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Abstract: The by-product abundances of fly ash allow them to be used as the reinforcing filler
for high-volume and high-performance thermoplastic composites. However, the durability of the
composites remains questioned as polymer degradation during environmental weathering creates
brittle materials, leading to surface cracks, which potentially release hazardous fly ash particles
into the environment. This paper reports the effect of environmental ageing (UV and moisture
exposure) on the morphological and mechanical properties of fly ash mixed high-density polyethylene
(FA/HDPE) composites with three dissimilar weight fractions (5, 10 and 15 wt%) of filler and
compared the results with similarly aged neat HDPE samples. The consequence of environmental
ageing on the elevated mechanical properties of composites is investigated. Fifteen wt% fly ash
reinforced composite appears to have better morphological and mechanical properties after 20 weeks
of ageing, with only ~5 and ~9% reduction in Young’s modulus and tensile strength, respectively.
The driving factors controlling the ageing effects are broadly discussed and recommendations are
made for research advancements.

Keywords: fly ash; HDPE; polymer composite; environmental ageing; mechanical properties

1. Introduction

Polymer matrix composites that incorporate reinforcing particles [1–3], fibres [4–7]
or fabrics [8–10] are of superior stability, and physical properties show enhanced robust-
ness of the composite systems. Petroleum-derived thermoplastics are amongst the best
choices for matrix materials, and the selection of reinforcing elements include but are not
limited to carbonous particles or a mixture of such kinds [2,11–13], non-carbonous parti-
cles [14–17], carbon fibre, glass fibres and cellulose fibres. Nanoparticles, such as carbon
nanotubes [18,19] and graphene [20–22] reinforced composites have also attracted a high
degree of interest. However, the widespread uses of these nanocomposites for engineering
applications and frequent use may create unintentional pollution of land or water due to
nanoparticle release over time, increasing the risks of exposure to humans [23–25]. Many
studies on the ageing of diverse nanocomposites have shown that there exists a significant
release of reinforcing nano fillers resulting from environmental ageing [26,27]. Considering
this issue with nano scale fillers, micro scale particles, such as fly ash reinforcement, could
bring less impact to the environment.

Fly ashes are abundant material usually generated as by-product in different types of
heavy manufacturing facilities such as cement, oil, and coal-driven power plants [28,29].
Disposal of fly ash is a great concern and it is highly expected that fly ash can be used
to produce commercially valuable products [30,31]. For instance, incorporation of fly
Ash with construction materials can offer high quality and economical products such
as pre-mixed materials for construction sites [32,33].There have been significant research
advances reported on the ongoing work of fly ash-based geopolymer concrete of high
interfacial strength [34–36], providing the practical feasibility of using fly ashes in heady
construction industries. Some studies also reported the effective dosage rate of additive-
within a composite developed for construction application [37]. In regard to the fly ash
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filler, the concentration should be under a specified threshold in order to eliminate the
risk of abrasion-related microparticle release [38]. Following the impression of combin-
ing cementitious materials with fly ash, many researchers have extended the reinforcing
technology beyond construction industries, including polymer composites [39–41]. Scien-
tists also found high interfacial compatibility between fly ash and plastics, making them
suitable for fabricating composites of such kind [40,42,43]. The ceramic nature of fly ash
particles improves the mechanical performance and physical properties of their reinforced
composites, allowing them to be used in several heavy industries, including automotive,
aerospace and construction. Choice of plastics includes but not limited to polypropylene
(PP), polyethylene, and polyamides (PA). Among these thermoplastic polymers, high-
density polyethylene (HDPE) offers high stability and is used in several application fields,
including automotive components, packaging of consumables, building materials and
electronics [44,45]. HDPE is classified a semicrystalline plastic that is mechanically strong,
and resistant to moisture and chemical compounds [46]. These features are particularly
beneficial to resist the environmental ageing of the polymers and to prevent the release
of microplastics. In regard to the composites of HDPE, it is highly important to investi-
gate such stability features as a multi-component material is not similarly susceptible to
environmental ageing as that happens in a single-component polymeric material.

