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Abstract: In the last decades, 3D printing has played a crucial role as an innovative technology for
tissue and organ fabrication, patient-specific orthoses, drug delivery, and surgical planning. However,
biomedical materials used for 3D printing are usually static and unable to dynamically respond
or transform within the internal environment of the body. These materials are fabricated ex situ,
which involves first printing on a planar substrate and then deploying it to the target surface, thus
resulting in a possible mismatch between the printed part and the target surfaces. The emergence
of 4D printing addresses some of these drawbacks, opening an attractive path for the biomedical
sector. By preprogramming smart materials, 4D printing is able to manufacture structures that
dynamically respond to external stimuli. Despite these potentials, 4D printed dynamic materials
are still in their infancy of development. The rise of artificial intelligence (AI) could push these
technologies forward enlarging their applicability, boosting the design space of smart materials by
selecting promising ones with desired architectures, properties, and functions, reducing the time to
manufacturing, and allowing the in situ printing directly on target surfaces achieving high-fidelity
of human body micro-structures. In this review, an overview of 4D printing as a fascinating tool
for designing advanced smart materials is provided. Then will be discussed the recent progress in
AI-empowered 3D and 4D printing with open-loop and closed-loop methods, in particular regarding
shape-morphing 4D-responsive materials, printing on moving targets, and surgical robots for in situ
printing. Lastly, an outlook on 5D printing is given as an advanced future technique, in which AI
will assume the role of the fifth dimension to empower the effectiveness of 3D and 4D printing for
developing intelligent systems in the biomedical sector and beyond.

Keywords: additive manufacturing; artificial intelligence; 4D printing; 5D printing; smart materials;
functional materials; biomedicine; open-loop AI; closed-loop AI

1. Introduction

Smart materials, also called intelligent or responsive materials, are designed materials
that have the ability to dynamically respond to external stimuli, adapting their features
and functions for a specific need of applications [1–6]. Usually, such materials respond to
stimuli such as temperature, pH, humidity, light, electromagnetism, ion concentration, and
mechanical force [7–10]. In addition, they are able to perform living-like functions such as
self-healing, self-assembly, shape memory, self-evolving, sensing, and actuating [11–14].

The design and experimentation of smart structures has pushed researchers to develop
different strategies in terms of behavior enhancement and property in relationship to spe-
cific applications [15,16]. However, smart materials have become increasingly complex (in
terms of structures, nano- and micro-topology, physical-chemical and mechanical features),
outpacing traditional manufacturing due to the intrinsic mechanical and control limitations
of these machines [17].

In recent years, additive manufacturing (AM), also called 3D printing, has emerged
as a versatile technique and a valuable alternative to traditional manufacturing for the
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fabrication of complex materials through a layer-by-layer approach, thus resulting in new
types of biomedical equipment, scaffolds, wearable devices, soft robotics, actuators, and
flexible electronics [18–27].

In the biomedical sector, 3D printing has played a crucial role as an innovative technol-
ogy for tissue engineering, organ fabrication, regenerative medicine, and drug delivery [28]
(Figure 1). Furthermore, 3D printing has attracted considerable interest in this field because
it allows the development of patient-specific personalized orthoses, prostheses, craniofacial
implants, and medical devices according to personal data [29–36]. To be emphasized, 3D
printing has a significant impact on medical education and surgical planning as 3D anatom-
ical models can be printed by perfectly reproducing the microscopic anatomical structures
of tissues and organs, thus having a positive impact in terms of time required, efficiency,
accuracy, and success of the surgery, but can also be used for training new surgeons [37–39].
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Figure 1. Additive manufacturing history and milestones in the biomedical field.

Currently, the methods of 3D printing used in biomedical fields mainly include the
following: fused deposition modeling (FDM), selective laser sintering (SLS), stereolithog-
raphy (SLA), and direct-ink-writing (DIW) [40–44]. Based on the specific needs, with
such methods, these devices or implants can be fabricated in various materials, from
polymers to hydrogels, up to metal alloys [40,45]. In addition, through 3D printing, they
are fabricated with different designed topologies with an extremely reduced amount of
time and cost. Other benefits of 3D printing are the ease of customizing designs, the
possibility of printing complex shapes in a controlled manner, and the ability to create
nature-resembling structures to improve performance to satisfy customers’ needs within a
short turnaround time [46]. All these features are not measured and are precisely controlled
in traditional manufacturing.

However, although 3D-printed structures successfully mimic complex anatomical
structures from a geometrical-topological point of view, most 3D-printed materials are
static and are unable to spontaneously change or adapt their features in response to the
surrounding dynamic environment.

