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Abstract: This paper discusses the influence of the structure of copolymers based on glycidyl
methacrylate and alkyl methacrylates with C6–C18 hydrocarbon side groups on the wettability
and sorption properties of surface-modified chitosan aerogels. The grafting of copolymers onto the
surface of aerogels was confirmed by elemental analysis, X-ray photoelectron spectroscopy, and
Fourier-transform infrared spectroscopy. As a result of the modification, with an increase in the
amount of the hydrocarbon substituent alkyl methacrylate, the surface of the resulting materials
became hydrophobic with contact angles in the range of 146–157◦. At the same time, the water
absorption of the aerogels decreased by a factor of 30 compared to that for unmodified aerogels,
while the sorption capacity for light oil, diesel fuel, and synthetic motor oil remained at the level of
more than 30 g/g. Chitosan aerogels with grafted copolymers based on glycidyl methacrylate and
alkyl methacrylates retain biodegradation capacity; however, compared to unmodified chitosan, this
process has an induction period.

Keywords: chitosan; aerogel; grafted copolymers; hydrophobicity; oleophilicity; sorption properties

1. Introduction

Chitosan is a natural polysaccharide, a product of deacetylation of chitin contained in
the shells of crustaceans and insects; it is a renewable, biocompatible and biodegradable
polymer [1,2]. The environmental friendliness of this compound, combined with the
film- and fiber-forming capacity, as well as solubility in aqueous acid media [3], make
chitosan attractive for obtaining aerogels, i.e., materials with low density, high porosity,
and high specific surface area [4–8]. The physical characteristics of porous materials in
conjunction with the chitosan properties allow us to use these materials as sorbents for
various contaminants including liquid hydrocarbons, oil and oil products.

The amino and hydroxy groups contained in the structure of chitosan make it hy-
drophilic [9] and limit its use as a petroleum and oil sorbent. However, this structural
feature allows chemical modification of chitosan and materials based on it to control the
lyophilic properties by performing reactions that are specific to the listed functional groups:
N, O–alkylation [10], acylation [11,12], sulfatation [13], phosphorylation [14], quaterniza-
tion [15], graft copolymerization, and others [16–19]. In particular, chitosan modification
can be performed in solution before the material-forming stage. When implementing such
an approach, the solubility of the resulting chitosan derivatives may be altered [20] and
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film-forming capacity may be decreased [21]. In addition, bulk modification considerably
affects the mechanical, optical, and barrier properties of the resulting materials [22]. An-
other modification approach is the grafting of modifiers onto the surface of the preformed
chitosan material, which generally does not result in any changes in the material proper-
ties [23]. We have previously investigated the surface modification of chitosan films by low
molecular weight aldehydes. However, low-molecular-weight agents with small molecular
sizes can penetrate deep into the films and affect not only the surface properties of the
material, but also produce changes in the supramolecular structure [24].

Chemical modification of the chitosan surface by grafting synthetic polymers allows
us to combine the characteristics of natural and synthetic macromolecules (e.g., adjusting
lyophilic characteristics and imparting selective sorption properties) while maintaining
the biodegradability of the polymer matrix. Synthetic macromolecules can be grafted onto
the chitosan chain by radical polymerization with chemical or physical initiation [23,25],
ring-opening polymerization [26], and cationic polymerization [27], as well as by polymer-
analogous reactions during the interaction of functional groups of chitosan and preformed
polymer [28,29]. The grafting of vinyl [30], acrylic [31], fluorinated [23], organosilicon [32]
and other polymers can be used to impart hydrophobicity to chitosan. This paper proposes
to use copolymers based on alkyl methacrylates (AlMA) and glycidyl methacrylate (GMA)
as modifiers that are capable of forming covalent bonds owing to the interaction of epoxy
anchor groups with complementary groups on the surface of chitosan materials, while
alkyl methacrylate comonomers will provide hydrophobic and oleophilic properties at
the interface.

The purpose of this work was to study the effect of the length of alkyl side groups in
glycidyl methacrylate and alkyl methacrylate copolymers on the wettability and sorption
properties of surface-modified chitosan aerogels relative to water and liquid hydrocarbons
(e.g., oil, diesel fuel, and synthetic motor oil) as well as to evaluate the biodegradability of
the chitosan materials after modification by synthetic polymers.

