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Abstract: The incomplete degradation of bio-based and biodegradable plastics (BBPs) in soils causes
multiple threats to soil quality, human health, and food security. Plastic residuals can interact with
soil microbial communities. We aimed to link the structure and enzyme-mediated functional traits of
a microbial community composition that were present during poly (butylene succinate-co-butylene
adipate (PBSA) decomposition in soil with (PSN) and without (PS) the addition of nitrogen fertilizer
((NH4)2SO4). We identified bacterial (Achromobacter, Luteimonas, Rhodanobacter, and Lysobacter) and
fungal (Fusarium, Chaetomium, Clonostachys, Fusicolla, and Acremonium) taxa that were linked to
the activities of ß-glucosidase, chitinase, phosphatase, and lipase in plastic-amended soils. Fungal
biomass increased by 1.7 and 4 times in PS and PSN treatment, respectively, as compared to non-
plastic amended soil. PBSA significantly changed the relationships between soil properties (C: N
ratio, TN, and pH) and microbial community structure; however, the relationships between fungal
biomass and soil enzyme activities remained constant. PBSA significantly altered the relationship
between fungal biomass and acid phosphatase. We demonstrated that although the soil functions
related to nutrient cycling were not negatively affected in PSN treatment, potential negative effects
are reasoned by the enrichment of plant pathogens. We concluded that in comparison to fungi, the
bacteria demonstrated a broader functional spectrum in the BBP degradation process.

Keywords: PBSA; enzyme activities; bacterial and fungal community composition; bio-based and
biodegradable plastic; plastic pollution

1. Introduction

The use of bio-based plastics is rapidly increasing worldwide because such plastics
are increasingly used in the agriculture and food packaging industry [1]. Products of
bioplastics are used manifold, for instance, as carrying bags and super-absorbent diapers
and for wastewater treatment, various packaging applications, medical and dental implants,
catering and hygiene products, and mulching in agriculture. Bio-based plastics are obtained
from polymers that are either entirely or partially organic renewable material of biological
origin [2]. Unlike traditional plastics, bio-based and biodegradable plastics (BBPs) are
metabolized by microorganisms into carbon dioxide (CO2) and water under environmental
conditions [3]. Therefore, it had been suggested that biodegradable plastics do not impede
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penetration and the circulation of water and air in soils [4,5]. Although BBPs can degrade in
natural environments, especially in soils, their degradation rates vary greatly depending on
the type of BBPs, climatic conditions (mainly precipitation and temperature), soil properties,
soil types, and organismic diversity as well as activity of soil microorganisms. After one
year of exposure in soil, already a 28–33% reduction in bio-based plastic’s poly (butylene
succinate-co-butylene adipate) (PBSA) gravimetric and molar mass was found [6]. However,
BBPs were not fully mineralized, thus leaving micro- and nanoplastic particles in soils.
These scenarios show that BBPs, especially as plastic mulching, can also contribute to the
plastic pollution in soil environments. They can also interact with other environmental
factors, which may increase risk to plant health. A recent study showed that a high
load of microplastics of BBPs interacted with N fertilizer and became a hotspot for an
important plant pathogen Fusarium solani, which negatively impacted the health of mung
bean seedlings [7].

The main advantage of BBPs is the use of renewable resources for their synthesis. The
production of many BBPs reduces the carbon (C) footprint compared to petroleum-based
plastics [8]. Specifically, BBPs made by plant compounds comprise atmospheric CO2 fixed
by photosynthesis during cultivation [9]. Many studies have shown that the use of BBPs is
more safe to the environment, plants, microorganisms, and humans [5]. Nevertheless, some
recent studies have revealed negative effects of BBPs on plant health [10]. The negative
effects of BBPs on wheat growth were stronger than those of polyethylene as BBPs inhibited
shoot growth and reduced total plant biomass [11]. When soils are contaminated with plant
pathogens due to BBPs, the production function is impaired as plants lose their fitness and
may not be able to grow and produce biomass.

Although some studies have revealed negative effects of BBPs on crop development
and yield prior to harvest, there are still very limited types of BBPs being evaluated in
depth. The effect of BBPs on microorganisms is still poorly understood due to applications
of low-resolution methods for characterizing microbial communities decomposing plastic
and transforming soil organic matter. Healthy soils contain diverse microbial taxa, ensur-
ing ecosystem services such as nutrient cycling and soil fertility [12]. Fungal community
members are considered as main decomposers of BBPs especially for PBSA [6,13,14], while
less information on the role of bacterial community members in this process is available.
Microorganisms present on BBPs added to soils are also frequently associated to atmo-
spheric dinitrogen (N2) fixing bacteria (diazotrophs) to receive N supply in N deficient BBP
environments [6,15].

