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Abstract: A new three-dimensional (3D) boundary element method (BEM) strategy was developed
to solve fractional-order thermo-elastoplastic ultrasonic wave propagation problems based on the
meshless moving least squares (MLS) method. The temperature problem domain was divided into a
number of circular sub-domains. Each node was the center of the circular sub-domain surrounding it.
The Laplace transform method was used to solve the temperature problem. A unit test function was
used in the local weak-form formulation to generate the local boundary integral equations, and the
inverse Laplace transformation method was used to find the transient temperature solutions. Then,
the three-dimensional elastoplastic problems could be solved using the boundary element method
(BEM). Initial stress and strain formulations are adopted, and their distributions are interpolated
using boundary integral equations. The effects of the fractional-order parameter and anisotropy
are investigated. The proposed method’s validity and performance are demonstrated for a two-
dimensional problem with excellent agreement with other experimental and numerical results.

Keywords: boundary element method; stress sensitivity; fractional-order thermo-elastoplastic;
ultrasonic wave propagation problems; fiber-reinforced polymer composite materials

1. Introduction

All fiber-reinforced polymer (FRP) composite materials, which have significant poten-
tial for a wide range of infrastructure applications, contain thermosetting or thermoplastic
resins as well as glass and/or carbon fibers. The load-bearing component of the composite
is provided by the fiber network, while the resin aids in load transfer and fiber orientation.
The resin regulates the manufacturing process and processing variables. Resins also protect
the fabrics from environmental factors such as relative humidity-elevated temperatures
and chemical attacks.

Significant research has been conducted on the development of FRP composite ma-
terials and their novel applications. Many efforts have yielded materials with improved
structural properties. Because of their superior corrosion resistance, excellent thermome-
chanical properties, and high strength-to-weight ratio, FRP composite materials are being
promoted as twenty-first-century materials. In terms of their embodied energy, FRP com-
posite materials are also “greener” than traditional materials such as concrete and steel. The
use of FRP composite materials in civil and military infrastructure can improve innovation,
productivity, and performance while also providing longer service lives, resulting in lower
life-cycle costs. These efforts demonstrate that the use of innovative composite materials
and designs have significant potential to reduce infrastructure vulnerability.
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The BEM with internal collocation nodes has been used to solve thermo-elastoplastic
problems [1,2]. However, the BEM’s advantage of ease of data preparation is lost in this sce-
nario. Therefore, several BEM strategies have been proposed. Nowak and Neves [3] devel-
oped the multiple-reciprocity boundary element method, which cannot be used to analyze
thermo-elastoplastic materials. The dual-reciprocity BEM was developed to solve thermo-
elastoplastic problems with an arbitrary heat source [4]. Eigenvalue analysis can be carried
out using the real-part boundary element approach [5,6]. The local boundary element
method was used by Sladek and Sladek [7] to solve elastoplastic problems without internal
cells. For elastoplastic difficulties, Ochiai and Kobayashi [8] presented the triple-reciprocity
BEM, which does not require internal cells. This method allows for a very accurate solution
to be produced using only fundamental low-order solutions and reduces the requirements
for data preparation. Ochiai [9] applied the triple-reciprocity BEM to solve 2D thermo-
elastoplastic problems with an arbitrary distributed heat source [10] and three-dimensional
elastoplastic problems with initial strain formulas [10]. Recently, Fahmy et al. [11–14] de-
veloped fractional BEM schemes to solve certain thermoelastic problems.

In this paper, a new BEM strategy is developed to solve three-dimensional thermo-
elastoplastic wave propagation problems with an arbitrary distributed heat source. Bound-
ary elements and arbitrary internal points are used in this strategy. For elastoplastic
analysis, the initial strain or stress distribution is interpolated using boundary integral
equations. Strong singularities in the calculation of stresses at internal sites become weak
using this method. The impacts of anisotropy and the fractional-order parameter are ex-
amined. The validity and performance of the suggested method for a two-dimensional
problem are demonstrated, showing excellent agreement with existing experimental and
numerical results.

2. BEM Implementation for the Temperature Field

The heat conduction equation of a nonhomogeneous anisotropic fiber-reinforced
polymer composite in the presence of the distributed heat source W [1]s(q) can be expressed
as [15]

ρ(x)c(x)Dα̃
t θ(x, t) =

[
kij(x)θ,j(x, t)

]
,i + Q(x, t), (1)

in which
Q(x, t) =

1− R
x0

W [1]s(q) e(−
xa
x0
)J(t), J(t) =

J0 t
τ2

1
e−

t
τ1 , a = 1, 2, 3

where the parameters are defined in the Nomenclature Table at the end of this paper.
In the BEM formulation of 3D problems, the distributed heat source function WS

1 (q) is
interpolated using the following equations [16]:

∇2W [1]S(q) = −W [2]S(q), (2)

∇2W [2]S(q) = −
M

∑
m=1

W [3]PA(qm), (3)

In 3D problems, the polyharmonic function with the volume distribution T[ f ]A(p, q) is
introduced to achieve smooth interpolation and can be described as [17]

T[ f |A(p, q) = 1
2r(2 f+1)!

{
(2 f A− r)(r + A)2 f + (2 f A + r)(r− A)2 f

}
r > A, (4)

T[ f |A(p, q) = 1
2r(2 f+1)!

{
(2 f A− r)(A + r)2 f − (2 f A + r)(A− r)2 f

}
r ≤ A. (5)

where r denotes the distance between observation point p and loading point q.
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On the basis of Caputo’s finite difference technique, at ( f + 1)∆τ and f ∆τ, the follow-
ing formula can be established [18]:

Dα̃
τθ f+1 + Dα̃

τθ f ≈
k

∑
J=0

Wα̃,J

(
θ f+1−J(x)− θ f−J(x)

)
(6)

where

Wα̃,0 =
(∆τ)−α̃

Γ(2− α̃)
and Wα̃,J = Wα̃,0

(
(J + 1)1−α̃ − (J − 1)1−α̃

)
(7)

By employing Equation (6), the fractional nonlinear heat conduction Equation (1) is
transformed into the following equation [19]:

Wα̃,0θ f+1(x)− λ(x)θ f+1
,ii (x)− λ,i(x)θ

f+1
,i (x) = Wα̃,0θ f (x)− λ(x)θ f

,ii (x)−λ,i(x)θ
f
,j (x)−

f

∑
J=1

Wα̃,J

(
θ f+1−J(x)− θ f−J(x)

)
+ h f+1

m (x, t) + h f
m(x, t) (8)

Let Ω be the analyzed domain of the considered problem and the initial condition be

θ(x, t)|t=0 = θ(x, 0) (9)

The MLS approximates uh(x) as uh(x) = pT(x)a(x) ∀x ∈ Ωx, where
pT(x) =

[
p1(x), p2(x), . . . , pm(x)

]
, and a(x) is a vector of coefficients aj(x), (j = 1, 2, . . . , m),

x = [x1, x2, x3]
T . Thus, the following definitions can be deduced:

pT(x) = [1, x1, x2, x3], linear basis m = 4,
pT(x) =

[
1, x1, x2, x3, x2

1, x2
2, x2

3, x1x2, x2x3, x3x1
]
, quatratic basis m = 10.