2. Materials and Methods
2.1. Materials

Chitosan (Mw = 200 kDa, degree of deacetylation 83%) was purchased from Bio-
progress (Russia). Glacial acetic acid (p.a.), methanol (c.p.), ammonia (25% water solution,
p.a.) methyl ethyl ketone (c.p.), and diethylamine (pure) were purchased from Vekton (Rus-
sia). Glutaric aldehyde (GA, 25% aqueous solution) was purchased from Acros Organics.
Glycidyl methacrylate (GMA, 98%), hexyl methacrylate (HeMA, 97%), decyl methacrylate
(DMA, 96%), lauryl methacrylate (LMA, 96%), stearyl methacrylate (SMA, 97%), and azo-
bisisobutyronitrile (AIBN, 98%) were purchased from Aldrich. Tetradecyl methacrylate
(TDMA, 96%,) was purchased from J&K Scientific, Beijing, China. Synthetic motor oil
(viscosity grade 5W30) produced by Total Quartz, winter diesel fuel produced by Rosneft,
light oil (ρ = 0.803 g/cm3), distilled water, and deionized water were used.

2.2. Preparation of the Chitosan Aerogel

A 3% aqueous solution of GA was added to a 1% solution of chitosan in a 1% aqueous
solution of acetic acid (at a molar ratio of NH2:C=O of 1:1) and stirred with a magnetic
stirrer at 1500 rpm for 30 min at room temperature. The resulting gel was degassed in
an ultrasonic bath for 10 min, placed in polypropylene molds and left for 72 h at room
temperature. Then, it was frozen at −30 ◦C for 18 h, followed by complete defrosting
at 25 ◦C. The resulting hydrogel was converted from the salt form to the primary form
with an aqueous-alcoholic solution of ammonia (1:1 vol.); further washing to a neutral pH
was performed with distilled water. The reduced hydrogels were frozen at −30 ◦C and
then dried at −82 ± 2 ◦C under reduced pressure in a 2.5-L FreeZone freeze dryer from
Labconco Plus (Kansas City, MO, USA).
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2.3. Preparation of the Chitosan Films

Chitosan films were formed from 2% chitosan solutions in a 2% aqueous solution of
acetic acid according to the previously described procedure [33]. A dispersion of 2.6 g of
chitosan in 98 g of water was stirred for 30 min to swelling, after which 2.1 g of glacial
acetic acid was added dropwise (to obtain a 2% solution of chitosan in 2% acetic acid).
The mixture was stirred for an additional 3 h. The chitosan solution was cast into Petri
dishes and dried at 40 ◦C under reduced pressure. The resulting product was washed with
an alcoholic alkali solution (1:1) for 1 h and then repeatedly with distilled water. The films
were dried at 40 ◦C under reduced pressure until constant weight. The dried films had a
thickness of 30–40 µm.

2.4. Synthesis of GMA and AlMA Copolymers

The synthesis of GMA and AlMA copolymers was performed by a free-radical mech-
anism similar to the previously described procedure [34]. The synthesis of copolymers
was conducted in MEK for 24 h at 70 ◦C with a GMA:AlMA mole ratio of 2.3:1. The over-
all concentration of monomers was 1 mol L−1. AIBN was used as an initiating agent.
The copolymer was precipitated in cold methanol and then dried under reduced pressure
until constant weight.

2.5. Surface Modification of the Chitosan-Based Materials

The modification of chitosan aerogels was performed by immersing test samples in a
poly(GMA-co-AlMA) solution in methyl ethyl ketone with a copolymer concentration of
0.01–1 wt% for 30 min. Afterwards, the samples were removed from the solution, placed on
dry glass Petri dishes and heated at 20–160 ◦C for 60 min. Chitosan aerogels were washed
from adsorbed copolymer in a Soxhlet apparatus for 8 h using methyl ethyl ketone as
the extractant. The weight gain of the samples determined gravimetrically following the
grafting of GMA and AlMA copolymers and washing was ~4 ± 1% (average for a series of
samples of n = 30).

Similarly, the modification of chitosan films was performed by immersing samples
in a modified solution of poly(GMA-co-AlMA) copolymers in methyl ethyl ketone with
a concentration of 3 wt% for 60 min. Afterwards, the samples were removed from the
solution and thermostated at 140 ◦C for 60 min. The samples were purified from unreacted
copolymer in a Soxhlet apparatus using methyl ethyl ketone as the solvent.

2.6. Amination of the Free Surface Epoxy Groups of the Obtained Materials

Chitosan films and aerogels modified with poly(GMA-co-TDMA) copolymer were
placed in 20 wt% solution of diethylamine in methyl ethyl ketone for 24 h at 70 ◦C. Then,
the materials were washed with methyl ethyl ketone in a Soxhlet apparatus for 8 h.