Soil microorganisms are pivotal in storing organic C in the soil system [12], regulating
the abundance of C in the soil, which in turn affects soil fertility and water storage capacity.
The incorporation of C-rich and nutrient-poor substrates such as BBPs into the soil results
in a shift of the microbial community structure [16], as BBP-degrading microorganisms,
especially fungi, are enriched. Moreover, the addition of BBPs into soil causes increased
competitive interactions between plant and soil microorganisms [17]. Many studies have
shown no harmful effect of BBP metabolites on soil environments [3,17]. The degradation
of BBPs is generally assumed not to negatively affect bacterial biomass and diversity [18],
as well as the activity of some soil enzymes [5,17]. However, these findings are based
on studies with a limited number of BBP types and soil enzymatic activities. Microbial
community structure, richness, and microbial biomass were reported to be good predictors
for soil enzyme activities [19]. Some studies have revealed that microbial community
structure and enzyme activity in soils are significantly linked with each other, which
underlines the microbial structure–function relationships [20,21]. However, some studies
also showed that such relationships may not be true in all ecosystems, partly due to the
functional redundancy within the microbial communities [22].

Hydrolytic extracellular enzymes such as lipase catalyze the PBSA cleavage into
water-soluble compounds [23], which enables the uptake and facilitates soil microbial and
plant-microbial interactions [24]. Such hydrolytic enzymes are important for C, N, and
P acquisitions and are therefore meaningful indicators for soil functions [25,26]. Lipases
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are hydrolytic enzymes produced by animals, plants, and microorganisms, which are
responsible for the hydrolysis of triacylglycerol into glycerol and free fatty acids [27,28].
Lipases therefore mediate degradation processes of many BBPs [10,29]. Acid phosphatase
catalyzes the hydrolysis of organic phosphate compounds to release mineralized P, which
increases its bio-availability for uptake by plants and microorganisms [30,31]. N-Acetyl-
d-glucosaminidases (NAG) or chitinases are involved in the breakdown of chitin and
peptidoglycan, which play an important role in C and N cycling [32]. β-glucosidases cat-
alyze the hydrolysis of cellobiose into glucose [33]. They are often found in soil ecosystems
and are considered as a key indicator of soil quality [34].

We aimed to (i) investigate the effects of adding a high load (6% w/w) of PBSA to soil
with (PSN treatment) and without (PS treatment) the addition of N fertilizer (ammonium
sulfate) on important soil parameters (total organic carbon, TOC; total nitrogen, TN; C:
N ratio, and pH), fungal biomass, and soil functions (enzyme activities); and (ii) analyze
bacterial and fungal communities’ richness, composition, and functional traits, and investi-
gate potential correlations to enzymatic activities (such as lipase, ß-glucosidase, chitinase,
and phosphatase). We considered 6% of PBSA as a high plastic load as the maximum
plastic contamination in agricultural soil is generally expected to be about 1% [11]. We
hypothesized that fungal biomass and soil enzyme activities would increase in both PS
and PSN treatments as compared to control soils with and without N addition (control S
and control SN, respectively). We expected that a high load of BBPs will change structural
and functional relationships between microbial communities, soil properties, and soil en-
zyme activity in plastic-amended soil as compared to control S and control SN [35,36]. We
assumed that fungal community members are not the sole players for the degradation of
PBSA, and that bacteria interact with fungi to decompose PBSA.