(10)

Now, by implementing the Laplace transformation to Equation (1), the following
equation is obtained: [

kij(x)θ,j(x, s)
]

, i − ρ(x)c(x)sθ(x, s) = −F(x, s), (11)

in which
F(x, s) = Q(x, s) + θ(x, 0) (12)

where Q(x, s) = 1−R
x0

e
xa
x0

J(s), and J(s) = J0
(s+τ1)

2 , s > τ1.

The local weak form of Equation (11) can be described as∫
Ωa

s

[(
kl j(x)θ,j(x, s)

)
,l
− ρ(x)c(x)sθ(x, s) + F(x, s)

]
θ∗(x)dΩ = 0, xa ∈ Ωa

s (13)

in which θ∗(x) and ∂Ωa
s are the weight function and local sub-domain boundary, respectively.

Applying the Gauss theorem to Equation (13) yields∫
∂Ωa

s
q(x, s)θ∗(x)dΓ−

∫
Ωa

s
kl j(x)θ,j(x, s)θ∗,l(x)dΩ

−
∫

Ωa
s

ρ(x)c(x)sθ(x, s)θ∗(x)dΩ +
∫

Ωa
s

F(x, s)θ∗(x)dΩ = 0,
(14)

where
q(x, s) = kl j(x)θ,j(x, s)nl(x). (15)

and

θ∗(x) =

{
1 at x ∈ Ωa

s

0 at x /∈ Ωa
s

(16)
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Based on the fundamental solution of (8), the local weak form (14) yields the following
boundary integral representation:∫

∂Ωa
s

q(x, s)dΓ−
∫

Ωa
s

ρ(x)c(x)sθ(x, s)dΩ = −
∫

Ωa
s

F(x, s)dΩ. (17)

The MLS is employed to compute the heat flux as

qh(x, s) = kijni

n

∑
a=1

φa
,j(x)θ̂

a(s). (18)

On the basis of [20], Equation (17) can be re-expressed as

n
∑

a=1

(∫
Ls+Γsp

nTKPa(x)dΓ−
∫

Ωs
ρcsφa(x)dΓ

)
θ̂a(s)

= −
∫

Γsq
q̃(x, s)dΓ−

∫
Ωs

R(x, s)dΩ,
(19)

Considering the following representations

K =

 k11 k12 k13
k12 k22 k23
k13 k23 k33

, Pa(x) =

φa
,1

φa
,2

φa
,3

, nT = (n1, n2, n3). (20)

The inverse Laplace transform [21] has now been implemented to obtain the physical
quantities in time domain.

3. BEM Implementation for the Elastoplastic Field

Now, our purpose is to solve the following boundary integral equation [1,2]:

cij(P)
.
uj(P) =

∫
Γ

[
u[1]

ij (P, Q)
.
pj(Q)− pij(P, Q)

.
uj(Q)

]
dΓ +

∫
Ω

σ
[1]
jki (P, q)

.
ε
[1]
I jk(q)dΩ

+
∫
Γ

{
T(Q)

∂uT(1)
i (P,Q)

∂n − ∂T(Q)
∂n uT(1)

i (P, Q)

}
dΓ(Q)

+λ−1
2
∑

f=1
(−1) f ∫

Γ

[
∂uT f f+1]

i (P,Q)
∂n W [ f ](Q)

−uT( f+1)
i (P, Q) ∂W( f ](Q)

∂n

]
dΓ + λ−1

M
∑

m=1
uT[3]A

i (P, qm)W [3]P(qm)

(21)

where cij,
.
ε
[1]
I jk(q),

.
uj(Q), and

.
pj(Q) are the free coefficient, initial strain rate, displacement

rate, and surface traction rate, respectively. However, r, Γ, and Ω are the distance between
the observation point and loading point, the boundary, and domain, respectively.

According to [22], Kelvin’s solution u[1]
ij (p, q) and pij(p, q) can be written as

u[1]
ij (p, q) =

1
16π(1− v)Gr

{
(3− 4v)δij + r,ir,j

}
, r,i = ∂r/∂xi (22)

pij(p, q) =
1

8π(1− v)Gr2

{[
(1− 2v)δij + 3r,ir,j

] ∂r
∂n
− (1− 2v)

(
r,inj − r,jni

)}
, (23)

The functions σ
[1]
ijk (p, q), uT[ f ]

i (p, q), ∂uT[ f ]
i (p,q)

∂n , and uT[3]A
i (p, q) in Equation (21) can be

expressed as [1,16]

σ
[1]
jki (p, q) =

−1
8π(1− v)r2

{
(1− 2v)

(
δjir,k + δkir,j − δjkr,i

)
+ 3r,ir,jr,k

}
, (24)
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uT[ f ]
i (p, q) = m0T f+1)

,i (p, q) =
m0(2 f − 1)r,ir2 f−2

4π(2 f )!
, m0 =

(1 + v)α
(1− v)

(25)

∂ uT[ f ]
i (p, q)

∂n
=

m0(2 f − 1)r2 f−3

4π(2 f )!

[
ni + (2 f − 3)r,i

∂r
∂n

]
, (26)

uT[3]A
i (p, q) = m0T[4]A

,i (p, q)

=
m0 A3r,i(105 r6+189 r4 A2+27 r2 A4−A6)

45360 r2 , r > A
(27)

uT[3]A
i (p, q) =

m0r r,i
(
−r6 + 27 r4 A2 + 189 r2 A4 + 105 A6)

45360
, r ≤ A (28)

where α denotes the thermal expansion coefficient.
Based on the initial stress formulation, the domain integral in Equation (21) can be

written as [1]

Π =
∫
Ω

ε
[1]
ijk(P, q)

.
σ
[1]
I jk(q)dΩ, (29)

where

ε
[1]
ijk(p, q) =

[
(1− 2v)

(
δijr,k + δikr,j

)
− δjkr,i + 3 r,i r,j r,k

] −1
16π(1− v)Gr2 . (30)

The following equations are used for initial stress interpolation [8,9]:

∇2 .
σ
[1]S
Ijk (q) = − .

σ
[2]S
Ijk (q), (31)

∇2 .
σ
[2]S
Ijk (q) = −

M

∑
m=1

.
σ
[3]PA
Ijk (qm), (32)

The initial stress rate
.
σ
[2]s
ljk (q) curvature can be expressed as

c
.
σ
[2]S
Ijk (P) =

∫
Γ

{
T[1](P, Q)

∂
.
σ
[2]S
Ijk (Q)

∂n − ∂T[1](P,Q)
∂n

.
σ
[2]S
Ijjk (Q)

}
dΓ

+
M
∑

m=1
T[1]A(P, qm)

.
σ
[3]PA
Ijk (qm)

(33)

in which M is the number of points
.
σ
[3]PA
[jk (q).

On the boundary, the initial stress rate
.
σ
[1]
I jk(P) can be written as

c
.
σ
[1]S
Ijk (p) = −

2
∑

f=1
(−1) f ∫

Γ

{
T[ f ](P, Q)

∂
.
σ
[ f ]S
Ijk (Q)

∂n − ∂T[ f ](P,Q)
∂n

.
σ
[ f ]
I jk(Q)

}
dΓ

−
M
∑

m=1
T[2]A(P, qm)

.
σ
[3]PA
Ijk (qm).