2.7. Methods

The elemental composition of the copolymers based on glycidyl methacrylate and
alkyl methacrylates, original and modified chitosan materials was studied using a CHNOS
Vario EL Cube elemental analyzer (Germany) via the 2 mg 70 s method. The analysis time
for one sample was 10 min, and the rates of consumption of He and O2 were 230 and
38 mL/min, respectively, with an oxygen supply time of 70 s. The temperatures of the
oxidation and reduction columns were 1150 and 850 ◦C, respectively.

The molecular weight characteristics of the polymers were determined via gel per-
meation chromatography using a Shimadzu instrument (Japan) with columns filled with
polystyrene gel with a pore size of 105 and 104 Å, tetrahydrofuran eluent, at 40 ◦C. A dif-
ferential refractometer was used as a detector. Chromatograms were processed using the
LCsolution software. Narrow-disperse standards of poly(methyl methacrylate) (PMMA)
were used for calibration.
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The Fourier-transform infrared (FTIR) spectroscopic studies of original and modified
chitosan materials were performed using an InfraLUM FT-08 apparatus (Russia) in the
range of 400–4000 cm−1 at a resolution of 0.7 cm−1.

The surface elemental composition was determined by X-ray photoelectron spec-
troscopy (XPS) using an ultra-high vacuum Multiprobe RM complex (Omicron Nanotech-
nology GmbH, Taunusstein, Germany) operating at a residual pressure of ~7 × 10−9 mbar.
Mg Kα (E = 1253.6 eV, ∆E = 0.75 eV) was used to excite the photoemission. The diameter of
the collection area of the hemispherical energy analyzer was 3 mm. We used a constant
transmittance function mode with a transmittance energy value of 50 eV. The sampling rate
for the O 1s, C 1s, N 1s, and F 1s lines was 0.2 eV, and the accumulation time at each energy
point was 1 s. The survey spectrum was recorded at a rate of 1 eV and an accumulation
time of 0.5 s at each energy point.

The chitosan aerogel structure was studied by scanning electron microscopy (SEM)
using a Versa 3D instrument (FEI, Hillsboro, OR, USA) in low vacuum mode at a water
vapor pressure in the chamber of 10–80 Pa and an accelerating voltage of 15–20 kV.

The study of the structural features of the chitosan aerogel involved a transverse
fracture of the sample in liquid nitrogen (after a 60-min exposure) by a sharp application
of force on the sample edges. To exclude prolonged contact of the prepared sample with
laboratory air, the morphological features and elemental composition of the fracture surface
were studied immediately after performing the abovementioned procedure.

The porosity (P) of the samples was calculated using the following formula:

P = 1 −
papp

ptr
, (1)

where papp is the apparent density of the sample (g/cm3), and ptr is the true density of the
sample (g/cm3).

We determined the apparent density using the cylindrical aerogel samples, the height
and diameter of which were measured using a digital caliper. The true density was deter-
mined by helium pycnometry using a Micromeritics AccuPyc 1330 pycnometer (Norcross,
GA, USA).

The contact angle was measured using an OCA 15EC apparatus from DataPhysics
(Filderstadt, Germany) according to the procedure described in [35]. The contact angle
measurements were performed by applying 5 µL drops of test liquid on the surface of the
material at room temperature in several environments, i.e., air, nonpolar liquid (diesel fuel),
and polar liquid (deionized water). The contact angle of a sessile drop was calculated using
the Young–Laplace method.

The sorption capacity was evaluated by the mass variation of the samples after placing
them in a container with the appropriate liquid according to ASTM F726-12. Prior to
testing, chitosan aerogel samples were dried at 110 ◦C to constant weight (initial weight
m0). A sample weighing 0.1 ± 0.01 g was immersed in a 100-mL weighing bottle filled with
50 mL of test liquid. After 15 min and 24 h of testing, the sample was removed from the
container and placed on a wire rack for 30 s to drain off excess fluid. The sorption capacity
C was calculated according to the following formula:

C =
mi − m0

m0
, (2)

where mi is the sample weight after 15 min or 24 h after the start of the test and 30 s of
draining off on the wire rack (g), and m0 is the initial weight of the sample (g).