Environmental ageing(e.g., UV or moisture exposure) modifies the mechanical, physi-
cal and morphological properties of polymers [47]. Under prolonged UV exposure, poly-
mers undergo chemical cross-linking hence photo degradation, providing inferior mechani-
cal properties of such [4]. Several studies have shown that the use of carbonaceous fillers
enhances thermal stability in polymer composites with the cost of material degradation
and potential release of the fillers [48–50]. Accelerated weathering tests are typically used
to examine the variations of material properties against the extent of ageing. This test
simulates weather conditions, such as dry and wet environments, and estimates the po-
tential long-term durability of the subject material. Physical, mechanical or morphological
characterisation of the subject material can indicate the extent of degradation and the
release of reinforcing fillers due to the environmental ageing. While investigation of the
stability and degradation of plastic nanocomposites by environmental ageing for under-
standing the risk of released nano- and micro-scale additives has been performed by a few
researchers [51–54], there has been no such study performed for plastic composites with
fly ash fillers. This paper reports the effect of environmental ageing (UV and moisture
exposure) on the mechanical and morphological properties of fly ash reinforced HDPE
composites considering three different weight fractions (5%, 10% and 15%) of filler and
compared the results with similarly aged neat HDPE samples. Loading of fly ash fillers
would provide better mechanical properties to the composites and our aim is to investigate
how the environmental ageing would affect the elevated mechanical properties. We an-
ticipate that fly ash can act as a stabiliser with respect to degradation of HDPE composite
subjected to UV light and high moisture conditions. It is obvious that the concentration of
filler fly ash determines the extent of resistance to degradation of this plastic composite.
The driving factors behind the ageing effects are comprehensively discussed, and a few
recommendations are made for further improvement.

2. Materials and Methods
2.1. Materials and Compositions

Petroleum-derived thermoplastic HDPE was sourced from Saudi Basic Industries
Corporation (SABIC HDPE P6006N), Riyadh, Saudi Arabia. This HDPE material is suitable
for compounding into structural components without being much affected in prolonged
natural weathering conditions. Fly ash samples (particle size ranging 50–90 µm) were
supplied by MARAFIQ power plant, Yanbu, Saudi Arabia. The carbon content of the
as-received sample is in the range of ~89–92 wt% [55]. Some metallic micro-particles are
also present in the sample, including but not limited to aluminium (~0.0003 wt%), calcium
(~0.0005 wt%), magnesium (~0.007 wt%), iron (~0.007%), sodium (~0.001 wt%), nickel
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(~0.001 wt%) and vanadium (~0.009 wt%). Insignificant amounts of chromium, copper,
lead, zinc, and barium are also present in the sample [55].

2.2. Experimental Methods
2.2.1. Composite Sample Preparation

The conventional process of melt compounding was used in this study, followed by
injection moulding to fabricate samples for tensile testing. Five, 10 and 15 wt% fly ash
samples were rotary mixed with as-received HDPE granules and melt compounded using
a HAAKE PolyLab Mixer (Thermo Fisher Scientific Inc., Waltham, MA, USA) at 220 ◦C
for 30 min. Then, well-mixed composite batches were removed from the compounder and
cooled at normal environment. We name the batches FA5%/HDPE (contains 5 wt% fly
ash), FA10%/HDPE (contains 10 wt% fly ash) and FA15%/HDPE (contains 15 wt% fly ash).
All the batches of fly ash mixed HDPE (FA/HDPE) compounds and a pure HDPE sample
were injection moulded using HAAKE MiniJet II (Thermo Fisher Scientific Inc., Waltham,
MA, USA) at 240 ◦C for 10 sec, forming dumbbell-shaped samples for tensile testing.

2.2.2. Thermogravimetric Analysis

A portion of each final sample was used to perform thermogravimetric analysis (TGA)
to determine the processing temperature, degradation pattern and actual fly ash content
present in the final samples. In the TGA chamber, neat HDPE and FA/HDPE materials
were heated from 25 to 800 ◦C at a heating rate of 5 ◦C/min. The mass of each sample was
approximately 10 mg. The tests were performed in air (with a purge rate of 20 mL/min) so
that the environmental condition could be replicated during melt processing and relevant
degradation of the polymer.