(34)

For internal points, the following equation is obtained in the same manner as Equation (34)

c
.
σ
[1]S
Ijk (p) = −

2
∑

f=1
(−1) f ∫

Γ

{
T[ f ](p, Q)

∂
.
σ
[ f |S
Ijk (Q)

∂n − ∂T[ f ](p,Q)
∂n

.
σ
[ f ]S
Ijk (Q)

}
dΓ

−
M
∑

m=1
T[2]A(p, qm)

.
σ
[3]PA
Ijk (qm).

(35)

For performing the interpolation process, the following equations were employed [15]:

∇2 .
ε
[1]S
Ijk (q) = − .

ε
[2]S
Ijk (q), (36)
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∇2 .
ε
[2]S
Ijk (q) = −

M

∑
m=1

.
ε
[3]PA
Ijk (qm), (37)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2.
From Equations (36) and (37), the following equation is established:

∇4 .
ε
[1]S
Ijk (q) =

M

∑
m=1

.
ε
[3]PA
Ijk (qm), (38)

In this method, each initial strain component
.
ε
[1]S
Ijk (q)(j, k = 1, 2, 3) is interpolated.

Using the Green’s second identity and Equation (37), the following result is obtained [8,9]:

C
.
ε
[2]S
Ijk (P) =

∫
Γ

{
T[1](P, Q)

∂
.
ε
[2]S
Ijk (Q)

∂n − ∂T[1](P,Q)
∂n

.
ε
[2]S
Ijk (Q)

}
dΓ

+
M
∑

m=1
T[1]A(P, qm)

.
ε
[3]PA
Ijk (qm).

(39)

Now, using the Green’s theorem and Equations (36) and (37), the initial strain rate
.
ε
[1]
I jk(P) can be expressed as [7,8]

C
.
ε
[1]S
Ijk (P) =

∫
Γ

{
T[1](P, Q)

∂
.
ε
[1]S
Ijk (Q)

∂n − ∂T[1](P,Q)
∂n

.
ε
[1]S
Ijk (Q)

}
dΓ

+
∫
Ω

T[2](P, qm)
.
ε
[2]
I jk(qm)

= −
2
∑

f=1
(−1) f ∫

Γ

{
T[ f ](P, Q)

∂
.
ε
[ f ]
I jk(Q)

∂n − ∂T[ f ](P,Q)
∂n

.
ε
[ f ]S
Ijk (Q)

}
dΓ

−
M
∑

m=1
T[2]A(P, qm)

.
ε
[3]PA
Ijk (qm)

(40)

where

C =

{
0.5 on the smooth boundary
1 in the domain

It is assumed that
.
ε
[2]S
Ijk (Q) is zero. For internal points, the following equation is obtained:

c
.
ε
[1]S
Ijk (p) = −

2
∑

f=1
(−1) f ∫

Γ

{
T[ f ](p, Q)

∂
.
ε
[ f ]S
Ijk (Q)

∂n − ∂T[ f ](p,Q)
∂n

.
ε
[j]S
Ijk (Q)

}
dΓ

−
M
∑

m=1
T[2]A(p, qm)

.
ε
[3]PA
Ijk (qm).

(41)

when the boundary is divided into N0 constant elements and N1 internal points, then
(2N0 + N1) unknowns must be solved simultaneously.

The function σ
[ f ]
jki (p, q) is defined as

∇2σ
[ f+1]
jki (p, q) = σ

[ f ]
jki (p, q). (42)
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Using Equations (36), (37), and (42) and Green’s second identity, Equation (21) becomes

cij(P)
.
uj(P) =

∫
Γ

[
u[1]

ij (P, Q)
.
pj(Q)− pij(P, Q)

.
uj(Q)

]
dΓ

−
2
∑

f=1
(−1) f ∫

Γ

{
∂σ

[ f+1]
jki (P,Q)

∂n
.
ε
[j]
Ijk(Q)− σ

[ f+1]
jki (P, Q)

∂
.
ε
[ f ]S
Ijk (Q)

∂n

}
dΓ

+
M
∑

m=1
σ
[3]A
jki (P, q)

.
ε
[3]PA
Ijk(m)](q)

+
∫
Γ

{
T(Q)

∂uT[1]
i (p,Q)

∂n − ∂T(Q)
∂n uT[1]

i (p, Q)

}
dΓ(Q)

+λ−1
2
∑

f=1
(−1) f ∫

Γ

[
∂uT[ f+1]

i (P,Q)
∂n W [ f ](Q)

−uT( f+1]
i (P, Q) ∂W[ f ]

∂n

]
dΓ + λ−1

M
∑

m=1
u[3]A

i (P, qm)W [3]PA(qm).

(43)

The Kelvin solutions u[ f ]
ij and u[ f ]A

ij can be expressed as [8,9]

u[ f ]
ij =

−1
2(1− v)G

T[ f+1]
,ij +

δijT
[ f+1]
,kk

G
. (44)

u[ f ]A
ij =

−1
2(1− v)G

T[ f+1]A
,ij +

δijT
[ f+1]A
,kk

G
. (45)

Equation (44) can be expressed using Equations (39), (40), and (45) as follows [9]:

u[ f ]
ij =

(2 f − 1)r2 f−3

8π(1− v)G(2 f )!
[
(4 f − 1− 4 f v)δij − (2 f − 3)r,ir,j

]
, (46)

u[3]A
ij = −A3

90720(1−v)Gr3

{
δij
(
105r6 + 189A2r4 + 27A4r2 − A6)

+3ri,r,j
(
105r6 + 63A2r4 − 9A4r2 + A6)

−36(1− v)δijr2(35r4 + 42A2r2 + 3A4)} r > A (A− 9),

(47)

u[3]A
ij = −1

90720(1−v)G

{
δij
(
−r6 + 27A2r4 + 189A4r2 + 105A6)

+6r,ir,jr2(−r4 + 18A2r2 + 63A4)
−18δij(1− v)

(
−r6 + 21A2r4 + 105A4r2 + 35A6)} r ≤ A

(48)

The function ε
[ f ]
jki(p, q) is described as follows:

∇2ε
[ f+1]
jki (p, q) = ε

[ f ]
jki(p, q) (49)

The domain integral in (28) can be expressed as

Π = −
2
∑

f=1
(−1) f ∫

Γ

{
∂ε

[ f+1]
jki (P,Q)

∂n
.
σ
[ f ]S
ljk (Q)− ε

[ f+1]
jki (P, Q)

∂
.
σ
[ f ]S
ljk (Q)

∂n

}
dΓ

+
M
∑

m=1
ε
[3kA
jki (P, qm)

.
σ
[3]RA
ljk (qm)

(50)

Using Equation (46), ε
[ f ]
ijk(p, q) is obtained as

ε
[ f ]
ijk(p, q) =

∂u[ f ]
ij

∂xk
+

∂u[ f ]
kj

∂xi

= (2 f−1)(2 f−3)r2 f−4

8π(1−v)(2 f )!G

[
(2 f − 1− 2 f v)

(
δjkr,i + δikr,j

)
−δijr,k − (2 f − 5)r,ir,jr,k

] (51)
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Furthermore, using Equations (47) and (48), the normal derivatives ∂ε
[ f ]
ijk(p, q)/∂n and

ε
[3]A
ijk (p, q) are obtained as

∂ε
[ f ]
ijk(p,q)

∂n = (2 f−1)(2 f−3)r2 f−5

8π(1−v)(2 f )!G

{
(2 f − 5)

