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Abstract: Ultrasonic welding (UW) of polymeric composites is significant in automobile industry;
however, maintaining the perfect contact condition between workpieces is a great concern. In this
study, effect of preloading and welding pressure on strengths of UWed 2.3-mm-thick short carbon fiber
reinforced nylon6 (Cf/PA6) joints with poor contact between workpieces was investigated through
stress simulation and energy dissipation at the faying interface. Results showed the application of
preloading can increase the strength of normal joint by 18.7% under optimal welding parameters.
Gaps between upper and lower workpieces decreased the joint strength significantly, especially for
gaps greater than 1.5 mm. Preloading improved the strengths of the joints with gaps remarkably,
where the strength of joints with 1.5 mm gap recovered to 95.5% of that the normal joint. When
combining the weld nugget evolution, stress-deformation simulation during UW, and ultrasonic
vibration transmission analysis, the improvement mechanism of the joint under preloading was
mainly because the preloading compacted the contact between workpieces, which favored the energy
transmission at faying interface.

Keywords: ultrasonic welding; carbon-fiber-reinforced nylon 6 composite; preload; poor contact;
joint strength

1. Introduction

The rapid development of automobile industry has caused increasingly serious en-
vironmental pollution. To reduce fuel consumption and automobile exhaust emissions,
automobile manufacturers are actively exploring lightweight and high-performance mate-
rials, such as new aluminum/magnesium alloys, and thermoplastic composites, to replace
traditional automobile steel [1–3]. In particular, carbon-fiber-reinforced nylon-matrix com-
posites are now widely used in mass manufacturing of automobile parts, due to their low
cost, relatively high specific strength, and excellent lightweighting effect, which can reduce
the weight of automobile parts by more than 40% [4–8].

The main challenge for the application of nylon composites in manufacturing automo-
bile parts is solid joining of the composites. At present, the available joining techniques
for thermoplastic composites include mechanical fastening, adhesive bonding and weld-
ing [9,10]. Ultrasonic welding (UW) technology is widely used because it is fast, energy
efficient, suitable for mass production, and offers good cosmetic quality [11,12].

Quality of UWed joint can be affected by many factors, such as material properties,
welding parameters, contact condition among horn, welding part and fixture [13–15].
Our previous studies [16–18] have systematically investigated the influence of imperfect
contacts, such as horn misalignment, gaps between workpiece, and fixture, on the weld
quality of UWed joints. Experimental results showed the imperfect conditions affect the joint

Polymers 2022, 14, 2650. https://doi.org/10.3390/polym14132650 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14132650
https://doi.org/10.3390/polym14132650
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-4794-4546
https://doi.org/10.3390/polym14132650
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14132650?type=check_update&version=2


Polymers 2022, 14, 2650 2 of 16

strength severely and produce discrepant welds [18–21]. Although these discrepant joints
can be repaired by application of the secondary ultrasonic pulse and other processes [22,23],
the additional pulse is time-consuming and the cosmetic quality of joints is deteriorated.
It is known that the ultrasonic energy transmission during UW is closely related to the
contact condition among the horn, upper workpiece and lower adherend. Increasing the
welding pressure can improve the contact condition at the faying surface; however, higher
static pressure applied to the workpieces increases the damping of the ultrasonic vibration
system and decreases the vibration amplitude, which degrades UW process control and
would reduce the weld quality accordingly [24]. In addition, if the gap between upper and
lower workpieces is large, then the thermoplastic composite would melt significantly or
even vaporize at the contact position between the horn and workpiece, thereby affecting
the weld quality of the joint [24]. Therefore, there is an urgent need to develop a method
that can effectively improve the contact condition of the welding surface.

In production, when the warped upper sheet is placed upon lower sheet for joining, a
gap is usually presented between the sheets. The gap between the workpieces can result
in the poor contact condition, which is detrimental to the ultrasonic propagation during
UW and weld formation [17,22,23]. At this context, a preload welding method is proposed
to improve the contact condition between upper and lower workpieces. The influence of
preloading on the joint strength, microstructure and stress and temperature distribution
during UW process is investigated systematically. The ultrasonic wave transmission
behaviors of UWed joints are also analyzed. This study offers a new approach to eliminate
the negative effect by imperfect contact between workpieces during UWed carbon fiber
reinforced polyamide 6 composite.

2. Experimental Procedure
2.1. Materials and Specimen Preparation

Carbon-fiber-reinforced nylon 6 composite with 30 wt.% short carbon fiber (Cf/PA6,
Tianfu Co., Ltd., Shanghai, China) was selected as test material, and the specimens with
dimensions of 132.0 × 38.0 × 2.3 mm were prepared by a twin-screw extruder with two
separate inlets injection molding. The specimens were stored in a barrel with desiccant, and
the coupons were dried in an oven at 80 ◦C for 24 h before welding. Mechanical properties
of the molded composite are shown in Table 1. The specimens were lapped by the upper
and lower workpieces with an overlap distance of 25 mm as shown in Figure 1.

Table 1. Mechanical properties of molded 2.3-mm-thick Cf/Nylon 6 composite coupons.

Tensile
Strength (MPa)

Elastic Strength
(MPa) Poisson’s Ratio Density (kg/m3)

Nylon6 74 2501 0.34 1130
Cf/PA6 89.2 7532 0.34 1260
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Figure 1. Schematic of the single-lap weld specimen (Dimensions in mm).
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2.2. Ultrasonic Welding Process

The UW process was performed using a KZH-2026 multifunction UW machine
(Kaizheng Ultrasonic Technologies Co. Ltd., Weihai, China) with a nominal power of
2.6 kW, nominal frequency of 20 kHz, and nominal amplitude of 25 µm. The machine
has three welding modes and time mode was used in this study. The welding process
was controlled by presetting the delay time, welding time, and holding time. Then, the
workpieces were welded at the nominal power of the machine. When the welding time
(i.e., oscillation time) reached the preset value, the ultrasonic wave oscillation was stopped.
The coupons were fixed using clamps to avoid their movement during welding (Figure 2).
All specimens were welded by a 7075 aluminum horn with diameter of 10 mm.
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ite without energy director (Dimensions in mm).