A step forward was given by 4D printing, proposed for the first time by Skylar Tib-
bits [47] as 3D printing coupled with transformation capabilities (i.e., shape/color changing,
or structure healing) over time [48,49]. Hence, the additional dimension compared to 3D
printing, namely, the fourth dimension, has been defined as “time”, since it is directly
connected to the change of shape, properties, and functionality of the printed material over
time following its exposure to physical-chemical stimuli [50].

Notably, using 4D printing materials enables dynamic properties to open an attractive
path for biomedical and tissue engineering applications [51]. For instance, Hendrikson et al. [52]
reported the use of polyurethane to print the 4D-shape memory polymers with controllable
time-dependent shape changes that mechanically stimulate the cell’s morphological func-
tionality. During 4D-scaffold deformation, cells seeded on the scaffold are elongated by me-
chanical stimulation, allowing them to be implanted into patients using minimally invasive
surgery. A different approach has been given by Malachowski et al. [53], which developed
a thermally responsive theragripper composed of biodegradable poly(propylene-fumarate)
and biocompatible poly(N-isopropylacrylamide-co-acrylic acid) for the controlled release
of the multi-fingered drug through its layers and pores. The theragripper is closed at tem-
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peratures greater than 32 ◦C, which allows it to spontaneously grasp the tissue as it enters
the body from a cold state and subsequently to be effectively immobilized in a specific site,
allowing the prolonged and controlled release of the drug. This strategy could be useful
for patients with inflammatory bowel disease or gastrointestinal cancers since it could
avoid the systemic medications of chemotherapy, thus reducing the dosage and the related
side effects. The 4D printing may also be used for developing shape memory thermosets
endoluminal devices (i.e., tracheal stents), as recently reported by Zarek et al. [54].

Despite these potentials, 4D printed dynamic devices are still in their infancy of devel-
opment. The following challenge lies in the design of materials that are both dynamic and
biocompatible after printing: extremely important factors to be implemented in the medical
field, where organs and tissues are by definition complex and dynamic multifunctional
environments. Another major drawback lies in the nature of 3D- and 4D printing where
designed structures are typically manufactured on a planar and flattened substrate (namely,
ex situ printing), and then transferred to the target non-planar surfaces, such as those of
the human body. Therefore, the printing procedure is fully deterministic, with limited
“real-time knowledge” of the target geometry—except through computed tomography
or laser scanning—thus leading to a possible mismatch between the printed part and
target surfaces.

These issues represent key challenges that need to be addressed in the coming years
to foster the spread of AM technologies. One way to get around them could be the use
of artificial intelligence (AI): a tool that allows training machines for the development of
human-like capabilities in order to predict and represent the statistically significant and
most likely behavior of a phenomenon [55,56]. AI and its subset machine learning (ML)
can be a powerful tool to enlarge the applicability of 3D- and 4D printing, reduce the time
of manufacturing, and boost the design space.

Indeed, the use of optimized ML and AI algorithms in 3D- and 4D printing are
expected to perform the following: (1) discover new smart materials and their optimal
printing parameters; (2) accelerate the smart material design by selecting promising ones
with desired architectures, properties, and functions (avoiding the lengthy trial-and-error
production phase); (3) allow the in situ printing directly on target surfaces achieving
high-fidelity of microstructures compared to the ex situ printing; (4) predict and identify
relationships between specific materials and process setups that have not yet been tried.
Besides, AI and ML algorithms can be incorporated into the AM framework at multiple
levels, such as to accelerate the decision-making process in the design phase, determine the
best fabrication parameters, identify the ideal printability orientation, and decrease process
time [57] (Figure 2).

In this review, we provide an overview of 4D printing as a fascinating tool for designing
advanced smart materials. We then discuss the recent progress in AI-empowered 3D- and
4D printing with open-loop and closed-loop methods, in particular regarding the field of
smart materials design for biomedical approaches.

Furthermore, as recently reported by Milazzo and Libonati [58], we give an outlook on
the “5D printing” technique, in which AI and ML will assume the role of the fifth dimension
to empower the effectiveness of AM in biomedical approaches in real-time. Lastly, we will
briefly discuss the regulatory standpoint for managing AI technologies.
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2. 4D Printing

From its first appearance in 2013, 4D printing demonstrated a radical shift in
AM [47,59,60]. Tibbits defined 4D printing as multi-material printing with the capability
to transform over time or a customized material system that can change shape, struc-
ture, or function directly off the print bed [47]. The fourth dimension was described with
the formula of “3D printing + time”, emphasizing that printed structures are no longer
simply static or dead objects, but rather they are active and dynamic structures that can
spontaneously transform.