2. Materials and Methods
2.1. Experimental Procedure: Soil, PBSA, and Experimental Conditions

In comparison to a published study [10], we further extended the laboratory exper-
iments to link microbial community structure at the family and genus level to enzyme
activities, soil pH, ergosterol, and C and N content as affected by the BBP addition. Briefly,
we collected soils from a plot under conventional farming and ambient climate treatment at
the Global Change Experimental Facility [37], Bad Lauchstadt, central Germany (51◦22′60
N, 11◦50′60 E, 118 m a.s.l.), which was characterized as a Chernozem with a water holding
capacity of 35%, total organic C of 2%, C: N ratio of 10, and pH of 7.5. The conventional
farming treatment at GCEF includes a typical regional crop rotation (winter rape, winter
wheat, and winter barley) as well as the application of mineral fertilizers and pesticides as
described elsewhere [37]. In this study, four soil treatments incubated for 90 d [10] were con-
sidered for further analyses: (1) control soil (soil without PBSA) (control S); (2) control soil
with (NH4)2SO4 addition (control SN); (3) PBSA–soil with PBSA addition (PS treatment);
and (4) PBSA–soil–N soil with PBSA and (NH4)2SO4 addition (PSN treatment). The micro-
bial community composition in the initial soil was also determined in this study along with
soil samples from the four treatments and used as a reference. For PBSA–soil treatments
(PS and PSN), PBSA films (BioPBS FD92, PTT MCC Biochem Company Limited, Bangkok,
Thailand; in the form of double-layer thin film with 50 µm thickness, percent bio-based
carbon = 35%) were surface sterilized with 70% ethanol, cut into pieces (2–5 mm × 2–5
mm), 1 g of which was weighed, and buried in a 100 mL sterile glass jar containing 19 g soil
(accounting for 15.68 g soil dry weight) from one of the two treatments with five replicates
for each treatment and PBSA: dried soil = 6% w/w. In control SN and PSN treatments, 1.4
mL of 1.42 M (NH4)2SO4, 0.055 g N, equivalent to 280 kg N per hectare was directly added
to the soil to make N available to soil microbes and to mimic fertilization in agricultural
systems. For control S and PS treatments, 1.4 mL sterile Milli-Q water was added to achieve
a soil water content equivalent to that in PSN treatment (17.5%, accounting for 50% of
the water holding capacity), which was considered to be at the field capacity of this soil
under actual field conditions. All four soil treatments were incubated at a constant water
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content of 17.5%, which was determined with a Mettler Toledo HB43-S halogen moisture
analyzer (Greifensee, Switzerland) and air temperature at 22 ◦C for 90 d in the dark, long
enough for PBSA to be partially degraded [38]. During the incubation period, the lids
of glass jars were manually opened and closed every 14 d under laminar flow to avoid
anoxic conditions. After 90 d, PBSA samples were degraded under PS treatment (overall
average mass loss = 13%) and highly degraded under PSN treatment (72% in three out of
five samples, overall average mass loss = 60%) [39]. A full experimental setup protocol is
provided elsewhere [10].

2.2. Analyses of Microbial Communities in Soils

Analyses of microbial communities in soils were performed as previously described [10].
Briefly, soil microbiomes were characterized by 16S rRNA gene-based and fungal in-
ternal transcribed spacer (ITS)-based amplicon sequencing on the Illumina MiSeq se-
quencing platform. Soil samples were subjected to DNA extraction using the DNeasy
Power-Soil Kit according to the manufacturer’s instructions. After the DNA quantity
check, DNA amplification, and visualization by gel electrophoreses, the extracts were
subjected to DNA sequencing targeting the 16S rRNA gene V4 region using the uni-
versal bacterial/archaeal primer pair 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and
806R (5′-GGACTACHVGGGTWTCTAAT-3′) [40] and the fungal ITS2 gene using the
fungal primer pair fITS7 (5′-GTGARTCATCGAATCTTTG-3′) [41] and ITS4 primer (5′-
TCCTCCGCTTATTGATATGC-3′) [42]. Paired-end sequencing (2 × 300 bp) was performed
on the pooled PCR products using a MiSeq Reagent kit v3 on an Illumina MiSeq system
(Illumina Inc., San Diego, CA, USA) at the Department of Soil Ecology, Helmholtz Centre
for Environmental Research, Germany. Additionally, a pooled negative control of all PCR
runs was included for sequencing and used as sequencing control. The raw 16S and ITS
rRNA gene sequences were deposited in the National Center for Biotechnology Information
(NCBI) Sequence Read Archive under the accession number PRJNA702448. After the bioin-
formatics, we obtained the minimum sequencing depths of 34,856 and 46,400 sequences
per sample for the prokaryotic and fungal datasets, respectively. Relative abundance
and presence and absence datasets for bacteria and fungi were used in the data analyses.
The protocol for the analysis of soil microbiome and all microbial taxonomic and relative
abundance information are published elsewhere [10].