2.2.3. Ageing Tests

Ageing tests were performed in an accelerated weathering chamber (QUV accelerated
weathering tester, Q-LAB, Westlake, OH, USA) under ultraviolet A (UV-A) bulbs with a
wavelength of 400 nm. This wavelength is suitable for ageing experiments rather than
burning due to long penetration depth of the radiation. The samples were exposed in the
active chamber for 20 weeks, with cycles being: (1) UV-A: 1.55 W/m2/nm, 60 ◦C, 8 h, and
(2) Condensation: 50 ◦C, 4 h.

2.2.4. Characterization Techniques

Scanning electron microscopy (SEM) was initially used to examine the surface degra-
dation of aged samples. Careful consideration was also taken to observe the extent of
fly ash particles exposed due to prolonged UV irradiation. Further, fracture surface of
the sample interiors was exposed by cryogenically (at −196 ◦C) breaking them in liquid
nitrogen and taken for SEM studies. This observation indicates the extent of filler-matrix
adhesion within the composite and gives a measure of interfacial shear strength (IFSS).
Since IFSS directly contributes to the mechanical properties of the composite system, tensile
tests were conducted for all the aged materials to understand their durability and stability
over the ageing period. Multiple test samples were used for ageing tests, and one of each
sample type was taken out every five weeks and characterised to understand the overall
degradation pattern.

3. Results and Discussion
3.1. Thermogravimetric Properties

There is a possibility that the melt compounding process can result in the loss of
polymer fraction of different batches, being attached with the hot internal wall of the mixer.
Thermogravimetric tests were carried out for newly moulded neat HDPE and FA/HDPE
samples to study their degradation behaviour, apparently to confirm the presence of
expected fly ash content in all the samples of interest. The uniformity of filler concentration
is crucial when the composite is exposed to UV light and weathering over a prolonged
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period of time. It is anticipated that fly ash fillers will absorb light from the whole range of
the source spectrum, protecting HDPE from much adsorption of high energy photons. The
resistance to UV radiation is also subject to the scattering of the photon adsorbing fillers in
the base matrix and relevant concentration.

Figure 1 shows the TGA test results obtained from neat HDPE and FA/HDPE materials.
In Figure 1A, all the samples started to lose weight at ~280 ◦C and fully degraded at
~600 ◦C. Thermogravimetric pattern can be understood better at ~500 ◦C (Figure 1B),
where neat HDPE and FA/HDPE samples show different extents of material degradation.
The composite samples show gradually higher thermal stability as the amount of filler
increases. The main driving factor behind such behaviour is the high thermal stability of
metal microparticles in bulk fly ash samples. At ~500 ◦C, the difference between weight
degradation is ~5%, which confirms the presence of 5–15 wt% fly ash fillers in a 5 wt%
increment. The filler uniformity will also play a crucial role in the mechanical properties
of the UV irradiated composites, fly ash particles providing a consistent stabilising effect
against light and other weather conditions.
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Figure 1. Thermogravimetric test results of newly moulded neat HDPE and FA/HDPE composite
materials: (A) general trend of degradation, (B) understanding of different sample degradation
pattern at ~500 ◦C to evaluate the filler concentration and uniformity.

3.2. Surface Morphology

HDPE consists of a semicrystalline structure with spheroidic bunches of crystals en-
closed by a continuous amorphous phase. During the ageing process in QUV chamber, the
elasticity of both neat HDPE and FA/HDPE samples is meant to be decreased. UV expo-
sure and condensation cycles could result in photo oxidation and hydrolysis, producing
environmental stress cracking. In this regard, diffusion of oxygen through the amorphous
region occurs frequently, but diffusion through the crystalline regions is fairly restricted.
Consequently, the majority of environmental ageing happens at the spherulite boundaries,
weakening the effective adhesion that holds the crystalline regions together.