[
(2 f − 1− 2 f v)

(
δjkr,i + δikr,j

)
−δijr,k − (2 f − 7)r,ir,jr,k

]
∂r
∂n − (2 f − 5)

(
r,jr,kni + r,ir,knj + r,ir,jnk

)
+(2 f − 1− 2 f v)

(
δjkni + δiknj

)
− δijnk

}
,

(52)

ε
[3]A
ijk (p, q) =

∂u[3]A
ij

∂xk
+

∂u[3]A
kj

∂xi

= A3

30240(1−v)r4G

[
−
(

δjkr,i + δikr,j + δijr,k

)(
105r6

+63A2r4 − 9A4r2 + A6)− r,ir,jr,k
(
105r6 − 63A2r4

+27A4r2 − 5A6)+ 18(1− v)
(

δjkr,i + δikr,j

)
×r2(35r4 + 14A2r2 − A4)] r > A,

(53)

ε
[3]A
ijk (p, q) = r

15120(1−v)G

[
−
(

δjkr,i + δikr,j + δijr,k

)(
−r4 + 18A2r2 + 63A4)

−4r,irjr,kr2(−r2 + 9A2)+ 9(1− v)
(

δjkr,i + δikr,j

)
×
(
−r4 + 14A2r2 + 35A4)] r ≤ A,

(54)

Using the stress–strain relationship, σ
[ f ]
ijk (p, q) is obtained as

σ
[ f ]
ijk (p, q) = 2vG

1−2v δik
∂u[ f ]

mj
∂xm

+ G

[
∂u[ f ]

ij
∂xk

+
∂u[ f ]

kj
∂xi

]
= (2 f−1)(2 f−3)r2 f−4

4π(1−v)(2 f )!

{
(2 f − 1− 2 f v)

(
δjkr,i + δikr,j

)
−(1− 2 f v)δijr,k − (2 f − 5) r,i r,j r,k

}
.

(55)

Moreover, the normal derivatives ∂σ
[ f ]
ijk (p, q)/∂n and σ

[3]A
ijk (p, q) are given by [11]

∂σ
[ f ]
ijk (p,q)

∂n = (2 f−1)(2 f−3)
4π(1−v)(2 f )! r2 f−5

[
(2 f − 5)

{
(2 f − 1− 2 f v)

(
δjkr,i + δikr,j

)
−(1− 2 f v)δijr,k − (2 f − 7)r,ir,jr,k

}
∂r
∂n

−(2 f − 5)
(
r,jr,kni + r,ir,knj + r,ir,jnk

)
+(2 f − 1− 2 f v)

(
δjkni + δiknj

)
− (1− 2 f v)δijnk

]
,

(56)

σ
[3]A
ijk (p, q) = A3

15120(1−v)r4

{
18vδijr,kr2(35 r4 + 14 A2r2 − A4)

−
(

δjkr,i + δikr,j + δijr,k

)(
105 r6 + 63 A2r4 − 9 A4r2 + A6)

−ri,r,jr,k
(
105 r6 − 63 A2r4 + 27 A4r2 − 5 A6)

+18(1− v)
(

δjkr,i + δikr,j

)
r2(35 r4 + 14 A2r2 − A4)} r > A,

(57)

σ
[3]A
ijk (p, q) = r

7560(1−v)

{
9vδijr,k

(
−r4 + 14 A2r2 + 35 A4)

−
(

δjkr,i + δikr,j + δijr,k

)(
−r4 + 18 A2r2 + 63 A4)

−4r,ir,jr,kr2(−r2 + 9 A2)+ 9(1− v)
(

δjkr,i + δikr,j

)
×
(
−r4 + 14 A2r2 + 35 A4)} r ≤ A.

(58)
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The internal stress is given by [22]

.
σij(p) =

∫
Γ

[
−σ

[1]
kij (p, Q)

.
pk(Q)− Skij(p, Q)

.
uk(Q)

]
dΓ +

∫
Ω

σ
[1]
ijks(p, q)

.
ε
[1]
Iks(q)dΩ

− .
σ
[1]
Iij(p) +

∫
Γ

[
∂σ

T[1]
ij (p,Q)

∂n

.
T(Q)− σ

T[1]
ij (p, Q) ∂

.
T(Q)
∂n

]
dΓ

+λ−1
2
∑

f=1
(−1) f ∫

Γ

[
∂σ

T[ f+1]
ij (p,Q)

∂n W [ f ](Q)

−σ
T[ f+1]
ij (p, Q) ∂W[ f ](Q)

∂n

]
dΓ + λ−1

M
∑

m=1
σ
[3]A
ij (P, qm)W [3]PA(qm),

(59)

where
.
σ
[1]
Iij (p) represents the initial stress derived from the initial strain. Additionally,

Skij(p, q) and σ
[1]
ijks(p, q) in Equation (36) can be expressed as [1,11]

Skij(p, q) = G
4π(1−v)r3

{
3 ∂r

∂n

[
(1− 2v)δijr,k + v

(
δikr,j + δjkr,i

)
− 5r,ir,jr,k

]
+3v

(
nir,jr,k + njr,ir,k

)
+ (1− 2v)

(
3nkr,ir,j + njδik + niδjk

)
−(1− 4v)nkδij

}
,

(60)

σ
[1]
ijkl(p, q) = 1

4π(1−v)r3

[
3(1− 2v)

(
δijr,kr,l + δklr,ir,j

)
+ 3v

(
δilr,jr,k

+δjkr,ir,l + δikr,jr,s + δjlr,ir,k

)
+ (1− 2v)

(
δikδl j + δjkδli

)
−(1− 4v)δijδkl − 15 r,ir,jr,kr,l

]
,

(61)

σ
T( f ]
ij (p, q) = 2Gm0

[
∂2T[ f+1]

∂xi∂xj
− δijT[ f ]

]
= Gm0(2 f−1)r2 f−3

2π(2 f )!

[
−(2 f − 1)δij + (2 f − 3)r,ir,j

]
,

(62)

∂σ
T f f
ij (p,q)

∂n = Gm0(2 f−1)r2 f−4

2π(2 f )!

[
r,jni + r,in,j − (2 f − 1) ∂r

∂n δij

+(2 f − 5)r,ir,j
∂r
∂n

]
,

(63)

σ
T[3]A
ij (p, q) = 2Gm0

[
∂2T[4]A

∂xi∂xj
− δijT[3}A

]
= Gm0 A3

22680r3

[
−δij

(
525r6 + 567r4 A2 + 27r2 A4 + A6)

+3
(
105r6 + 63r4 A2 − 9r2 A4 + A6)r,irj

]
r > A,

(64)

σ
T[3]A
ij (p, q) = Gm0

11340
[
δij
(
4r6 − 81r4 A2 − 378r2 A4 − 105A6)

+3r2(−r4 + 18r2 A2 + 63A4)r,ir,j
]

r 5 A,
(65)

The function σ
[ f ]
ijkl(p, q) is defined as

∇2σ
[ f+1]
ijkl (p, q) = σ

[ f ]
ijkl(p, q). (66)
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Using Green’s theory and Equation (66), Equation (59) can be written as

.
σij(p) =

∫
Γ

[
−σ

[1]
kij (p, Q)

.
pk(Q)− Skij(p, Q)