With the evolution of this technology, the concept of 4D printing has been expanded
by incorporating the product design into a flexible and intelligent material based on 3D
printing [61]. Therefore, the structures can deform, swell, self-assemble, or self-repair
according to a pre-designed path under specific conditions of time and upon exposure
to external stimuli. Such stimuli that are strictly connected with the changes in shape,
properties, and functionality of 4D printed structures can be both physical (temperature,
humidity, light, electromagnetism, and mechanical force) and chemical (pH, chemical
reactions, ion concentration, cross-linking, redox state of metal ions) and can be applied
sequentially or simultaneously to trigger a permanent or temporary change in the 4D
printed objects (Figure 3). In addition, such stimuli can also be of a biological nature
(e.g., biomolecules, enzymes, and cell traction force), which are of particular interest for
the fabrication of 4D-bioprinted engineered living scaffolds that allow tissue repair and
regeneration or a replicating cell population of living organisms [62–64].

Hence, 4D printing represents a glimpse into the world of smart materials that can
respond or adapt to environmental changes, biometric information, body temperature,
pressure, or sweat, to name a few.

Therefore, it is clear that the stimuli-responsive materials must possess the following
two key features to be used in 4D printing: (1) printability according to the guidelines of
AM technologies and (2) sensitivity to a stimulus, achievable intrinsically from the polymer
matrix or by incorporating additives or fillers into the polymer matrix [7,8].

Below, we elucidate some key aspects that distinguish 4D printing (self-repair, self-
adaptability, shape-shifting, and self-assembly) as useful for creating the above-mentioned
dynamic and controlled environments that are not exclusive to the biomedical field.
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Figure 3. Schematic representation of different types of stimuli, and responses observed in smart
materials in terms of shape-shifting, swelling, self-assembly, self-repair, and their possible use in
biomedical applications.

2.1. Self-Adaptability

Self-adaptive structures are fascinating applications of 4D printing. Through 4D
printing, self-organizing structures can be obtained using materials that mimic DNA strands
with complementarity sequences that couple under appropriate physical conditions. By
doing so, the building blocks of specially programmable biomaterials can be induced to
self-organize on multiple length scales to recapitulate the desired tissue architecture or to
precisely control the composition and spatial distribution of cells in manufactured tissues
that must mimic those natives [65].

A prominent example of self-adaptive material has been reported by Zarek et al. [54].
The authors fabricated 4D printed, customizable endoluminal cylindrical stents via SLA
using methacrylated polycaprolactone (PCL-MA) as the stimuli-responsive material. This
PCL-MA-based stent transits from a temporary closed state at room temperature (i.e.,
20 ◦C) into a permanently open state at body temperature (i.e., 37 ◦C), enabling a minimally
invasive insertion and better fitting of the stent at the damage site without the need for
surgical traction.

In addition, using 4D printing, it is possible to embody self-sensing or self-actuation
directly into a material so that external electromechanical systems are not necessary [47],
thus decreasing the number of printing parts, assembly time, material and energy costs,
which is extremely useful for electromedical and electromechanical systems.

2.2. Self-Repair

The self-repair or error-correction capability is another key feature of 4D printing. As
reported by Taylor et al. [66], self-repair is defined as the property that enables a material to
intrinsically and automatically heal damage, restoring itself to normality. Therefore, these
materials are able to repair the damage themselves and regain the associated mechanical
properties without human intervention or an external stimulus to promote the initiation or
extent of self-repair but rather due to the molecular diffusion of ionic cross-links among the
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4D printed polymer matrix. The self-repair requires rebonding a material to its original
shape or condition, for example, by cutting a gel in half and then allowing it to bond
back together [67].

Indeed, hydrogels are the most promising materials for self-healing due to their tunable
physical and chemical properties [68]. In the case of self-healing hydrogels, non-covalent
interactions (such as an ionic bond, hydrogen bond, hydrophobic interaction, Van der Waals
interactions, electrostatic attractions, and ππ stacking) are generally utilized, separately or
in combination, to self-mend damage or to restore their original properties [69,70]. The 4D
printed self-healing hydrogels show enormous advantages as they not only have the ability
to extend their half-life but also lead to an increase in the durability, reliability, reusability
of the material and, in some specific applications such as wound dressings, contact lenses,
scaffolding for meniscus or cartilage, increase safety by avoiding sagging caused by the
accumulation of cracks or breaks [69].