2.3. Soil Physicochemical Properties and Enzyme Analyses

TOC and TN were analyzed by dry combustion at 1000 ◦C with an Elementar Vario EL
III (Hanau, Germany) elemental analyzer according to DIN/ISO 10,694 (Aug. 1996) [43]. Soil
pH was determined using an HI83300 multiparameter-photometer and pH-meter (Hanna
instruments, Vöhringen, Germany). The enzyme kinetic parameters (Vmax: maximum rate
of enzyme-mediated reactions and Km: the concentration of substrate which permits the
enzymes to achieve half of Vmax) of β-glucosidase (EC 3.2.1.21), NAG (EC 3.2.1.14), phos-
phatase (EC 3.1.3.2), and lipase (EC 3.1.1.3) were measured using a fluorometric microplate
assay (TECAN Infinite F200Pro, Grödig, Austria) with 4-methylumbelliferone (MUF)-
labeled substrates (Sigma-aldrich, Steinheim, Germany). The 4-methylumbelliferyl-beta-
D-glucopyranoside (CAS: 18997-57-4), 4-methylumbelliferyl-N-acetyl-beta-D-glucosaminide
(CAS: 37067-30-4), 4-methylumbelliferyl-phosphate (CAS: 22919-26-2) and 4-methylumbelliferyl
butyrate (CAS: 17695-46-4) were used to detect ß-glucosidase, chitinase, phosphatase and
lipase activities, respectively. Soil (0.5 g dry weight equivalent) was sonicated in 50 mL of
Milli-Q water for 1 min to make the soil suspension. Additionally, 100 µL of substrate, 50 µL
0.1 M 4-morpholineethane sulphonic acid hemisodium salt [MES (C6H13NO4SNa0.5)] (J&K
Scientific, Pforzheim, Germany) buffer (pH 6.5) for MUF (C10H8O3) substrate, and 50 µL of
soil suspension were added into microplate wells. The time intervals of fluorescence mea-
surements (after 30 min, 90 min, and 150 min) were maintained similarly for all the enzymes
and treatments. The enzyme activities were assayed in a range of substrate concentrations
(5, 10, 20, 50, 80, 100, 200, and 400 µmol g−1 soil). Calibration of fluorometric assay was
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based on 50 µL of soil suspension (same soil as the soil under study), 50 µL of MES, and in
a series of 0–1 mM concentrations of 100 µL of MUF (Sigma-aldrich, Steinheim, Germany,
CAS: 90-33-5). Maximal enzyme activities (Vmax) and the concentration of substrate which
permits the enzyme to achieve half Vmax (Km) were calculated as released MUF in nmol
per g dry soil per h according to the Michaelis–Menten equation [44]. All parameters were
modelled with the non-linear regression routine of Origin 2019.

2.4. Determination of Ergosterol

To determine ergosterol as an indicator for fungal biomass, 300 mg of fresh soil
obtained from 90 d and 1.5 mL of methanol were filled into a 2 mL tube. After 30 s of
vortexing with the highest speed (2300 min−1), the samples were centrifuged for 5 min at
6217 xg (Centrifuge 5415D, Eppendorf, Hamburg, Germany). The supernatant was passed
through a syringe filter (Minisart RC 0.45 µm, Göttingen, Germany) and analyzed in the
HPLC Agilent 1100 Series (Agilent, Waldbronn, Germany) using 100% methanol (Merck
KGaA, Darmstadt, Germany) mobile solvent equipped with an RP18 150 × 3 mm column
according to the manufacturer’s instructions.

2.5. Statistical Analysis

As relative abundance data from metabarcoding may contain some biases [45], we an-
alyzed the microbial community composition mainly using presence and absence datasets.
The links between microbial community compositions and treatment, soil physicochemical
properties, and enzyme activities as well as between microbial communities and enzyme ac-
tivity patterns were analyzed using the goodness of fit statistic based on presence–absence
data and the Jaccard distance measure. The effects of treatments on soil physicochemi-
cal properties, microbial traits, and enzyme activities were analyzed using ANOVA and
Kruskal–Wallis test for the data with equality and non-equality of variance, respectively.
The relationships between bacterial and fungal richness and soil physicochemical proper-
ties, microbial traits, and maximum reaction rate of different enzymes (chitinase, lipase,
phosphatase, and β–glucosidase) were analyzed using Spearman’s correlation coefficient,
incorporating the Jarque–Bera JB test for normality and Levene’s test to assess the equality
of group variances. All statistical analyses were performed using PAST version 2.17 [46].

3. Results
3.1. Bacteria and Fungi in Soils without PBSA and Soils of PBSA–Soil Systems: Who Is Who?

The relative abundance data at the phylum and class level of soil microbes were
previously published [10]. In this current study, we focused on bacterial and fungal
community compositions based on both relative abundance and presence and absence data,
which were briefly presented to visualize the most dominant bacterial and fungal families
(Figure 1) and genera (Figure 2) for each treatment. We detected 9 and 13 dominant bacterial
and fungal families with relative abundances of > 2% and 1%, respectively (Figure 1). The
microbial families of the PS and PSN treatments significantly differed from those under
the control S and control SN treatment, especially when considering relative abundance.
In soils of PSN treatment, Alcaligenaceae and Nectriaceae were dominant and their relative
abundance reached up to 60% and 64%, respectively. In soils of PSN treatment, Nectriaceae
revealed the highest amplicon sequence variant (ASV) richness compared to other families.
The dominant patterns of Alcaligenaceae and Nectriaceae in soils of PSN treatment correlated
to the bacterial genus Achromobacter and the fungal genus Fusarium (Figure 2).
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able poly (butylene succinate-co-adipate) (PBSA) based on relative abundance (left panel, (a,c)) and
presence/absence data (right panel, (b,d)). Data are presented for initial soil (initial S), control soils
(control S), control soils with (NH4)2SO4 addition (control SN), soils with PBSA addition (S–PS), and
soils with PBSA and (NH4)2SO4 addition (S–PSN).
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Figure 2. Composition of the bacterial (a,b) (genus level, considering only families with relative
abundances≥ 1%, the rest of the bacterial genera were pooled as “others”) and the fungal (c,d) (genus
level, considering only families with relative abundances ≥ 1%, the rest of the fungal genera were
pooled as “others”) communities associated with the degradation of a bio-based and biodegradable
poly (butylene succinate-co-adipate) (PBSA) based on relative abundance (left panel, (a,c)) and
presence/absence data (right panel, (b,d)). Data are presented for initial soil (initial S), control soils
(control S), control soils with (NH4)2SO4 addition (control SN), soils with PBSA addition (S–PS), and
soils with PBSA and (NH4)2SO4 addition (S–PSN).