The biodegradability study was performed using the original and modified samples
of chitosan films in soil. The 30 × 30 mm samples with a thickness of 35 ± 5 µm were
buried at least 5 cm deep in a container filled with soil at a pH of the aqueous extract of
6–7.5, humidity of 60–70%, and temperature of 23 ± 5 ◦C. Every 15 days, the samples were
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extracted from the soil, washed with distilled water, dried at 100 ◦C to constant weight,
and weighed. The percent of weight loss was calculated using the following equation:

WL =
mi − m0

m0
× 100, (3)

where mi is the sample weight after contact with soil (g), and m0 is the initial weight of the
sample (g).

3. Results and Discussion
3.1. Synthesis and Characterization of Chitosan Materials Modified by GMA and
AlMA Copolymers

The surface of chitosan aerogels with GMA and AlMA copolymers was modified by
impregnation according to the “grafting onto” approach [36]. The “grafting onto” approach
involves the preliminary synthesis of polymers, the functional groups of which react with
complementary functional groups on the modified surface. This modification approach
preserves such matrix properties as the porous structure and the biodegradability of
chitosan. Modification of the chitosan aerogel with GMA and AlMA copolymers using the
abovementioned method will yield a surface layer representing chitosan macromolecular
chains with randomly distributed graft copolymer branches formed as a result of the
reaction between oxirane groups of GMA and hydroxy and amino groups of chitosan
(Figure 1).
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One advantage of using the “grafting onto” approach is the possibility of determining
the molecular characteristics of the modifier polymers. The composition and molecular
weight characteristics of poly(GMA-co-AlMA) are shown in Table 1.

Table 1. Composition and molecular weight characteristics of GMA and AlMA copolymers.

Modifier
Molar Ratio

Mn × 10−3 Mw × 10−3 Mw/Mn
Theoretical Experimental

Poly(GMA-co-HeMA)

2.3:1

2.0:1 39.8 77.8 1.9
Poly(GMA-co-DMA) 1.9:1 51.6 92.8 1.8
Poly(GMA-co-LMA) 2.2:1 71.1 159.5 2.2

Poly(GMA-co-TDMA) 1.9:1 44.6 81.8 1.8
Poly(GMA-co-SMA) 2.0:1 64.6 155.7 2.4

Based on elemental analysis, the ratio of monomeric units in the resulting copolymers
was found to be similar to the theoretical molar ratio. The copolymers are characterized
by a narrow molecular weight distribution and low molecular weights, while the similar
values of these indicators allow us to study the effect of the composition and structure
of the polymer modifiers on the hydrophobic and sorption properties of the surface of
chitosan materials.

To confirm the grafting of GMA and AlMA copolymers on the surface of chitosan
aerogels, the FTIR spectroscopic studies were performed using attenuated total reflection
(Figure 2). The FTIR spectra of the modified samples have a band at 1728 cm−1, which
corresponds to stretching vibrations of the carbonyl group in esters [37] and confirms the
grafting of poly(GMA-co-AlMA) copolymers on the chitosan surface. Grafting of copoly-
mers predominantly at the amino group was confirmed by a reduction in the intensity of
the absorption band of NH2 groups at 1582 cm−1.
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At the stage of aerogel formation, GA is used to create the three-dimensional structure
of the material, and the mechanism of its interaction with chitosan is complex and not
limited to mere interaction of aldehyde groups with amino groups [38]. Based on the
elemental analysis of the carbon to nitrogen ratio (Table 2) for the chitosan film that did
not contain GA and the chitosan aerogel crosslinked with GA, the content of the latter was
10.38%, which corresponds to the ratio of functional groups of NH2:C=O equal to 2.1:1 in the
resulting chitosan aerogel. Consequently, crosslinking does not involve at least half of the
chitosan amino groups, which can be involved in the reaction with epoxy groups of polymer
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modifiers. The attachment of GMA and AlMA copolymers on the surface of chitosan
aerogels results in an increase in the C/N ratio in which the content of polymer modifiers
was determined to be 2.5–3%, which is consistent with the gravimetric determination.

Table 2. Results of elemental analysis of chitosan materials before and after modification (by CHNOS
method).

Chitosan Material
Elemental Composition, wt%

C/N Modifier Content, wt%
C H N

Film 44.74 7.072 8.31 5.38 -

Aerogel 45.29 7.055 7.26 6.24 10.38 *

Aerogel,
modified by poly(GMA-co-HeMA) 45.67 6.944 7.01 6.51 3.04

Aerogel,
modified by poly(GMA-co-DMA) 45.76 6.919 7.07 6.47 2.49

Aerogel,
modified by poly(GMA-co-TDMA) 45.51 6.895 7.02 6.48 2.50

Aerogel,
modified by poly(GMA-co-TDMA) and diethylamine 45.61 6.733 7.05 6.47 0.13 **

* (GA content); ** (diethylamine content).