2.3. Shape-Shifting

The shape-shifting materials can take and hold any possible shape, or folding, bending,
or twisting following applied stimuli, thus paving the way for a new type of multifunctional
material that could be used in a wide range of applications, from medicine and biotechnol-
ogy to robotics. As reported by Momeni et al. [49] and Zhou et al. [51], the shape-shifting
materials could be divided into the following two categories: shape-changing materials
and shape-memory materials. A shape-changing material changes its shape immediately
upon the application of a stimulus and returns to its original shape immediately after the
stimulus has been removed (Figure 4A). Therefore, this type of material works with an
“on-off” mechanism, which is usually limited to changes in expansion swelling, twisting, or
volume shrinkage [51]. Instead, the shape-memory behavior involves a two-step process
(Figure 4B). In step one, the material is deformed from its primary shape following the
application of a stimulus, thus reaching a temporary metastable shape, which is main-
tained until a second appropriate stimulus (which may be different from the previous
one) is applied to allow the material to recover its original shape (step 2). Therefore, such
shape-memory materials possess the capability to “memorize” and maintain a temporary
shape until an appropriate stimulus is applied, while shape-changing materials cannot,
thus immediately return to their original conformation as soon as the stimulus is removed.
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The difference between shape-changing and shape-memory may seem nuanced, but in
reality, it has important implications for biomedical applications. For instance, with a similar
approach to that reported by Zarek et al. [54] for the 4D-printed self-adaptive endoluminal
tracheal stent, Wan et al. exploited the shape-changing properties of poly(D,L-lactide-
co-trimethylene carbonate) to 4D-print shape-changing patient-specific flower-shaped
intravascular stents via DIW [71]. The authors showed that the stents could rapidly self-
expand from a closed deformed shape when warmed to 37 ◦C and return to their original
shape when they are cooled (so when the warm temperature stimulus is removed). Instead,
Kim et al. fabricated a kirigami-inspired 4D-printed polyurethane-based bifurcated stent
using FDM [72]. This bifurcated stent possesses shape-memory properties; when heated to
its glass temperature of 55 ◦C, the stent deforms from its open “Y”-shaped configuration to
an “I”-shaped temporary metastable closed configuration, in which the branching of the
tube bends into a single tube of smaller diameter. The 4D-printed stent, in the temporary
metastable configuration, can thus travel through the main vessel and, upon reaching the
bifurcation of the target vessel, the original “Y”-shaped configuration can be recovered by
applying a second specific stimulus, which is to increase the temperature to 60 ◦C. In this
way, using this innovative shape-memory method, it will be possible to easily implant a
stent at the bifurcation of the target site (even if it is difficult to reach) because, thanks to its
temporary metastable configuration, it will be able to pass through the main vessels in a
minimally invasive way.

2.4. Self-Assembly

The concept of self-assembly is not new and it is increasingly used in many application
fields such as nanomedicine, biotechnology, architecture, infrastructure and other industry
scenarios [73]. By definition, self-assembly is the process in which the components of a sys-
tem, be they atoms, molecules, particles, or polymers, organize themselves autonomously
and with free energy into ordered and/or functional structures as a consequence of specific
interactions or stimuli [74].

Self-assembly processes are ubiquitous in nature (e.g., minerals, shells, pearls, corals,
bones, teeth, wood, silk). Indeed, as reported by Shuguang Zhang [75], nature has found a
fascinating way of using the self-assembly phenomenon, allowing molecules or structures
to organize themselves hierarchically from the nano- to the mesoscale level, thus leading to
exceptional properties. Just think of the formation of complex biological machines such as
ribosomes, ATP synthase, membrane channels, and hemoglobin.

In 4D printing, the concept of self-assembly is very attractive not only for the fabri-
cation of responsive tissue engineering scaffolds to mimic the complex structure of the
extracellular matrix (ECM) of damaged tissues [76], but also for the transfer of parts of
equipment within the human body [77]. Certainly, the future development of 4D printing
will focus on a variety of self-assembly capabilities and properties of free energy that must
be functionally incorporated into the material for developing single parts that can be 4D
printed with small printers and then self-assembled into larger structures, such as space an-
tennas, satellites, or international space stations as envisaged by Tibbits and colleagues [78].
Further attractive applications of 4D-self-assembly include self-assembling buildings, es-
pecially in non-industrialized zones or war zones where elements can come together to
produce a finished building with minimal human involvement [79], and reconfigurable
robotic systems with different degrees of freedom (DOFs) [80] in order to serve different
and complex mechanical (i.e., locomotion), and/or “programming matter” that encodes
structural and functional information of biological-inspired assembly systems [81].

3. Open-Loop AI for 3D Printing

Although 4D printing has exerted a positive impact on different biomedical fields and
beyond, many limitations and challenges remain to be overcome. Surely, the challenges and
prospects for the progress of 4D printing technology lie in the ability to design and integrate
chemistry, form and function in materials in order to allow dynamic and complex actions
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such as self-adaptability, self-repair, shape-changing, shape-memory, and self-assembly, so
far not always easy to make.

In our opinion, it is in this context that the rise of AI could propel these technologies
forward by expanding their applicability, increasing the design space for smart materials by
selecting promising ones with desired architectures, properties and functions, and reducing
production times.