We here demonstrate the extent of surface cracks that might be produced after the
ageing tests of neat HDPE and FA/HDPE samples. Figure 2 shows SEM images of freshly
made and aged (5 and 20 weeks) samples. While HDPE is inherently a weather-resistive ma-
terial, it is expected that the FA/HDPE samples will also show similar surface morphology
after ageing. The SEM images are therefore evidential, showing very little extent of wear
and cracks on the surface of FA/HDPE samples. While our ageing study on FA/HDPE
composites is new in its kind, the significance of less weathering effect can be understood
from past ageing studies with other particle reinforced HDPE composites. For example,
the extent of ageing-related cracks (crack widths <2 µm after 20 weeks of ageing) in our
composites are insignificant compared to the previous work on carbon black and titanium
dioxide incorporated wood-HDPE composites [56]. This is promising as our ultimate aim is
to investigate the reservedness of elevated mechanical properties of FA/HDPE composites
after the environmental ageing. It is worth noting that the QUV chamber was run for
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20 weeks, and further prolonged UV exposure could lead crack propagation that usually
increases over time and breaches the layer adjacent to the surface.
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3.3. Filler-Matrix Morphology

Prolonged ageing could change the macro- and micromolecular structure of HDPE
and could also trigger the deterioration of chemical and physical properties. The amount
of oxygen diffusion is substantial during an accelerated ageing test, particularly affecting
the rapidly oxidising polymers and their compounds. The semicrystalline nature of HDPE
materials allows them to oxidise entirely in the amorphous portion as the crystal phase is
highly resistant to oxygen diffusion. One way to understand the extent of degradation is to
study the interior of materials.

In this work, neat HDPE and FA/HDPE samples were cryogenically broken using
liquid nitrogen and the fractured surfaces were investigated for material interior degrada-
tion. Cryo-fracturing in liquid nitrogen achieved extremely low temperatures under strong
thermally induced stresses, and the fracture occurs without damaging the actual structure
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of materials. Figure 3 shows the SEM images of the fracture surface of neat HDPE samples
before and after ageing. The initiation and propagation of the cracks continued as ageing
progressed, and the HDPE test sample became significantly brittle after prolonged ageing.
It is evident that significant polymer degradation occurred (with >8 µm of crack width
produced within the sample) after 20 weeks of ageing, and further UV exposure would
result in premature failure of the material.
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of ageing).

Figure 4 shows the cryogenically fractured surfaces of FA/HDPE composites. While
studying the surface of aged polymer composite is prospective to the wear or crack initia-
tion, understanding the filler-matrix interfacial morphology is crucial for the performance,
i.e., mechanical properties. The filler-matrix interface of differently aged composites is
different, with the texture being similar for HDPE at similar ageing times. The extent of
polymer degradation is logically identical as all the samples contain the same grade of
HDPE precursor. Several cracks are noticed in the HDPE matrix phase after 20 weeks of
composite ageing. The pores with random sizes are apparent, with the largest size range
being ~8–10 µm. However, as in other polymer composites, filler matrix adhesion will be
the driving factor in increased mechanical properties, compensating the loss of properties
due to the matrix degradation. Although the fly ash concentration is different in differ-
ent FA/HDPE samples, their interfacial adhesion with the surrounding polymer matrix
remains strong. As can be seen in the SEM images of 20 weeks aged samples, cryogenic
fracture caused the exposure of fly ash particles, but the pull out comprises a random layer
of HDPE polymer on the particle surface. This phenomenon is attributed to high IFSS
between the filler-matrix interfaces and contributes directly to the superior mechanical
properties of bulk composites.