3.2. Effects of PBSA and N Addition on Soil Properties, Fungal Biomass

The TOC content increased in soils of PSN (2.45%) treatment by 21, 18, and 13%,
respectively, as compared with control S (2.02%), control SN (2.08%), and PS (2.17%) treat-
ments (Figure 3). TN was 142% and 169% times higher in soils of control SN (0.46%) and
PSN (0.51%) treatments as compared with the control S (0.19%) and PS (0.19%) treatments,
respectively (Figure 3). In accordance, the C: N ratio and pH were significantly lower in
soils of control SN (4.53 and 6.68) and PSN (4.81 and 6.28) treatments (p < 0.05). Fungal
biomass based on ergosterol content was the highest in soils of PSN (21.02 mg/kg) treat-
ment (Figure 3), followed by PS (3.04 mg/kg), control SN (2.47 mg/kg), and control S
(1.74 mg/kg).
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Figure 3. Mean of total organic carbon (TOC, (a)), total nitrogen (TN, (b)), C: N ratio (c), soil pH
(d), and ergosterol content (e) of each treatment. Analysis of variance (ANOVA) or Kruskal–Wallis
test was performed for the data with equality and non-equality of variance, respectively. Standard
deviation of five replicate measurements are shown. The rhombs on the bars indicate the data
points. Different letters indicate significant differences according to ANOVA (p < 0.05). Details of the
treatment abbreviations can be found in the legend of Figure 1.

The enzymatic activities (Vmax) in PS and PSN treatments were enzyme-specific
(Figure 4). Vmax of chitinase and phosphatase reached the highest value in soil under PSN
treatment (Figure 4a,c). Vmax of β–glucosidase was significantly higher in soils with N
addition (control SN and PSN treatments) as compared to those without N addition (control
S and PS treatments) (Figure 4d).
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added soils (Table 3). The exception was found for Achromobacter and chitinase activity, 
which were highly correlated both in soils and PBSA–soil systems. 

  

Figure 4. Mean of maximum rate of reaction (Vmax) of chitinase (a), lipase (b), phosphatase (c),
and β–glucosidase activity (d) of each treatment. Analysis of variance (ANOVA) or Kruskal–Wallis
test was performed for the data with equality and non-equality of variance, respectively. Standard
deviation of five replicate measurements are shown. The rhombs on the bars indicate the data
points. Different letters indicate significant differences according to ANOVA (p < 0.05). Details of the
treatment abbreviations can be found in the legend of Figure 1.

3.3. Microbial Communities Are Shaped by Soil Physicochemical Properties and Linked to
Soil Functions

Soil bacterial and fungal community compositions were shaped by the respective
treatments (control S and control SN, PS, and PSN) and the soil properties (TOC, TN, C: N
ratio, and pH) (Table 1). The main factor that significantly shaped the fungal community
composition was TOC (R2 = 0.88, p = 0.001) (Table 1). The enzyme activity was also
significantly linked with the microbial community compositions (Table 2). Vmax of all tested
enzymes as well as the Km of phosphatase were significantly correlated to both bacterial
and fungal community compositions. Among these enzyme activities, Vmax of chitinase
(R2 = 0.71, p = 0.003) and phosphatase (R2 = 0.90, p = 0.001) were highly correlated with
the bacterial community composition, while only Vmax of chitinase (R2 = 0.91, p = 0.001)
correlated with the fungal community composition (Table 2). When comparing control
with PBSA-added soils, we found that different bacterial and fungal genera were highly
correlated (ρ > 0.80, p < 0.01) with respective soil functions in control and PBSA-added soils
(Table 3). The exception was found for Achromobacter and chitinase activity, which were
highly correlated both in soils and PBSA–soil systems.



Polymers 2022, 14, 2801 10 of 18

Table 1. Goodness of fit statistics (R2) of treatment and mean of the soil physicochemical parameters
fitted to the nonmetric multidimensional scaling (NMDS) ordination of bacterial and fungal com-
munity composition based on presence/absence data and Jaccard distance similarity of soils in all
treatments. Bold p values indicate statistical significances p < 0.05.