For instance, open-loop AI-based 3D printing leverages the acquisition of information
on the geometry of the target surface before the manufacturing process (Table 1 summarizes
some of the common terms used in AI and AM). This geometric information, obtained by
computed tomography, laser scanning, structured-light scanning, stereovision scanning,
and optical coherence tomography [82–84], is then used by the AI algorithms to determine
the best toolpath design and the stimuli-responsive material distribution, allowing precise
and predictable shape control of the 4D-implant so that it can be used in a minimally
invasive way and, for example, expand to fill the target space after deployment to the target
position or transform over time as the body heals. Intriguingly, as reported by Zhijie Zhu
and co-workers [85], in the case where a target surface is not present (e.g., a damaged nerve
pathway or an occluded blood vessel), and therefore there may be issues related to the
substrate for the printing process, AI can use a library of previous scans of the target region
of interest and couple it with incomplete anatomy scan data to reconstruct a patient-specific
regenerative implant model to be fabricated through 4D printing.

Such open-loop AI-based approaches can be used for the fabrication of 3D anatomical
models or implants that recapitulate perfectly the microscopic anatomical structures of
damaged tissues and organs, thus minimizing the manual intervention for printing on
complicated geometries and having a positive impact in terms of accuracy of surgery and
efficiency of tissue regeneration, as it is possible to obtain a perfect match between the
4D-printed part and the target complex surface.

Manjot Singh et al. [86] reported the use of open-loop structured-light scanning tech-
niques that enable the topographical matching of 3D-printed device geometry to porcine
kidney anatomy. The structured-light 3D scanner digitally projects visible light patterns
onto the target surface and captures the reflected light patterns with cameras. These light
patterns captured by the cameras are then used via AI to calculate the 3D shape of the target
surface (Figure 5A). This method has been used to scan a porcine kidney for fabricating a
microfluidic device directly interfaced with a porcine kidney for organ assessment. Based
on the 3D scan of the kidney, the authors 3D-printed, for the first time, a phantom kidney
as a biomimetic substrate. Subsequently, the microfluidic device was conformably printed
onto this biomimetic substrate and then transferred to the kidney surface. The authors
argued that using this open-loop AI-based 3D printing approach bypassed the challenges
of direct 3D printing onto a living kidney surface, such as real-time compensation for organ
deformation and movement.

Instead, Mohammed Albanna et al. [87] developed and validated a mobile skin bio-
printing system that incorporates a structured-light scanner to extract the 3D contour of a
wound region and automatically recognize, through an AI system, the region to be repaired
(Figure 5B). Such integrated imaging technology with bioprinting facilitated the precise
delivery of dermal cell-laden fibrin/collagen hydrogels (either autologous or allogeneic)
into an injured area, replicating the layered skin structure, providing rapid on-site man-
agement of extensive wounds. Moreover, this strategy allowed the delivery of the bioink
(i.e., cells + hydrogel) to specific locations of the wound based on wound size and topology,
thus resulting in the acceleration of wound healing and the formation of normal skin in
situ, compared with untreated samples.
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Furthermore, as discussed in Section 2.3, shape-shifting materials that can take and
hold any possible shape, or folding, bending, or twisting following applied stimuli could
be useful for the fabrication of wearable medical implants directly 4D printed on the
human body to perform clinical diagnoses, aid in wound recovery or tissue regeneration.
The AI can ameliorate the design and 4D printing of wearable medical devices using
acquired scans of deformable target surfaces, making them compliant to the possible body
motions by adopting the properties of the functional responsive materials [88,89]. Again,
the involvement of AI for shape-changing and shape-memory 4D printing materials is
considered an open-loop approach since the AI algorithms are used during the design
phase rather than the printing process. This approach will certainly improve the robustness
and durability of wearable devices because, on the one hand, materials able to change shape
will be used according to the local characteristics of the target tissue or joint movements,
and on the other hand, to satisfy the specific needs of each patient.

4. Closed-Loop AI for 3D Printing

The closed-loop AI printing integrates the detection of changes in the 4D printing
environment (e.g., printing defects, movement or deformation of the target surface, material
flow, printing speed, nozzle height, printing temperature), thus adapting the AM process
in real-time [90] (see Table 1). Sensory data is processed using AI tools to recognize target
surface or print defects, while a feedback control system adjusts the toolpath in real-time
to compensate for the target movement, printer calibration errors, and material flow, thus
(1) ensuring the 4D printing process, (2) improving printing quality, and (3) enabling in
situ printing on moving targets via online tracking.

This strategy can empower 4D printing, providing new possibilities for developing
not only stand-alone wearable devices based on responsive materials printed on moving
targets [16], but may also be used as innovative biomedical technology for autonomous
surgeries, laparoscopy, and endoscopy [91], as well as for the fabrication of 4D printed soft
robots with embedded sensors (i.e., strain sensors, tactile sensors, magnetic field sensors,
flow sensors, and biosensors) [92].
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Table 1. Definition of common terms used in AM and AI.