3.4. Mechanical Properties

The tensile behaviour of neat HDPE and 5–15 wt% fly ash reinforced HDPE composites
is shown in Figure 5. Figure 5A shows the representative tensile stress vs. tensile strain
curves, showing a gradual decrease in tensile strain with increasing fly ash content. This
phenomenon is related to the presence of high interfacial bonding, i.e., IFSS between
rigid fly ash particles and the surrounding HDPE matrix phase. Figure 5B shows that
the incorporation of fly ash gives higher Young’s modulus to their reinforcing HDPE
composites, with higher filler concentration providing a higher modulus value. For instance,
a FA15%/HDPE composite sample showed Young’s modulus of ~1930 MPa, which is a
~200% increase compared that of a neat HDPE sample. While the enhancement of modulus
is expected, it is also crucial that the composite sample at least preserve their tensile strength
value, not being lower than a neat HDPE material. Compared to neat HDPE, while a slight
increase in the tensile strength was noticed for FA5%/HDPE, a further increase in the fly
ash concentration lowered the corresponding tensile strengths. However, measured tensile
strengths were either similar or slightly higher compared to neat HDPE, aligning with our
previous anticipation of preserved strengths.
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The intensity of environmental ageing and ageing duration has critical effects on
the tensile properties of the polymers and their composites. As shown in Figure 6, the
tensile properties of both neat HDPE and FA/HDPE materials gradually deteriorate as
the ageing duration increases from 5 weeks to 20 weeks under ageing cycles of (1) UV-A:
1.55 W/m2/nm, 60 ◦C, 8 h and (2) Condensation: 50 ◦C, 4 h.
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Figure 6A shows Young’s modulus of aged samples. There was a drastic reduction
of modulus when a neat HDPE was aged, a noticeable ~26% reduction after 20 weeks of
ageing. In contrast, FA/HDPE samples provided exceptional results with a lesser reduction
in modulus over ageing times. Amongst aged FA/HDPE composites, FA15%/HDPE
showed the least decrease of ~5% in Young’s modulus when aged for 20 weeks. This
extraordinary result is attributed to the stabilising effect of fly ash fillers that adsorb
light from the entire range of the solar spectrum and limit penetration of high-energy
photons into the surrounding polymer matrix, eventually limiting polymer degradation.
Figure 6B shows the effect of ageing on the tensile strength of HDPE and FA/HDPE samples.
The tensile strength gradually decreases with increasing filler percentage respective to
ageing duration. FA10%/HDPE composite showed the highest strength of ~29.3 MPa after
20 weeks of ageing (showing only ~5% reductions from the fresh sample) compared to other
specimens. Considering the prominent Young’s modulus of 20 weeks aged FA15%/HDPE
composite, it will also be noteworthy to evaluate the reduction of tensile strength. After
20 weeks of ageing, the FA15%/HDPE sample showed ~9% reduction in tensile strength.
Combination of tensile modulus and strength is superior for FA15%/HDPE composite than
other types. Compared to a previous ageing study on carbon nanotube reinforced HDPE
composites, our FA/HDPE encountered lesser loss of tensile strength, which supports the
greater significance of our current work. Overall, the filler concentration, their morphology,
geometrical parameters and filler-matrix IFSS are the main causes of change in tensile
properties of the aged composites.

4. Conclusions

Fly ash filled high density polyethylene (FA/HDPE) composites with three different
weight fractions (5, 10 and 15%) of filler were prepared by melt processing and charac-
terised for thermal, morphological and tensile properties. Thermogravimetric tests showed
that the composites are of great uniformity in terms of filler distribution. Compared to
neat HDPE polymer, incorporation of 15 wt% fly ash filled FA/HDPE composite sample
showed a ~200% increase in Young’s modulus without the deterioration of tensile strength.
The durability of prepared composites was studied by environmentally ageing (UV and
moisture exposure) the samples, and the morphological and mechanical properties were
evaluated accordingly. The utility of FA/HDPE composites for long-term usage was found
more feasible compared to neat HDPE. While 10 wt% fly ash content was better suited for
preserving tensile strength after 20 weeks of ageing, considering the combination of Young’s
modulus and tensile strength, 15 wt% fly ash containing HDPE composite was found to be
best performed. Compared to a freshly made composite, the later composite showed only
~5% decrease in Young’s modulus and ~9% decrease in Young’s modulus when aged for
20 weeks. The extraordinary ability of highly concentrated fly ash to adsorb high-energy
photons from UV light restricted the photon-induced polymer matrix degradation, making
the material suitable for long term outdoor usage.
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