Bacteria Fungi

R2 p R2 p

Treatment 0.60 0.001 0.54 0.001
Total organic carbon (TOC) 0.68 0.001 0.88 0.001

Total nitrogen (TN) 0.45 0.001 0.43 0.004
C: N ratio 0.30 0.034 0.32 0.015

pH 0.58 0.003 0.34 0.016
PBSA amendment 0.33 0.033 0.41 0.003

N amendment 0.33 0.001 0.31 0.013

Table 2. Goodness of fit statistics (R2) of the mean of respective enzyme’s activity fitted to the non-
metric multidimensional scaling (NMDS) ordination of bacterial and fungal community composition
based on presence/absence data and Jaccard distance similarity of soils in all treatments. Bold letter
indicates statistical significances. The abbreviations are Vmax: maximum rate of reaction of enzymes
and Km: the concentration of substrate which permits the enzymes to achieve half of Vmax. Bold
p values indicate statistical significances p < 0.05.

Bacteria Fungi

R2 p R2 p

Vmax, Chitinase 0.71 0.003 0.91 0.001
Vmax, Lipase 0.42 0.008 0.08 0.522

Vmax, Phosphatase 0.90 0.001 0.47 0.020
Vmax, β–Glucosidase 0.35 0.024 0.15 0.249

Km, Chitinase 0.04 0.759 0.05 0.640
Km, Lipase 0.14 0.215 0.18 0.181

Km, Phosphatase 0.61 0.003 0.48 0.008
Km, β–Glucosidase 0.23 0.121 0.12 0.348

Table 3. Correlations between relative abundances of bacterial and fungal genera with enzyme
activities in control (S) and PBSA-added (p) soils. Strong positive correlations above ρ > 0.8 are
highlighted in green. Bold p values indicate statistically significant correlations p < 0.05.

Microbial
Taxa

β-Glucosidase
(p)

β-Glucosidase
(S)

Chitinase
(p)

Chitinase
(S)

Lipase
(p)

Lipase
(S)

Phosphatase
(p)

Phosphatase
(S)

Bacteria
Achromobacter 0.37 0.87 0.81 0.89 0.07 0.20 −0.10 −0.74
Sphingomonas 0.02 0.73 −0.04 0.77 −0.04 0.16 −0.08 −0.43

RB41 −0.58 −0.77 −0.68 −0.95 −0.36 −0.33 −0.22 0.59
Luteimonas 0.82 0.67 0.82 0.78 0.62 0.55 0.44 −0.72

Streptomyces 0.18 0.65 0.68 0.53 −0.12 0.38 −0.27 −0.58
Rhodanobacter 0.80 0.50 0.59 0.37 0.81 0.22 0.81 −0.23

Lysobacter −0.39 0.79 −0.45 0.93 −0.37 0.52 −0.33 −0.68
Gaiella −0.47 0.14 −0.68 0.33 −0.13 −0.26 0.03 −0.21

Chitinophaga 0.75 0.05 0.54 −0.08 0.77 0.07 0.77 −0.38
Gemmatimonas 0.26 0.71 −0.08 0.75 0.47 0.48 0.70 −0.84
Bradyrhizobium −0.62 0.59 −0.83 0.50 −0.49 −0.03 −0.38 −0.39

Fungi
Fusarium 0.68 −0.76 0.92 −0.64 0.28 −0.25 0.08 0.62

Chaetomium −0.31 0.79 −0.76 0.85 −0.02 0.38 0.12 −0.56
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Table 3. Cont.

Microbial
Taxa

β-Glucosidase
(p)

β-Glucosidase
(S)

Chitinase
(p)

Chitinase
(S)

Lipase
(p)

Lipase
(S)

Phosphatase
(p)

Phosphatase
(S)

Exophiala 0.42 −0.13 −0.08 0.05 0.61 0.60 0.55 −0.10
Tetracladium −0.58 0.60 −0.84 0.64 −0.21 0.35 0.01 −0.53
Gibellulopsis −0.47 0.55 −0.65 0.78 −0.24 0.26 −0.26 −0.21

Schizothecium −0.19 0.55 −0.66 0.43 0.10 0.13 0.19 −0.77
Ilyonectria −0.35 −0.85 −0.65 −0.68 −0.25 −0.21 −0.18 0.68
Mortierella −0.43 0.19 −0.76 0.03 −0.19 −0.48 −0.18 0.13

Clonostachys 0.82 −0.68 0.94 −0.55 0.44 0.09 0.25 0.36
Preussia −0.34 −0.83 −0.80 −0.68 −0.07 −0.42 0.01 0.50