Common Terms Used in Additive Manufacturing and
Artificial Intelligence REFs

3D printing: three-dimensional (3D) printing is an additive
manufacturing process in which a physical object is created from a
computer-aided design (CAD) model by printing the model on a

pre-computed layer-by-layer toolpath. This process is fully deterministic
and, therefore, is ideal for printing on planar surfaces that are stationary

relative to the coordinate system of the printer (namely, ex situ 3D
printing). To date, there are several 3D printing methods that include the

following: fused deposition modeling (FDM), selective laser sintering
(SLS), stereolithography (SLA), and direct ink writing (DIW).

[1,18,24,28,40]

4D printing: four-dimensional (4D) printing uses the same techniques of
3D printing through computer-programmed deposition of material in
successive layers to create a 3D object. However, in 4D printing, the

resulting 3D object is able to change shape, structure, or function directly
off the print bed in response to external stimulus, with the fourth

dimension being the time-dependent shape change after the printing. It is
therefore a type of programmable 3D printer, wherein after the fabrication

process, the printed material reacts with parameters within the
environment (humidity, temperature, mechanical force, pH, etc.) and

changes its form accordingly.

[2,4,47,49,50,59,80]

Artificial Intelligence: artificial intelligence (AI) leverages computers and
machines to mimic the problem-solving and decision-making capabilities
of the human mind. Although a number of definitions of AI have surfaced
over the last few decades, the most used is that of John McCarthy: “it is
the science and engineering of making intelligent machines, especially
intelligent computer programs. It is related to the similar task of using
computers to understand human intelligence, but AI does not have to

confine itself to methods that are biologically observable”.

[56,58,87]

Machine Learning: machine learning (ML) is a branch of AI and
computer science, which focuses on the use of data and algorithms to
imitate the way those humans learn, gradually improving its accuracy.

ML involves the development and deployment of algorithms that, rather
than being programmed to assign certain outputs in response to specific

inputs from the environment, analyze data and their properties, and
determine the action by using statistical tools. Usually, ML algorithms can

be broadly classified into the following five categories: supervised
learning, unsupervised learning, semi-supervised learning, reinforcement

learning and federated learning.

[56,57,87]

Open-Loop AI printing: open-loop AI leverages pre-acquired sensory
data (such as laser scanning and 3D tomography reconstructions) to

obtain precise target geometry in various forms of 3D representations
such as meshes and voxels. Then this geometry is calibrated with respect

to the printing platform, thus enabling the generation of a toolpath on
complex surfaces (i.e., organs or tissues). Based on this morphing path,
open-loop AI can design the distribution of shape-morphing materials
(whereby the morphing can be induced by mechanical load, change of
temperature or pH, swelling) within the 3D-printed model to achieve

improved compliance to a dynamically varying target surface. The
AI-related computation occurs prior to the printing process.

[87,90]

Closed-Loop AI printing: closed-loop AI printing integrates sensing as
part of the printing process. The sensory data are processed in real time
using AI tools to recognize the surface of the target. A feedback-control
system adjusts the toolpath in real time to compensate the target motion,
environmental disturbance, and calibration errors, thus ensuring the 3D

printing procedures.

[87,90,92]
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For instance, soft organs and tissues, such as the lung, heart, and skin, undergo
continuous deformations; therefore, they cannot be completely immobilized on a surface
for in situ 3D printing, thus requiring closed-loop AI tools with online updates for adapting
the printing toolpath in real-time. The closed-loop AI inkjet printing on a moving lung
was recently demonstrated by Zhijie Zhu and colleagues [93]. This closed-loop strategy
enables the estimation of motion and deformation of the target lung surface to adapt the
in situ printing toolpath in real-time. With this printing system, the authors demonstrate
the possibility of printing a hydrogel-based sensor on a porcine lung under respiration-
induced deformation with a tracking error of 0.65 mm. In a similar manner, the authors
also developed a real-time closed-loop system that tracked the motion of a human hand to
perform in situ 3D printing of electronic tattoos directly on the skin [16].

Such adaptive closed-loop 3D printing approaches could be used in the near future
to enhance robot-assisted medical treatments with AM capabilities, enabling autonomous
and direct printing of stimuli-responsive materials on and inside the human body.