.
uk(Q)

]
dΓ

−
2
∑

f=1
(−1) f ∫

Γ

[
∂σ

[ f+1]
ijkl (p,Q)

∂n
.
ε

f j]S
Ikl (Q)− σ

[ f+1]
ijkl (p, Q)

∂
.
ε
[ f ]S
Ikl (Q)

∂n

]
dΓ

+
M
∑

m=1
σ
[3]A
ijkl (p, qm)

.
ε
[3]PA
Ikl (qm)−

.
σ
[1]
Iij(p)

+
∫
Γ

[
∂σ

T[1]
ij (p,Q)

∂n

.
T(Q)− σ

T[1]
ij (p, Q) ∂

.
T(Q)
∂n

]
dΓ

+λ−1
2
∑

f=1
(−1) f ∫

Γ

[
∂σ

T f f+1]
ij (p,Q)

∂n W [ f ](Q)

−σ
T[ f+1]
ij (p, Q) ∂W[ f ](Q)

∂n

]
dΓ + λ−1

M
∑

m=1
σ
[3]A
ij (P, qm)W [3]PA(qm).

(67)

Using Equation (55) and the relationship between displacement and stress, σ
[ f ]
ijkl(p, q)

is obtained as

σ
[ f ]
ijkl(p, q) = 2vG

(1−2v) δijσ
[ f ]
mkl,m(p, q) + G

[
σ
[ f ]
ikl,j(p, q) + σ

f j
jkl,i(p, q)

]
= (2 f−1)(2 f−3)Gr2 f−5

2π(1−v)(1−2v)(2 f )! < 2 f v{1 + 2( f − 2)v}δijδkl + (1− 2v

×
[
(2 f − 1− 2 f v)

(
δikδjl + δilδjk

)
+ (2 f − 5)( f − 1− f v)

(
δjlr,ir,k

+δjkr,ir,l + δilr,jr,k + δikr,jr,l

)
− (1− 2 f v){(2 f − 5)

×
(
δklr,ir,j + δijr,kr,l

)
+ δijδkl

}
− (2 f − 5)(2 f − 7)r,ir,jr,kr,l

]
.

(68)

Similarly, ∂σ
[5]
ijkl(p, q)/∂n and σ

[3]A
ijkl (p, q) are obtained as

∂σ
f f l
ijkl (p,q)

∂n =
〈〈〈

2 f v[1 + 2( f − 2)v]δijδkl + (1− 2v)
{
(2 f − 1− 2 f v)

(
δikδjl + δilδjk

)
+(2 f − 7)( f − 1− f v)

(
δjlr,ir,k + δjkr,ir,l + δilr,jr,k + δikr,jr,l

)
−(1− 2 f v)

[
(2 f − 7)

(
δklr,ir,j + δijr,kr,l

)
+ δijδkl

]
−(2 f − 7)(2 f − 9)r,ir,jr,kr,l

}
〉 ∂r

∂n + (1− 2v)
×
{
( f − 1− f v)

[(
δjlnk + δjknl

)
r,i

+(δilnk + δiknl)r,j +
(

δjlni + δilnj

)
r,k +

(
δjkni + δiknj

)
r,l

]
−(1− 2 f v)

[
δij(r,lnk + r,knl) + δkl

(
r,jni + r,inj

)]
−(2 f − 7)

{
(r,ln,k + r,knl)r,ir,j +

(
rjni + r,inj

)
r,kr,l

]}
〉〉,

(69)
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σ
[3]A
ijkl (p, q) = 2vG

(1−2v) δijσ
[3]A
mkl,m(p, q) + G

[
σ
[3]A
ikl,j (p, q) + σ

[3]A
jkl,i (p, q)

]
= GA3

7560(1−v)(1−2v)r5

〈
18vr2δkl

{
28vr2δij

(
5r2 + A2)

+(1− 2v)
[
δij
(
35r4 + 14A2r2 − A4)

+r,ir,j
(
35r4 − 14A2r2 + 3A4)]}+ (1− 2v)

×
{

18vr2δij
[
δkl
(
35r4 + 14A2r2 − A4)

+r,kr,l
(
35r4 − 14A2r2 + 3A4)]

−
(

δijδkl + δkjδli + δkiδli

)(
105r6 + 63A2r4 − 9A4r2 + A6)

−
(

δijr,kr,l + δkjr,ir,l + δkir,jr,l

+δklr,ir,j + δilr,krj + δjlr,kr,i

)(
105r6 − 63A2r4 + 27A4r2 − 5A6)

−rjr,ir,kr,l
(
−105r6 + 189A2r4 − 135A4r2 + 35A6)

+9(1− v)r2
[
2
(

δkiδjl + δkjδil

)(
35r4 + 14A2r2 − A4)

+
(

δkir,jr,l + δkjr,ir,l + δlir,jr,k + δl jr,ir,k

)
×
(
35r4 − 14A2r2 + 3A4)]〉r > A,

(70)

σ
[3]A
ijkl (p, q) = G

3780(1−v)(1−2v) < 63v2δijδkl
(
−r4 + 10A2r2 + 15A4)

+(1− 2v)
{

18v
[
δijδkl

(
−r4 + 14A2r2 + 35A4)

+2
(

δklr,ir,j + δijr,kr,lr2(−r2 + 7A2)]
−
(

δijδkl + δikδjl + δilδjk

)(
−r4 + 18A2r2 + 63A4)

−4
(

δklr,ir,j + δjlr,ir,k + δjkr,ir,l + δilr,jr,k + δikr,jr,l

+δijr,kr,lr2(−r2 + 9A2)
+8r,ir,jr,kr,lr4 + 9(1− v)

[(
δikδjl + δilδjk

)(
−r4 + 14A2r2 + 35A4)

+2
(

δjlr,ir,k + δjkr,ir,l + δilr,jr,k + δikr,jr,l

)
r2(−r2 + 7A2)]} > r ≤ A,

(71)

According to [17], Equation (67) can be written in the following form:

.
σij(p) =

∫
Γ

[
−σ

[1]
kij (p, Q)

.
pk(Q)− Skij

{ .
uk(Q)− .

uk(QA)− α(p−QA)
.
T(QA)

}]
dΓ

+
∫
Γ

[
∂σ

T[1]
ij (p,Q)

∂n

{ .
T(Q)−

.
T(QA)

}
− σ

T[1]
ij (p, Q) ∂

.
T(Q)
∂n

]
dΓ

+λ−1
2
∑

f=1
(−1) f ∫

Γ

[
∂σ

T[ f+1]
ij (p,Q)

∂n W [ f ](Q)

−σ
T[ f+1]
ij (p, Q) ∂W[ f ](Q)

∂n

]
dΓ + λ−1

M
∑

m=1
σ

T[3]A
ij (P, q)W [3]PA

(m)
(q)

+
2
∑

f=1
(−1) f ∫

Γ

[
∂σ

[ f+1]
ijks (p,Q)

∂n
.
ε
[ f ]S
Iks (Q)− σ

[ f+1]
ijks (p, Q)

∂
.
ε
[ f ]S
Iks (Q)

∂n

]
dΓ

+
M
∑

m=1
σ
[3]A
ijks (p, qm)

.
ε
[3]PA
Iks (qm)−

.
σ
[1]
Iij(p)

(72)

ε
[ f ]
ijkl(p, q) is calculated using Equation (51) and the displacement–stress relationship as

ε
[ f ]
ijkl(p, q) = 2vG

(1−2v) δijε
[ f ]
mkl,m(p, q) + G

[
ε
[ f ]
ikl,j(p, q) + ε

[ f ]
jkl,i(p, q)

]
= (2 f−1)(2 f−3)r2 f−5

4π(1−v)(2 f )!