Rhizophlyctis −0.17 −0.16 −0.64 −0.50 0.12 −0.55 0.18 0.25
Stachybotrys −0.44 0.59 −0.68 0.65 −0.20 0.32 −0.24 −0.52

Fusicolla 0.74 0.88 0.20 0.89 0.84 0.39 0.85 −0.58
Acremonium −0.29 0.81 −0.71 0.64 −0.04 0.19 0.17 −0.50
Sistotrema −0.17 −0.41 −0.17 −0.73 −0.06 −0.79 −0.06 0.63

3.4. Enzymes Activity Patterns, Soil Properties, and Fungal Biomass: Are There Any Links?

The soil enzyme activity patterns were shaped by treatments, PBSA addition, soil
properties (TOC and pH), and fungal biomass (Table S1). The strongest correlation was
found between TOC and soil enzyme activity patterns (R2 = 0.62, p = 0.003) (Table S2).

3.5. Relationships between Microbial Richness and Soil Properties: Significant Differences between
Soils and PBSA–Soil Systems

Bacterial and fungal richness were significantly positively correlated when consid-
ering all treatments (control S, control SN, PS and PSN treatments) together and only in
PBSA-added treatments (soils of PS and PSN treatments) (Figure 5a–c). The bacterial and
fungal richness corresponded to TN, C: N ratio, and pH differently when considering all
treatments, control treatments (control S and control SN), and PBSA-added treatments.
When all treatments were considered, no significant correlations were observed between
bacterial and fungal richness and TN, C: N ratio, and pH except between fungal richness
and TN (Figure 5d). When considering only soils without PBSA addition, no measured
soil physicochemical properties (TN, C: N ratio, and pH) were found to shape the bacterial
and fungal richness (Figure 5e,h,k). In contrast, when PBSA-added soils were analyzed,
both bacterial and fungal richness significantly correlated with TN, C: N ratio, and pH
(Figure 5f,i,l).
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Figure 5. Correlations between bacterial and fungal richness (a–c), bacterial and fungal richness
and total nitrogen (TN) (d–f), C: N ratio (C_N) (g–i), and pH (j–l) in soils of all treatments (left
panel, (a,d,g,j)), control soils (middle panel, (b,e,h,k)), and PBSA-added soils (right panel, (c,f,i,l)).
Spearman’s rank correlation was performed for aforementioned comparisons. The correlation table
for all comparisons is provided in Supplementary Table S1a–c. Statistical significance is given in bold.

3.6. Relationships between Fungal Biomass and Soil Functions: Consistent for C and N Cycles

The significant negative correlation between Vmax of phosphatase and ergosterol
content was detected only in soils without PBSA addition, while no correlations were found
in all treatments and soils with PBSA addition(Figure 6g–i).
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Figure 6. Correlations between total nitrogen (TN) (a–c), pH (d–f), maximum rate of reaction
(Vmax) of phosphatase (Phosphatase_V) (g–i), and ergosterol content in soils of all treatments
(left panel, (a,d,g)), control S and control SN treatments (middle panel, (b,e,h)), and PS and PSN
treatments (right panel, (c,f,i)). Spearman’s rank correlation was performed for aforementioned
comparisons. The squares, circles and triangles indicate data points from combination of all treat-
ments, soil without PBSA addition and PBSA added soil respectively. The correlation table for all
comparisons is provided in Supplementary Table S1a–c. Statistical significance is given in bold. Thin
line indicates marginally significant correlation.

3.7. Relationships between Ergosterol Content and Soil Properties

The trend in the correlations between TN, pH, and ergosterol content was consistent
across all treatments (Figure 6). We detected positive correlations between TN and er-
gosterol across all treatments (Figure 6a–c); however, the correlation between ergosterol
and TN content was only marginally significant in PBSA-treated soil. Consistent negative
correlations were found between ergosterol and pH (Figure 6d–f).

4. Discussion
4.1. Presence of PBSA Alters Link between Bacterial and Fungal Richness and Its Relationships
with Soil Properties

We observed no correlation between bacterial and fungal ASV richness in soil without
PBSA addition, whereas in soil with PBSA addition, we detected strong positive correlations
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(Figure 5). We previously reported such a relationship between bacteria and fungi at the
surface of PBSA films in agricultural field soils [6]. In the current study, we demonstrated
that this scenario even occurs in the PBSA-added soils. PBSA is degraded as a result of
microorganisms’ metabolic activities [47]. Biodegradation of PBSA is considered as an
interactive process mediated by different microbial taxa where fungi are characterized as
main decomposers, whereas bacteria only contribute as facilitators [6,10,14,48]. Diazotrophs
are listed among the most important bacterial facilitators, as PBSA is an extremely N-poor
substrate [6]. Nevertheless, some bacteria were also able to directly degrade biodegradable
PBSA [49].