Hence, the concept of closed-loop AI-based 3D printing could also be integrated into
surgical robots for minimally invasive surgery (MIS), which constantly measures the exact
size of the defect thanks to the continuum of endoscopic imaging, to better performed
either in situ printing procedures and “smarter surgery” to reduce deaths or injuries due
to medical error. Different researchers [94–100] have envisioned the possibility that MIS
robotic arms could carry printer nozzles, controlled by computers, scanners, and AI tools
to (1) deliver inks with suitable mechanical, chemical and biological functions directly to
the human body during the MIS procedures (Figure 6A); (2) bioprinting scaffolds with
engineered cells to repair or replace damaged tissues/organs (Figure 6B); (3) implant 4D
printed electrode arrays for neural interface (Figure 6C). Despite such approaches are
exceptional, there are only a small number of surgical robot-assisted devices that can be
integrated with 4D printing and AI tools, as well as such technology due to their infancy
significantly suffers from low sensing, slow printing speed, and lower resolution Given the
rapid growth of such technologies, we expect these gaps to be filled soon.
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Figure 6. Schematic representation of closed-loop AI-based 4D printing approaches for autonomous
minimally invasive surgery (MIS). (A) 4D inks delivery with biological and mechanical features
mimicking the human body tissues and organs. (B) In situ bioprinting scaffolds with engineered cells
to repair damaged tissues/organs. (C) Surgical robot-assisted implantation of 4D printed electrode
arrays for neural interface.

5. 5D Printing: A New Route of AI and AM

Looking ahead, Milazzo and Libonati recently reported an interesting perspective on
AI-empowered 3D and 4D printing approaches [55]. The authors expect that in the future,
the synergistic contribution of AI and its subset ML will give life to “5D printing”, in which
AI will assume the fifth dimension. The collaborative and integrated approach between AI
and AM, which leverages stimuli-responsive materials, will ensure novel opportunities
not only for the intelligent fabrication of components with multiple functions, but also
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for the fabrication of ecofriendly and biocompatible living materials (i.e., fisheries chitin,
nano-cellulose, and silk fibroin, to name a few) [101].

Moreover, in the biomedical fields 5D printing could be used for developing protective
bandages or bio-patches that may detect signs of infection or disease, as well as for design
and triggering selective sets of features, optimal for specific functions (e.g., drug delivery
based on shape mutation [102,103], optoelectronic properties triggered by changeable
textures [104,105], or activate new properties, currently not found in nature.

Although 5D printing has the potential to revolutionize the field of AM and the
production of smart materials that can be printed in situ, many challenges still need to be
addressed to achieve the complete versatility of this approach.

In our opinion, the most relevant issue concerns the full scalability of the process, as
the AI tools that should control the whole process are not yet integrated into the 3D and
4D printers, nor in the ability to detect, adapt and predict the materials to be used. For the
latter, AI-based optimizations will be continually refined to achieve high levels of accuracy
in predicting the behavior of a material or device, but the main bottleneck is based on the
current limitations possessed by AM technologies in terms of repeatability, resolution, and
accuracy. Indeed, the AI tools are isolated computing blocks that take sensory data as input
and produce processed measurements and control commands as output, but they still lack
an interactive interface between the 3D/4D printer and the user.

When AI interfaces are integrated into the 3D printing process, AI will drive the entire
end-to-end process, from computational design to target-specific in situ printing based on
a large database of human-printer interactions.

All the aforementioned will inevitably lead to drawbacks in terms of costs that will
have to be taken into consideration and addressed in the near future, given that a cor-
nerstone of 3D and 4D printing technologies is based on the design and prototyping of
complex architectures, reducing costs compared to conventional processes.

6. Regulatory Standpoint for AI

It becomes clear that AI and ML have caught the world’s attention as leading tech-
nologies that can shape the future of 3D- and 4D printing for personalized medicine,
regenerative medicine, tissue engineering, and robot-assisted medical treatments. Accord-
ingly, the abovementioned distinctive capabilities afforded by AI tools have introduced
new regulatory challenges that must be considered and carefully addressed in light of the
fact that either AI or ML tools could be applied with reference to high-risk activities (e.g.,
medical implants, drug delivery, replacing damaged tissues/organs, etc.) that could cause
serious damage to final users. In other words, close attention will have to be paid to the
regulatory framework to ensure the safe technological transfer of AI from the “proof of
concept” to the application in the real world.

Indeed, in April 2021, the European Commission released a regulation proposal, called
the AI Act, aimed at the safe and efficient development, implementation, and use of AI
in different fields of applications [106]. A first constraint to be addressed is the univocal
definition of AI, which will determine the scope of the regulation, as a narrow definition
would leave some types of AI systems out of the scope; however, too broad a definition
risks wiping out the common algorithmic systems that do not produce the types of risk
or harm that AI regulation focuses on [107]. Therefore, the definition that will be adopted
in the AI Act will likely become a benchmark for other AI regulations in other countries
outside of Europe, thus helping to build a global consensus.