{
(2 f − 1− 2 f v)

(
δikδjl + δilδjk

)
+(2 f − 5)( f − 1− f v)

(
δjlr,ir,k + δjkr,ir,l + δilr,jr,k + δikr,jr,l

)
−(1− 2 f v)

[
(2 f − 5)δklr,ir,j + δijδkl

]
+ (2 f − 5)δijr,kr,l

−(2 f − 5)(2 f − 7)r,ir,jr,kr,l
}

.

(73)
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∂ε
[ f ]
ijkl(p, q)/∂n and ε

[3]A
ijkl (p, q) are also obtained as

∂ε
[ f ]
ijkl(p,q)

∂n = (2 f−1)(2 f−3)(2 f−5)r2 f−6

2π(1−v)(2 f )!

〈[
(2 f − 1− 2 f v)

(
δikδjl + δilδjk

)
+(2 f − 7)( f − 1− f v)

(
δjlr,ir,k + δjkrir,l + δilr,jr,k + δikr,jr,l

)
−(1− 2 f v)

{
(2 f − 7)

(
δklr,irj + δijr,kr,l

)
+ δijδkl

}
− (2 f − 7)

×(2 f − 9)r,ir,jr,kr,l
∂r
∂n

+( f − 1− f v)
{(

δjlnk + δjknl

)
r,i + (δilnk + δiknl)rj

+
(

δjlni + δilnj

)
r,k +

(
δjkni + δiknj

)
r,l

}
−(1− 2 f v)

{
δij(r,lnk + r,knl) + δkl

(
r,jni + r,inj

)}
−(2 f − 7)

{
(r,ink + r,knl)r,irj +

(
r,jni + r,inj

)
r,kr,l

}
〉,

(74)

ε
[3]A
ijkl (p, q) = 2vG

(1−2v) δijε
[3]A
mkl,m(p, q) + G

[
ε
[3]A
ikl,j (p, q) + ε

[3]A
jkl,i (p, q)

]
= A3

15120(1−v)r5

[
18vr2δij

{
δkl
(
35r4 + 14A2r2 − A4)

+r,kr,l
(
35r4 − 14A2r2 + 3A4)}

−
(

δijδkl + δkjδli + δkiδl j

)(
105r6 + 63A2r4 − 9A4r2 + A6)

−
(

δijr,kr,l + δkjr,ir,l + δkir,jr,l

+δklr,rj + δilr,kr,j + δjlr,kr,i

)(
105r6 − 63A2r4 + 27A4r2 − 5A6)

−rjr,ir,kr,l
(
−105r6 + 189A2r4 − 135A4r2 + 35A6)

+9(1− v)r2
{

2
(

δkiδjl + δkjδil

)(
35r4 + 14A2r2 − A4)

+
(

δkir,jr,l + δkjr,ir,l + δlirjr,k + δl jr,ir,k

)(
35r4

−14A2r2 + 3A4)}] r > A,

(75)

ε
[3]A
ijkl (p, q) = 1

7560(1−v)

[
9vδij

{
δkl
(
−r4 + 14A2r2 + 35A4)

+4r,kr,lr2(−r2 + 7A2)}− (δijδkl + δikδjl + δilδjk

)
×
(
−r4 + 18A2r2 + 63A4)− 4

(
δklr,ir,j + δjlr,ir,k + δjkr,ir,l

+δilr,jr,k + δikr,jr,l + δijr,kr,lr2(−r2 + 9A2)+ 8r,irjr,kr,lr4

+9(1− v)
{(

δikδjl + δilδjk

)(
−r4 + 14A2r2 + 35A4)+ 2

(
δjlr,ir,k

+δjkr,ir,l + δilr,jr,k + δikr,jr,l

)
r2(−r2 + 7A2)}] r ≤ A.

(76)

The first thermal load is TS, the final thermal load is T0, and the number of iterations
is N. Then, the incremental load is (T0 − TS)/N.

The following iterative relationship is used to solve the current thermo-elastoplastic
problem:

σk+1
0 = σk

0 + HdεP
e , (77)

where σk
0 , σk+1

0 , H, and dεP
e are yield stress at k, yield stress at k + 1, strain hardening, and

equivalent plastic strain increment, respectively. Based on the von Mises yield criterion,
the stresses rate in Equation (72) yields the deviatoric stress tensor Sij, and the equivalent
stress σe can be computed as

σe =

√
3
2

SijSij (78)

where
σe − σ0 = 0. (79)

The following Prandtl–Reuss equation is employed to calculate the plastic strain
increment dε

p
ij as

dε
p
ij = Sij dλ, (80)
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where dλ is a proportionality factor.
The plastic strain increment dε

p
ij is calculated using Equation (80).

Equations (36) and (37) are used to interpolate the initial strain rate.
The displacement and traction rates are calculated by Equation (43).
Equation (80) is used to calculate the strain rate.
Equation (77) is used to calculate the initial strain rate until convergence.

4. Numerical Results and Discussion

The proposed BEM method is general because it can be used to deal with a wide range
of fractional thermo-elastoplastic problems affecting anisotropic fiber-reinforced polymer
composite materials. Additionally, it is simple because only the surface of the domain
needs to be discretized.

In our study computations, we employed a fiber-reinforced polymer composite with
the following properties:

Young’s modulus E = 210 GPa, Poisson’s ratio v = 0.3, thermal expansion α = 0.000011,
yield stress σ0 = 250 Mpa, and strain hardening H = 0.05 E.

We considered the reinforcing parameters α, β, and (µL − µT).
The pure anisotropic fiber-reinforced behavior satisfies

cijkluk,l = Jλεkkδij + 2µTεij + α
(

akamεkmδij + aiajεkk

)
+ 2(µL − µT)

(
aiakεkj + ajakεki

)
+ βakamεkmaiajK, (i, j, k, m = 1, 2, 3), (81)

where a ≡ (a1, a2, a3), a2
1 + a2

2 + a2
3

Additionally, the isotropic behavior satisfies α = β = (µL − µT) = 0.
As illustrated in Figure 1, the domain of the considered 3D problem includes

40 boundary nodes and 81 internal nodes. Additionally, we assumed that the wave
direction is parallel to the x1-axis.
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Figure 1. BEM modeling of the present problem.

Figure 2 shows the distribution of the stress σ11 sensitivity along the x1–axis in
anisotropic fiber-reinforced polymer composites for various fractional-order values. It
is shown from this figure that the stress σ11 sensitivity decreases and then increases along
the x1–axis. Additionally, it increases as the fractional-order parameter increases. This
figure demonstrates that the fractional-order parameter has a significant effect on stress
σ11 sensitivity in anisotropic FRP composites. The stress σ11 sensitivity curves at the upper
(α̃ = 1.0) and lower (α̃ = 0.1) values of the fractional parameter diverge from each other,
and they are close to each other at the interface values (α̃ = 0.4 and α̃ = 0.7).
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Figure 2. Distribution of the σ11 sensitivity along x1–axis in anisotropic FRP composites for various
fractional-order values.

