 20112 v + 3888 )b0
8 + (−16080 v6 + 60960 v5 − 63600 v4 − 33600 v3

+114000 v2 − 81120 v + 19440 )b0
7 + (−428 v6 + 38288 v5 − 108684 v4 + 60416 v3

+94396 v2 − 124176 v + 40188 )b0
6 + (1336 v5 − 53608 v4 + 109296 v3 − 19600 v2

−80936 v + 43512) b0
5 + (−2096 v4 + 47964 v3 − 65748 v2 − 4012 v + 23892 )b0

4

+(1948 v3 − 27136 v2 + 22492 v + 2696) b0
3 + (−1117 v2 + 9128 v− 3815) b0

2

+(370 v− 1410 )b0 − 55]

,

c10 = Q9

60397977600 b0
13(vb0−b0−1)7 [(1600 v11 + 72480 v10 − 960960 v9 + 3537120 v8

−4771200 v7 − 880320 v6 + 9475200 v5 − 9445440 v4 + 1308480 v3 + 3600800 v2

−2431680 v + 493920 )b0
11 + (−11200 v10 − 518560 v9 + 6208160 v8 − 18551680 v7

+14846720 v6 + 21008960 v5 − 45317440 v4 + 20800640 v3 + 11641280 v2

−13564320 v + 3457440) b0
10 + (23336 v9 + 1969928 v8 − 19393216 v7

+44830592 v6 − 13689520 v5 − 66084016 v4 + 71105792 v3 − 1117504 v2

−27499192 v + 9853800 )b0
9 + (−17456 v8 − 4713840 v7 + 37036272 v6

−63503984 v5 − 7305840 v4 + 89499696 v3 − 45688880 v2 − 19459152 v

+14153184)b0
8 + (−33980 v7 + 7727068 v6 − 47283244 v5 + 57453900 v4

+25152780 v3 − 62541740 v2 + 10101212 v + 9424004)b0
7 + (116760 v6

−8919720 v5 + 41681104 v4 − 34006096 v3 − 21915336 v2 + 23022584 v

+20704)b0
6 + (−172946 v5 + 7335694 v4 − 25480732 v3 + 12969284 v2

+9123182 v− 3774482) b0
5 + (159544 v4 − 4242372 v3 + 10451396 v2

−2963324 v− 1562044 )b0
4 + (−97851 v3 + 1657497 v2 − 2644289 v

+355355) b0
3 + (39292 v2 − 396104 v + 316660)b0

2 + (−9469 v + 44047) b0 + 1050]

,

c12 = − 1
12 b0

(14 Qc2
10 − 80 Qc2

7c4 + 36 Qc2
5c6 + 120 Qc2

4c4
2 − 16 Qc2

3c8

−72 Qc2
2c4c6 − 32 Qc2c4

3 + 10 Qc2c10 + 16 Qc4c8 + 9 Qc6
2 + 10 b2c10 + 8 b4c8

+6 b6c6 + 4 b8c4 + 2 b10c2)

,

c14 = 1
7 b0

(21 Qc2
12 − 140 Qc2

9c4 + 60 Qc2
7c6 + 280 Qc2

6c4
2 − 24 Qc2

5c8 − 180 Qc2
4c4c6

−160 Qc2
3c4

3 + 10 Qc2
3c10 + 48 Qc2

2c4c8 + 27 Qc2
2c6

2 + 72 Qc2c4
2c6 + 8 Qc4

4 − 6 Qc2c12

−10 Qc4c10 − 12 Qc6c8 − 6 b2c12 − 5 b4c10 − 4 b6c8 − 3 b8c6 − 2 b10c4 − b12c2)

.
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