Second, the AI Act regulation proposal emphasizes regulatory burdens when an AI
system presents high risks to fundamental rights and end-user safety [107,108]. The AI Act
classifies risk into the following four levels: unacceptable risk, limited risk, minimal risk,
and high risk. For the high-risk AI-based systems, they will be subject to the following
strict obligations before they can be placed on the market: adequate risk assessment and
mitigation systems; high quality of the data sets that feed the system to minimize risks and
discriminatory outcomes; recording of activities to ensure the traceability of results; detailed
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documentation providing all necessary information about the system and its purpose for
the authorities to assess compliance; clear and adequate information to the user; adequate
human supervision measures to minimize the risk; the high level of robustness, safety and
precision. Globally, many governments support that AI regulation should be risk-based.
In 2021, the FCAI report strengthening international cooperation on AI found that most
government participants explicitly endorse a risk-based approach to AI regulation. For
instance, the United States Office of Management and Budget’s Guidance for Regulation of
Artificial Intelligence Applications already includes “risk assessment and management”
as one of its principles. However, moving from a high-level commitment to high-risk
assessment to its application will reveal different approaches that, if not addressed, threaten
to lead to different localized approaches to assessing AI risk and risk management that can
create costs for AI development and use.

In the U.S.A., the National Institute for Standards and Technology (NIST) is developing
an AI Risk Management Framework (AI-RMF) that could facilitate alignment on approaches
to identifying and assessing risk. That said, there are already emerging differences in the
U.S. and EU approaches to risk assessments for AI [109]. For example, the AI Act’s division
of AI systems into four risk categories may not be reflected in the U.S. approach. In
addition, the U.S. has already emphasized that any assessment of AI risk needs to take
into account the extent AI systems improve on existing risks, whereas the EU AI Act
does not currently explicitly address this issue. Furthermore, the proposed requirements
for high-risk AI cannot always mitigate the damage to health, safety, and fundamental
rights that these practices entail. Hence, the need to introduce a complaint or redress
mechanism for people who suffer damage from AI systems. The European Economic and
Social Committee (EESC) fills this gap by asking the Commission to implement such a
system so that Europeans have the right to challenge decisions made exclusively by an
algorithm. More generally, according to the EESC, the AI Act does not specify that the
promise of AI lies in enhancing decision-making and human intelligence. It works on the
premise that once the requirements for medium- and high-risk AI are met, AI can largely
replace human decision-making.

7. Conclusions

In the past decade, stimuli-responsive materials have begun to attract attention
thanks to their ability to perform living-like functions such as self-adaptability, self-repair,
shapeshifting, shape-memory, and self-assembly in response to chemical, physical and
biological cues. The 4D printing technology led to a breakthrough in materials science, as
by preprogramming smart materials, the 4D printing is able to manufacture structures that
dynamically respond to external stimuli, adapting their features and functions for specific
applications, exerting positive effects on various biomedical applications. However, as is
pointed out in this review, despite the fact that progress has already been made in this field,
many limitations and challenges remain to be overcome.

First, 4D printing technology is in its infancy, and its printing of stimuli-responsive
materials is still in its exploration state. Second, another major drawback lies in the nature
of either 3D- or 4D printing, where designed structures are typically manufactured on a
planar and flattened substrate and then transferred to the target non-planar surfaces, such
as those of the human body. Therefore, the printing procedure is fully deterministic, leading
to a possible mismatch between the printed implants and the target surfaces of the human
body. Third, the challenges and prospects for the progress of 4D printing technology lie in
the ability to in situ print smart materials in order to allow dynamic and complex actions
such as self-adaptability, self-repair, shape-changing, and self-assembly, on organs and
tissues that undergo continuous deformations and motions, so far not always easy to make.

In this context, AI could push forward these technologies by expanding their appli-
cability, thus paving the way to the concept of 5D printing, in which AI will assume the
fifth dimension. Indeed, we highlighted that the open-loop AI approach can be useful for
reconstructing a patient-specific regenerative implant model to be fabricated through 4D
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printing, while the closed-loop approach can be a valuable tool to integrate into surgical
robots for minimally invasive surgery (MIS) in order to better perform in situ printing
procedures to reduce deaths or injuries due to medical errors, as well as for bioprinting
of smart scaffolds with engineered cells to repair damaged tissues and organs. In view of
this, the role of AI will be pivotal in accessing and analyzing data not only from/for the
printing process but also from experimental datasets that will improve the learning process
for real-case scenarios. Therefore, we are confident that in the near future, groundbreaking
research in 5D printing will naturally fill the aforementioned limitations, as well as the risk
assessment and management due to the use of AI. In our opinion, we have only scratched
the surface of the development possibilities of the collaborative approach between AI and
AM technology, and we foresee a number of great opportunities for future research in
the biomedical field and in industry 4.0, in particular for the smart manufacturing, the
fabrication of ecofriendly and biocompatible living materials, in situ printing on moving
targets, and “smarter surgery”. However, it must be noted that AI and ML in the AM and
biomedical fields are high-risk technological solutions that could cause serious damage
to end-users. Therefore, it is becoming increasingly necessary to have a clear regulatory
framework that takes into account the risk management of these technologies to preserve
the fundamental rights and safety of end-users and developers of these systems.
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