To identify free epoxy groups on the surface of chitosan aerogels modified with
glycidyl methacrylate copolymers, they were aminated using diethylamine. The use of
low-molecular-weight amines with small alkyl substituents provides the highest degree of
conversion of epoxy groups in glycidyl methacrylate links owing to the leveling of steric
hindrances [39–41]. In addition, to increase the availability of epoxy groups, amination
was performed in a medium of methyl ethyl ketone, which is a good solvent for modi-
fiers. The amination of chitosan aerogel modified with poly(GMA-co-TDMA) resulted
in an increase in carbon and nitrogen content. The content of the reacted diethylamine
determined from the elemental composition was 0.13%; the molar ratio of the secondary
amino group:epoxy group was 1:4.3, which corresponds to the conversion of epoxy groups
in the poly(GMA-co-TDMA) copolymer grafted to the chitosan surface of 23.3%. Thus, up
to 76.7% of the epoxy groups contained in poly(GMA-co-TDMA) could be involved in the
chitosan aerogel modification.

XPS was used to determine the elemental composition of the surface (Figure 3, Table 3)
and the bonding configurations between the elements (Table 4). As shown in Figure 3A,
there are four peaks in the photoelectron spectrum of the C 1s region of the original chitosan
aerogel: C=O (288.3 eV), C–O (286.3 eV), C–N (286.0 eV), and C–C (284.7 eV) [42,43].
The photoelectron spectrum of the N 1s region also consists of four peaks: –RN+ (402.8 eV),
–NH– (400.3 eV), N–C (399.2 eV), and –NH2 (398.5 eV) [43–45]. The N/C ratio of 0.08
determined by the XPS method was comparable to the findings of the elemental analysis
of the bulk volume of material, which was 0.14. The grafting of poly(GMA-co-TDMA)
decreased the nitrogen and oxygen content to 1.0% and 20.4%, respectively, while the
carbon content increased to 78.6%. In addition, an increase in the C–C bond intensity was
observed in the C 1s region (Figure 3B), which is a consequence of the modifier containing
a long hydrocarbon substituent C14H29. As the XPS spectra of the analyzed sample were
obtained at a depth of no more than 10 nm, the detection of nitrogen in the spectrum allows
us to conclude that the thickness of the formed coating on the aerogel surface was even
thinner [46]. Further treatment of the aerogel with diethylamine increased the nitrogen
content to 2.3% and increased the C–C bond concentration to 64.9% in the C 1s photoelectron
region (Figure 3C). Thus, the XPS method confirms the grafting of poly(GMA-co-TDMA)
to the surface of chitosan aerogels and the subsequent attachment of diethylamine to the
free epoxy groups of the modifier.
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cation obtained by the XPS method.

Chitosan Aerogel Elemental Composition, at.%

O N C

Unmodified 28.2 5.8 66.0
With grafted poly(GMA-co-TDMA) 20.4 1.0 78.6

With grafted poly(GMA-co-TDMA) and diethylamine 19.3 2.3 78.4

Table 4. Concentrations of constituent photoelectron regions of chitosan aerogels before and after
modification obtained by the XPS method.

Chitosan Aerogel C 1s N 1s

C–C C–O C=O C–N N–C –RN+ –NH– –NH2

Unmodified 34.9 43.8 12.0 9.2 72.3 6.4 16.9 4.3
With grafted poly(GMA-co-TDMA) 61.0 32.3 6.7 0.0 100.0 0.0 0.0 0.0

With grafted poly(GMA-co-TDMA) and diethylamine 64.9 26.3 8.8 0.0 100.0 0.0 0.0 0.0

SEM images (Figure 4) show the morphology of chitosan aerogel fractures before and
after modification. The resulting chitosan aerogels have high porosity and low density: pore
sizes are 100–300 µm, and the pore walls are made of films with a thickness of 0.6–1 µm.
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Figure 4. SEM images of fractures of the original chitosan aerogel (a) and chitosan aerogel modified
with poly(GMA-co-HeMA) (b).