Figure 3 shows the distribution of the stress σ12 sensitivity along the x1–axis in
anisotropic fiber-reinforced polymer composites for various fractional-order values. It
is shown from this figure that the stress σ12 sensitivity decreases and then increases and
then decreases again the along x1–axis. Additionally, it increases as the fractional-order
parameter increases. This figure demonstrates that the fractional-order parameter has a
significant effect on the stress σ12 sensitivity in anisotropic FRP composites. The stress
σ12 sensitivity curves at the upper (α̃ = 1.0) and lower (α̃ = 0.1) values of the fractional
parameter diverge from each other, and they are close to each other at the interface values
(α̃ = 0.4 and α̃ = 0.7).
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Figure 3. Distribution of the σ12 sensitivity along x1–axis in anisotropic FRP composites for various
fractional-order values.

Figure 4 illustrates the distribution of the stress σ22 sensitivity along the x1–axis in
anisotropic fiber-reinforced polymer composites for various fractional-order values. It is
shown from this figure that the stress σ22 sensitivity decreases and then increases along the
x1–axis. Additionally, it increases as the fractional-order parameter increases. This figure
demonstrates that the fractional-order parameter has a significant effect on the stress σ22
sensitivity in anisotropic FRP composites. The stress σ22 sensitivity curves at the upper
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(α̃ = 1.0) and lower (α̃ = 0.1) values of the fractional parameter diverge from each other,
and they are close to each other at the interface values (α̃ = 0.4 and α̃ = 0.7).

Polymers 2022, 14, x FOR PEER REVIEW 16 of 25 
 

 

the upper (α = 1.0) and lower (α = 0.1) values of the fractional parameter diverge from 
each other, and they are close to each other at the interface values (α = 0.4 and α = 0.7). 

 
Figure 4. Distribution of the 𝜎  sensitivity along 𝑥 –axis in anisotropic FRP composites for various 
fractional-order values. 

Figure 5 illustrates the distribution of the stress 𝜎  sensitivity along the 𝑥 –axis in 
anisotropic fiber-reinforced polymer composites for various fractional-order values. It is 
shown from this figure that the stress 𝜎  sensitivity decreases and then increases along 
the 𝑥 –axis. Additionally, it increases as the fractional-order parameter increases. This 
figure demonstrates that the fractional-order parameter has a significant effect on stress 𝜎  sensitivity in anisotropic FRP composites. The stress 𝜎  sensitivity curves at the up-
per (α = 1.0) and lower (α = 0.1) values of the fractional parameter diverge from each 
other, and they are close to each other at the interface values (α = 0.4 and α = 0.7). 

 
Figure 5. Distribution of the 𝜎  sensitivity along 𝑥 –axis in anisotropic FRP composites for various 
fractional-order values. 

Figure 6 illustrates the distribution of the stress 𝜎  sensitivity along the 𝑥 –axis in 
anisotropic fiber-reinforced polymer composites for various fractional-order values. It can 
be seen from this figure that the stress 𝜎  sensitivity increases and then decreases as 𝑥  
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Figure 4. Distribution of the σ22 sensitivity along x1–axis in anisotropic FRP composites for various
fractional-order values.

Figure 5 illustrates the distribution of the stress σ13 sensitivity along the x1–axis in
anisotropic fiber-reinforced polymer composites for various fractional-order values. It is
shown from this figure that the stress σ13 sensitivity decreases and then increases along
the x1–axis. Additionally, it increases as the fractional-order parameter increases. This
figure demonstrates that the fractional-order parameter has a significant effect on stress
σ13 sensitivity in anisotropic FRP composites. The stress σ13 sensitivity curves at the upper
(α̃ = 1.0) and lower (α̃ = 0.1) values of the fractional parameter diverge from each other,
and they are close to each other at the interface values (α̃ = 0.4 and α̃ = 0.7).
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Figure 5. Distribution of the σ13 sensitivity along x1–axis in anisotropic FRP composites for various
fractional-order values.

Figure 6 illustrates the distribution of the stress σ23 sensitivity along the x1–axis in
anisotropic fiber-reinforced polymer composites for various fractional-order values. It
can be seen from this figure that the stress σ23 sensitivity increases and then decreases as



Polymers 2022, 14, 2883 16 of 23

x1 increases for different fractional-order parameters. This figure demonstrates that the
fractional-order parameter has a significant effect on the stress σ23 sensitivity in anisotropic
FRP composites. The stress σ23 sensitivity curves at the upper (α̃ = 1.0) and lower (α̃ = 0.1)
values of the fractional parameter diverge from each other, and they are close to each other
at the interface values (α̃ = 0.4 and α̃ = 0.7).
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Figure 6. Distribution of the σ23 sensitivity along x1–axis in anisotropic FRP composites for various
fractional-order values.

Figure 7 displays the distribution of stress σ33 sensitivity along the x1–axis in anisotropic
fiber-reinforced polymer composites for various fractional-order values. The stress com-
ponent σ33 increases and then decreases as x1 increases. This figure demonstrates that the
fractional-order parameter has a significant effect on the stress σ33 sensitivity in anisotropic
FRP composites. The stress σ33 sensitivity curves at the upper (α̃ = 1.0) and lower (α̃ = 0.1)
values of the fractional parameter diverge from each other, and they are close to each other
at the interface values (α̃ = 0.4 and α̃ = 0.7).
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Figure 7. Distribution of the σ33 sensitivity along x1–axis in anisotropic FRP composites for various
fractional-order values.

Figure 8 explains the distribution of the strain ε11 sensitivity along the x1–axis, which,
in isotropic and anisotropic cases, begins with a negative value. It can be seen from this
figure that the distribution of the strain ε11 sensitivity initially increases and then decreases
along the x1–axis. Additionally, it has α̃ = 0.7 > α̃ = 0.4 > α̃ = 1.0 > α̃ = 0.1 in
anisotropic cases but α̃ = 0.4 > α̃ = 0.7 > α̃ = 1.0 > α̃ = 0.1 for isotropic cases. This figure
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demonstrates that the fractional-order parameter has a significant effect on the strain ε11
sensitivity in both isotropic and anisotropic cases. The strain ε11 sensitivity curves at the
upper (α̃ = 1.0) and lower (α̃ = 0.1) values of the fractional parameter are also close to each
other, and we notice that they are closer in the isotropic case than in the anisotropic case. It
is demonstrated that the strain ε11 sensitivity curves at the interface values diverge from
each other, as they are further away in the isotropic case than in the anisotropic case.
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Figure 8. Distribution of the ε11 sensitivity along x1–axis in isotropic and anisotropic FRP composites
for various fractional-order values.