The relationships between microbial richness and soil parameters were strongly altered
in PBSA-added compared to control soils. In the short term, a high load of N increased
the richness of archaeal, bacterial, and fungal taxa in PBSA-added soil [6]. The richness
of both bacteria and fungi strongly declined in soil with N and PBSA addition [10]. This
was coincident with an increase in soil N content, decrease in C: N ratio, and a reduction in
soil pH by approximately ~1–2 units. This may imply that our soil system lost the buffer
capacity to maintain microbial diversity against N and pH changes after PBSA addition.

4.2. Soil Nutrient Cycling Is Still Functioning despite the High Load of PBSA but How about
Soil Health?

In a broad sense, soil functions are the C turnover, plant growth support, water storage,
microbial ecosystem functioning, and nutrient cycling [50,51]. Functions of a soil microbial
community is the decomposition and transformation of organic matter, which constitutes
a transient nutrient sink [52,53]. The widely distributed β-glucosidase enzyme in soil
is considered as a key indicator of soil quality and is directly related to the quality and
quantity of soil organic matter [34]. Soil functions related to nutrient acquisition through an
activity of hydrolytic enzymes were not impaired by the high load of PBSA and were even
stimulated in the PSN treatment. The relationships between microbial communities with
soil enzyme activities were also highly conserved for the enzymes involved in C and N
cycling [54]. However, the soil in PSN treatment was highly governed by broad host range
of the plant pathogen F. solani [7], which can support the soil nutrient cycling function as it
is known as a saprotroph [55]. F. solani as well as other Fusarium spp. are also well-known
to efficiently produce the plastic-degrading enzyme lipase [56], β–glucosidase [57], and
chitinase [58], indicating that these species are potent PBSA degraders that are capable to
outcompete other PBSA degraders by pathogenic interactions.

4.3. Functional Redundancy, Competitions, and Degradation Efficiency

The changes in microbial community composition and reduction in fungal richness
in PS and PSN treatments did not affect Vmax of all measured enzymes (Figure 4). This
can be related to functional redundancy of soil microorganisms involved in soil nutrient
cycling [59–61]. Different microbial communities can process the same soil function as it
has been shown in many studies; specifically, different altered community structures and
changing domination of key microbial players do not impair main soil functions under
environmental conditions [59–61]. In our case, we reported before that fungal richness
declined in PBSA-amended treatments as compared to control and that the key fungal
players were Tetracladium spp. and Exophiala equine in PS and F. solani in PSN treatments [10].
This decline did not negatively impact enzyme-related soil functions (C, N, and P cycling)
(Figure 4). Less diverse fungal communities with efficient decomposers were found to
have a higher degradation rate of complex substrates due to their reduced investment in
fungal–fungal competition [62]. Furthermore, the majority of energy and resources in such a
system can be invested in the production of hydrolytic enzymes acquiring nutrients [62,63].
Declined fungal diversity induced by presence of PBSA, however, might reduce the levels
of functional redundancy, and as a result, the system may be prone to disturbances [61].
On the other hand, systems containing diverse microbial communities can have a higher
possibility to increase levels of functional redundancy [61,64]. There is competition in such
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systems, which can reduce their efficiency to utilize energy and resources; however, there
may also be synergy effects. Importantly, such systems are more resistant or resilient to
disturbances [64].

5. Conclusions

Our work indicated that the consequences of PBSA application in agricultural soils
have to be separately considered for indicators of soil nutrient functions and soil health. Fun-
gal communities significantly corresponded to Vmax of chitinase and phosphatase, whereas
bacterial community composition significantly corresponded to the activity of all measured
enzymes. We identified specific bacterial (Achromobacter, Luteimonas, Rhodanobacter, and
Lysobacter) and fungal (Fusarium, Chaetomium, Clonostachys, Fusicolla, and Acremonium) gen-
era indicative for PBSA decomposition as their relative abundances were highly correlated
with the measured enzyme activities. We also revealed a broader multi-functionality of
bacteria versus fungi in degradation of bio-based and biodegradable plastics.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14142801/s1, Table S1: Spearman’s rank correlation between
microbial richness, fungal biomass, soil physicochemical properties, and maximum rate of enzyme-
mediated reactions (Vmax) of measured enzymes in a) all treatments (control S, control SN, soils of PS
and PSN treatments), b) soils without PBSA (control S and control SN), and c) PBSA-added soils (soils
of PS and PSN treatments); Table S2: Goodness-of-fit statistics (R2) of treatment, physicochemical
properties, and fungal biomass fitted to the nonmetric multidimensional scaling (NMDS) ordination
of enzymes based on Euclidean distance similarity of soils in all treatment. Bold values of P and R2

indicate statistical significances (p < 0.05 and R2 > 0.7).
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