The modification of aerogels using the solutions based on GMA and AlMA copoly-
mers does not alter the morphology and sizes of pores, which indicates the process of
modification on the surface of the aerogel walls. The gravimetrically determined weight
gain of the samples is only 4 ± 1%, which has almost no effect on the change in apparent
density. In addition, there is no effect of modification on pycnometrically determined true
density and porosity. The physical characteristics of the resulting chitosan aerogels are
presented in Table 5.

Table 5. Physical characteristics of chitosan aerogels.

Chitosan Aerogel Apparent
Density, g/cm3

True Density,
g/cm3 Porosity, % Pore Diameter,

µm
Pore Wall

Thickness, µm

Unmodified 0.021 ± 0.003 1.357 ± 0.011 98.5 ± 0.4
100–300 0.6–1

With grafted poly(GMA-co-TDMA) 0.022 ± 0.003 1.364 ± 0.009 98.4 ± 0.4

The surface modification of porous materials requires determining the optimal modifi-
cation conditions, such as the concentration of the modifying solution and temperature,
which are necessary and sufficient to impart the best hydrophobic properties. The data on
evaluating the effect of these parameters on the obtained values of initial contact angles and
water absorption of aerogels are presented in Tables 6 and 7. During the modification of
chitosan aerogels with GMA and TDMA copolymer solutions, the required concentration of
the modifier was determined to be 0.1 wt%, and the modification temperature was 140 ◦C.
Variation of the abovementioned parameters yielded high values for the initial contact
angles of up to 150◦ and higher. However, not all conditions can ensure the stability of the
hydrophobic state of the surface, which is determined from water absorption results.
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Table 6. Initial contact angle and water absorption of chitosan aerogels modified at 140 ◦C for 1 h
using poly(GMA-co-TDMA) solutions at varying concentrations.

Concentration of the Modifier
in Solution, wt% Initial Contact Angle, ◦ Water Absorption

(After 24 h), g/g

0.01 150 ± 7 26.4
0.02 151 ± 4 7.6
0.04 152 ± 3 5.5
0.08 155 ± 4 2.4
0.1 157 ± 2 2.1
0.2 157 ± 2 2.2
0.5 157 ± 2 2.2
1 157 ± 2 2.1

Table 7. Initial contact angle and water absorption of chitosan aerogels modified for 1 h using
poly(GMA-co-TDMA) solutions with 0.1 wt% concentration at varying temperatures.

Modification Temperature, ◦C Initial Contact Angle, ◦ Water Absorption (After
24 h), g/g

20 149 ± 5 18.4
40 145 ± 7 18.7
60 152 ± 5 18.1
80 154 ± 4 17.2

100 153 ± 4 3.5
120 154 ± 4 2.8
140 157 ± 2 2.1
150 157 ± 2 2.3
160 157 ± 2 2.2

3.2. Wettability and Sorption Properties of Chitosan Aerogels Modified by GMA and
AlMA Copolymers

One way to evaluate the effectiveness of chitosan aerogels for selective sorption of
hydrocarbon fractions is to measure surface wetting angles (Table 8). The original chitosan
aerogels are characterized by hydrophilicity and instantaneous absorption of a drop of
deionized water in air. At the same time, modification of chitosan aerogels with GMA and
AlMA copolymers imparts superhydrophobic properties to the surface with contact angles
up to 157◦ (Figure 5a), which are due not only to the chemical composition at the interface,
but also to the multilevel surface texture [47,48].

Table 8. Wettability of chitosan aerogels as a result of modification with GMA and AlMA copolymers.

Chitosan Aerogel with
Grafted GMA and
AlMA Copolymers

Contact Angle in the “Wetting Agent/Medium” System, ◦

Deionized Water in air Deionized Water in Diesel Fuel Diesel Fuel in Deionized Water

unmodified Wetted 160 ± 2 162 ± 2

Poly(GMA-co-HeMA) 146 ± 2

162 ± 2 Wetted
Poly(GMA-co-DMA) 152 ± 2
Poly(GMA-co-LMA) 153 ± 3

Poly(GMA-co-TDMA) 157 ± 2
Poly(GMA-co-SMA) 157 ± 3
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Figure 5. Images of test liquid drops in contact with the surface of chitosan aerogels: panel
(a) shows a drop of deionized water in air medium on the surface of the chitosan aerogel modified
with poly(GMA-co-DMA) copolymer; panels (b,c) show the process of diesel fuel drop absorption in
deionized water medium by chitosan aerogel modified with poly(GMA-co-DMA) copolymer; panel
(d) shows a drop of diesel fuel in deionized water medium on the surface of unmodified chitosan
aerogel; and panel (e) shows a drop of deionized water in diesel fuel medium on the surface of
unmodified chitosan aerogel.