Figure 9 illustrates the distribution of the strain ε12 sensitivity along the x1–axis in
the context of isotropic and anisotropic fiber-reinforced polymer composites for various
fractional-order values. It can be noticed from this figure that the strain ε12 sensitivity
increases as x1 increases at small x1 values. Additionally, it has α̃ = 0.4 > α̃ = 1.0 > α̃ =
0.1 > α̃ = 0.7 in anisotropic cases, but it has α̃ = 0.7 > α̃ = 0.4 > α̃ = 1.0 > α̃ = 0.1 in
isotropic cases, which are close to the approximate values as x1 tends to infinity. This figure
demonstrates that the fractional-order parameter has an important effect on the strain ε12
sensitivity in both isotropic and anisotropic cases. The strain ε12 sensitivity curves at the
upper (α̃ = 1.0) and lower (α̃ = 0.1) values of the fractional parameter are congruent in both
cases. It is demonstrated that the strain ε12 sensitivity curves at the interface values diverge
from each other, as they are further away in the anisotropic case than in the isotropic case.
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Figure 10 explains the distribution of the strain ε22 sensitivity along the x1–axis, which
starts near zero at x1 = 0 in the context of both isotropic and anisotropic cases. It is noticed
that distribution of the strain ε22 sensitivity first decreases then increases as x1 increases at
small x1 values. Additionally, it has α̃ = 0.7 > α̃ = 0.1 > α̃ = 1.0 > α̃ = 0.4 in isotropic
and anisotropic cases.
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Figure 10. Distribution of the ε22 sensitivity along x1–axis in isotropic and anisotropic FRP composites
for various fractional-order values.

This figure demonstrates that the fractional-order parameter has a significant effect on
the strain ε22 sensitivity in both isotropic and anisotropic cases. The strain ε22 sensitivity
curves at the upper (α̃ = 1.0) and lower (α̃ = 0.1) values of the fractional parameter are
also close to each other, and we notice that they are closer in the anisotropic case than in
the isotropic case. It is demonstrated that the strain ε22 sensitivity curves at the interface
values diverge from each other, as they are further away in the anisotropic case than in the
isotropic case.

Figure 11 depicts the distribution of the strain ε13 sensitivity along the x1–axis, which
starts from zero at x1 = 0 in the context of isotropic and anisotropic cases. It noticed that
the strain ε13 sensitivity is increases first and decreases and then increases again was x1
increases. Additionally, it has α̃ = 0.1 > α̃ = 1.0 > α̃ = 0.4 > α̃ = 0.7 for isotropic
cases and α̃ = 0.7 > α̃ = 0.1 > α̃ = 1.0 > α̃ = 0.4 for anisotropic cases. This figure
demonstrates that the fractional-order parameter has a significant effect on the strain ε13
sensitivity in both isotropic and anisotropic cases. The strain ε13 sensitivity curves at the
upper (α̃ = 1.0) and lower (α̃ = 0.1) values of the fractional parameter are also close to each
other, and we notice that they are closer in the anisotropic case than in the isotropic case. It
is demonstrated that the strain ε13 sensitivity curves at the interface values diverge from
each other, as they are further away in the anisotropic case than in the isotropic case.
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Figure 11. Distribution of the ε13 sensitivity along x1–axis in isotropic and anisotropic FRP composites
for various fractional-order values.

Figure 12 explains the distribution of the strain ε23 sensitivity along the x1–axis, which
starts near zero at x1 = 0 in the context of isotropic and anisotropic fiber-reinforced
polymer composites for various fractional-order values. It can be seen from this figure that
the distribution of strain ε23 sensitivity initially increases and then decreasing along the
x1–axis. Additionally, it has α̃ = 0.7 > α̃ = 0.4 > α̃ = 1.0 > α̃ = 0.1 in isotropic cases but
α̃ = 0.4 > α̃ = 1.0 > α̃ = 0.1 > α̃ = 0.7 in anisotropic cases. This figure demonstrates that
the fractional-order parameter has a significant effect on the strain ε23 sensitivity in both
isotropic and anisotropic cases. The strain ε23 sensitivity curves at the upper (α̃ = 1.0) and
lower (α̃ = 0.1) values of the fractional parameter are also close to each other, and we notice
that they are closer in the anisotropic case than in the isotropic case. It is demonstrated that
the strain ε23 sensitivity curves at the interface values diverge from each other, as they are
further away in the anisotropic case than in the isotropic case.
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for various fractional-order values.

Figure 13 depicts the distribution of strain ε33, which starts from zero at x1 = 0 in the
context of isotropic and anisotropic cases. It noticed that the distribution decreases and
then increases as x1 increases at small x1 values. Additionally, it has α̃ = 0.1 > α̃ = 1.0 >
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α̃ = 0.4 > α̃ = 0.7 in both isotropic and anisotropic cases. This figure demonstrates that
the fractional-order parameter has a significant effect on the strain ε23 sensitivity in both
isotropic and anisotropic cases. The strain ε23 sensitivity curves at the upper (α̃ = 1.0) and
lower (α̃ = 0.1) values of the fractional parameter are also close to each other, and we notice
that they are closer in the anisotropic case than in the isotropic case. It is demonstrated that
the strain ε23 sensitivity curves at the interface values diverge from each other, as they are
further away in the anisotropic case than in the isotropic case.
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Figure 13. Distribution of the ε33 sensitivity along x1–axis in isotropic and anisotropic FRP composites
for various fractional-order values.

There are no published results that demonstrate the validity and accuracy of the
current BEM method strategy. On the other hand, some studies can be thought of as special
cases in the context of this current general study. The special case distributions σ11, σ12, and
σ22 for the considered BEM combined the finite element method/normal mode method
(FEM–NMM) of An et al. [23] and the experimental technique (Exp.) of Solodov et al. [24]
and are shown in Figures 14–16 for fractional-order (α̃ = 0.4) anisotropic fiber-reinforced
polymer composites. These results show that the BEM findings are in excellent agreement
with those of FEM–NMM [23] and Exp. [24]. As a result, the validity of the proposed
technique was confirmed.
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5. Conclusions

The following findings can be drawn from the present paper:

1. Advanced BEM was applied to solve fractional-order thermo-elastoplastic ultra-
sonic wave propagation problems affecting anisotropic fiber-reinforced polymer
composite materials

2. The Laplace transform was used to eliminate the time variable from the governing equations.
3. The unit step test function was used to derive the local boundary integral equations.
4. The MLS scheme was developed to treat the domain integrals and approximate

physical quantities.
5. The numerical data demonstrate the current MLS approach’s accuracy, feasibility,

effectiveness, and convergence.
6. The inverse Laplace transformation method was then used to find the transient

temperature solutions.
7. The current technique’s main advantage is its generality and simplicity.
8. The initial stress and strain distributions are interpolated using boundary integral equations.
9. Numerical results show that the fractional-order parameter and anisotropy have sig-

nificant effects on the thermoelastic behavior of fiber-reinforced polymer composites.
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10. The numerical results show that the proposed strategy outperforms previous experi-
mental and numerical methods.

11. The findings presented in this paper may be of interest to researchers in material
science, mathematical physics, and geothermal engineering as well as those working
on the development of anisotropic fiber-reinforced polymer composite materials.
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Nomenclature

εij Strain
λ & µT Elastic parameters
ρ(x) Mass density
θ(x, t) Temperature field
σij Mechanical stress tensor
τ1 Laser pulse time characteristic
φM

j MLS shape functions
α Thermal expansion
α̃ Fractional-order parameter
c(x) Specific heat
cijkl Constant elastic moduli
Ei Young’s moduli
G Shear moduli
J(τ) Non-Gaussian temporal profile
J0 Total energy intensity
kij Thermal conductivity tensor
ni Unit normal vector
Q(x, t) Heat source intensity
R Irradiated surface absorptivity
v Poisson’s ratios
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