The grafting of copolymers onto the surface of chitosan aerogels provides a directional
change in properties at the interface. Of note, organic liquids wet most surfaces in air;
thus, the oleophilicity of chitosan aerogels was assessed in deionized water using diesel
fuel as a test wetting fluid (and vice versa, water wetting in diesel fuel). Immersion
of unmodified aerogels in deionized water demonstrates the absorption of the medium
(complete water wetting) owing to the hydrophilic nature of chitosan, with the samples
showing superoleophobic properties with contact angles over 160◦ in diesel fuel. This
occurs owing to the formation of an aqueous film on the surface of the unmodified aerogel,
which prevents the material from wetting with diesel fuel (Figure 5d). Similarly, unmodified
chitosan aerogels are superhydrophobic in diesel fuel (Figure 5e). The aerogel samples
modified with GMA and AlMA copolymers are superoleophilic both in the air and in an
aqueous medium (Figure 5b,c), but retain superhydrophobic properties when immersed
in a nonpolar medium. Thus, the modification of the surface of chitosan aerogels with
GMA and AlMA copolymers provides the optimal set of lyophilic properties required for
the selective sorption of hydrocarbons.

According to the data presented in Table 9, modification of chitosan aerogels with
GMA and AlMA copolymers leads to a decrease in the water absorption index. However,
the minimum water absorption of 1.8 g/g is achieved in the case of grafting of GMA and
SMA copolymers with the largest alkyl substituent among the modifiers used, which
correlates with the values of contact angles in air (Table 8). The HeMA and GMA copolymer
with a short alkyl substituent provides water absorption of chitosan aerogels up to 4.6 g/g,
thus demonstrating the lowest efficiency among the studied modifiers. DMA, LMA,
and TDMA copolymers can be attributed to the group of average indicators, the water
absorptions of which were 2.1, 2.2 and 2.1 g/g, respectively, with their water repellency
being similar to that of SMA copolymers. Despite the similar values of the initial contact
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angles for TDMA and SMA, the alkyl substituent length affects the water adsorption
during prolonged contact, which indicates a less stable superhydrophobic state of the
surface modified with GMA and TDMA copolymers.

Table 9. Sorption capacity of chitosan aerogels as a result of modification with GMA and
AlMA copolymer solutions.

Chitosan Aerogel with Grafted
GMA and AlMA Copolymers

Sorption Capacity, g/g

Distilled Water Synthetic Motor Oil Diesel Fuel Light Oil

15 min 24 h 15 min 24 h 15 min 24 h 15 min 24 h

Unmodified 53.7 56.4 42.6 44.3 37.1 37.5 35.7 36.3
Poly(GMA-co-HeMA) 1.3 4.6 37.9 39.6 35.2 35.7 31.8 32.3
Poly(GMA-co-DMA) 1.0 2.1 41.4 43.5 32.8 33.5 30.9 32.3
Poly(GMA-co-LMA) 1.0 2.2 35.4 37.7 33.4 33.6 34.4 34.7

Poly(GMA-co-TDMA) 0.9 2.1 42.2 42.5 31.5 31.7 31.1 33.1
Poly(GMA-co-SMA) 0.8 1.8 43.0 44.0 34.3 34.6 34.3 34.9

The alkyl substituent in the polymeric modifier structure imparts hydrophobic proper-
ties to the surface by reducing the free surface energy and shielding hydrophilic fragments
in the chitosan aerogel structure. Absorption of water by the modified samples can to some
extent be explained by condensation of water vapor in the aerogel pores. Of note, under
these experimental conditions, water adsorption by unmodified samples occurs almost
instantaneously with the formation of swollen hydrogel, causing drying of the samples with
their subsequent shrinkage and loss of the porous structure. Based on our findings (Table 9),
it can be concluded that the high sorption rate of the hydrocarbon phase was observed in
all chitosan aerogel samples. Even after 15 min of exposure, the sorption capacity almost
reached the maximum values; during further contact with the sorbent medium up to 24 h,
there was a slight increase in the amount of sorbent liquid (by 1.1 g/g on average). Further
exposure does not produce an increase in the amount of sorbed hydrocarbon. Unlike
unmodified aerogels, modified aerogels are characterized by lower indices of sorption
capacity for diesel fuel, light crude, and synthetic motor oil. The average deviation from
the value of the sorption capacity of unmodified aerogels is 3.4 g/g, which may be due
to a decrease in the free volume of the aerogel as a result of grafting of copolymers and
possible partial overlapping of micropores by the grafted copolymer. Of note, the low
density of the samples provides them with buoyancy, which is preserved even when the
sorbent is saturated.

For comparison, Table 10 shows some known sorbents and their sorption character-
istics in relation to petroleum and petroleum products. We observed that the resulting
chitosan aerogels modified with GMA and AlMA copolymers are significantly superior to
their known counterparts in terms of sorption properties.

Table 10. Sorption properties of some petroleum and oil sorbents.

Sorbent Type of Sorbent Liquid Sorption Capacity, g/g Reference

Zeolite Engine oil 0.4–0.9 [49]

Moss Engine oil 28.4 [50]

Rice husk

Gasoline 3.7

[51]
Diesel 5.5

Light crude oil 6.0
Motor oil 7.5

Heavy crude oil 9.2
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Table 10. Cont.

Sorbent Type of Sorbent Liquid Sorption Capacity, g/g Reference

Butyl rubber

Toluene 17.8

[52]

Gasoline 16.7
Diesel 20.3

Fuel oil 15.4
Crude oil 23.0
Olive oil 7.9

Polypropylene fiber Diesel 17.1
[53]High-density oil 18.8

Cellulose aerogel Crude oil 18.4–20.5 [54]

Silica aerogel Diesel oil 9.6 [55]

Chitosan aerogel Crude oil 41.1
[56]Diesel 31.1

Chitosan aerogel
Synthetic motor oil 44.0

Current studyDiesel fuel 35.7
Light oil 34.9

3.3. Biodegradability of Chitosan Materials Modified by GMA and AlMA Copolymers

Imparting hydrophobic properties to chitosan material inhibits hydrolytic processes,
which are the basis of biodegradability [57]. One of the principal issues for the performed
modification was the preservation of the biodegradability of the resulting materials, which
in this study was determined by degrading films in soil (Figures 6 and 7). Unmodified chi-
tosan film loses approximately 90% of its weight when exposed to soil for 4–5 months. It can
be assumed that complete biodegradation occurs after soil exposure for 5–6 months. After
65 days from the beginning of the experiment, the unmodified material was characterized
by a weight loss of ~30%, whereas the samples modified with GMA and AlMA copolymers
during this period showed the onset of destructive processes, which were preceded by
an induction period associated with hydration of the modifier attached to the surface.
After soil exposure for 5 months, chitosan films modified with poly(GMA-co-DMA) and
poly(GMA-co-LMA) showed weight losses of up to 75% and 50%, respectively, which
confirmed the preservation of the biodegradability of these materials.
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Figure 7. Chitosan films before and after soil degradation: 1-unmodified; 2-modified with poly(GMA-
co-DMA); 3-modified with poly(GMA-co-LMA).

4. Conclusions

This study evaluated the effect of the structure of grafted copolymers based on alkyl
methacrylates with C6–C18 hydrocarbon side groups and glycidyl methacrylate on the
lyophilic and sorption properties of chitosan aerogels. The unmodified chitosan aerogel
was characterized by complete wetting and water absorption of 56.4 g/g, while the modifi-
cation resulted in superhydrophobic aerogels characterized by wetting angles up to 157◦.
The copolymers based on alkyl methacrylates and glycidyl methacrylate grafted onto the
surface of chitosan aerogels prevented the capillary effect relative to water and allowed
the reduction of the material’s water absorption by a factor of 30 down to 1.8 g/g when
modified with a GMA and SMA copolymer with the side alkyl group containing 18 carbon
atoms. The GMA and HeMA copolymer has the least effective water-repellent effect and
allows the reduction of water absorption by a factor of 12 down to 4.6 g/g. The length
of the alkyl substituent of 10–14 carbon atoms in alkyl methacrylate yields similar water
repellent properties in the water absorption range of 2.1–2.2 g/g. The oleophilic nature
of the polymeric modifiers contributes to the sorption capacity of aerogels up to 44 g/g
relative to various types of liquid hydrocarbons.

The resulting sorption and hydrophobic characteristics of the modified chitosan aero-
gels determine the possibility of selective sorption of hydrocarbons from water surfaces,
which in conjunction with the preservation of biodegradability opens up prospects for the
use of these materials as effective and environmentally friendly petroleum and oil sorbents.
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