2.3. Experimental Setup

A preload was uniformly applied to overlapping area of the two workpieces (Figure 3).
A controller was used to adjust the output voltage of the servo motor to control preload.
The gaps between the upper and lower workpieces were adjusted by changing the thickness
of a changeable sheet (Figure 3). Four different gaps, 0.5, 1.0, 1.5, and 2.0 mm, were utilized.
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2.4. Mechanical Evaluation of the Welded Joints

Joint strength was evaluated by the peak load obtained from quasi-static tests, which
performed by loading the welding specimen to failure in an MTS 810 tensile tester (ASTM
D1002-2001) [25]. To minimize the bending stresses inherent during the testing of single-lap
welding specimens, filler plates were attached to both ends of the specimen using masking
tape to accommodate any sample offset (Figure 4). Load versus displacement curves were
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obtained during loading of the specimens at a stroke rate of 2 mm/min. Five replicates
were performed per weld condition and the average weld strength were reported.
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Figure 4. Schematic of single shear lap weld specimen (Dimension in mm).

2.5. Finite Element Analysis

In this study, numerical simulations of the stress and deformation of single-lapped
UWed joint with a gap between workpieces were carried out using the Finite Element
Analysis (FEA) code, ANSYS. The ANSYS Workbench platform enables one to perform
geometric modeling, material property definitions, meshing, and visualization.

In order to prevent the horizontal sliding of workpieces, the two workpieces with a
large gap were fixed on the anvil by clamps in the experiment. In numerical routine, the
samples displacements were blocked, and the lap zone of the upper workpiece was set to
large displacement. And the contact conditions between the workpieces were defined as
friction contact. For simplification, carbon fiber/polyamide 6 composite with 30 wt% fiber
was considered to be an isotropic and linear elastic material, which was mainly due to the
homogenous carbon fiber distribution in the matrix.

3. Result and Discussion
3.1. Effect of Preload on the Quality of Normal UWed Joints

To investigate the effect of preload on weld quality of normal UWed joint (i.e., joint
without gap between upper and lower workpieces), various preload values (0, 130, 200,
250, and 300 N) were applied to the overlapping zone prior to UW. The welding tests were
carried out with a welding pressure of 0.1 MPa, welding time of 2.5 s, and holding time of
3 s. Figure 5 presents the relation between joint strength and preload force. Strength of the
joint increased initially and then decreased with the increasing preload. Joint welded with a
preload of 200 N exhibited the maximum strength of 3.58 kN, which was 12.3% higher than
that of UWed joint without preload (i.e., 3.16 kN). To further analyze the effect of preload
on joint strength, welded surfaces of the joints were examined, and the results are shown in
Figure 6. The nugget size of the joint prepared under preloading was significantly larger
than that without preload. The weld size of the joint prepared under a preload of 200 N
was the largest, implying the increase in joint strength by preloading is closely related to
the increase in weld size.

Experimental results show that the preload can significantly increase the nugget area,
and the nugget size affects the strength of the welded joints. Levy found that the heat
generation at the initial stage of UW of polymer materials is dominated by Coulomb fric-
tion [26]. After the faying interface temperature reaches the glass temperature, viscoelastic
dissipation becomes the main heat resource [27]. The protrusion deformation and contact
area at the faying surface increase under the application of preload and welding pressure,
which enhances the heat generation comes from Coulomb friction at the initial stage of
UW. As a result, the joint enters into the viscoelastic heat generation stage earlier than that
without preload. The temperature at the faying surface increases, the flowing and spreading
speed of the melting layer accelerates, and the melted area increases, thereby improving
the joint strength. However, higher preloads and welding pressures compact the bonding
surface between upper and lower workpieces, which damps the ultrasonic oscillation,
and the vibration amplitude decreases accordingly. This phenomenon is not conducive to
the surface frictional heat generation, reducing heat accumulation at the welding surface
and amount of melted material at the faying surface, which leads to the decrease in weld
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size and joint strength. Therefore, the welding pressure under the application of preload
should be optimized. Various welding pressures (i.e., 0.10, 0.12, 0.14, and 0.16 MPa) were
applied to the joint under preloading of 200 N. The welding time was maintained at 2.5 s.
Figure 7 describes the effect of welding pressure on joint strength and the results are shown
in Figure 7. Similar to the effect of preloading, the joint strength increased initially and
then decreased with increasing welding pressure. The joint with welding pressure of 0.14
MPa showed the maximum strength of 3.75 kN, which was 18.7% higher than that of the
weld without preload. Therefore, the optimal welding parameters were a preload of 200 N,
welding pressure of 0.14 MPa, and welding time of 2.5 s.
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3.2. Effect of Preload on Quality of UWed Joints with Poor Contact

To investigate the effect of preload on welding joints with poor contact, the optimal
welding parameters were adopted. Various gaps between upper and lower workpieces (i.e.,
0, 0.5, 1.0, 1.5, and 2.0 mm) were introduced into normal and preloading joints (i.e., 0 N
and 200 N). Figure 8 presents the effect of gap between the upper and lower workpieces.
Overall, the joint strength decreased with increasing gap, regardless of the application
of preload. Strengths of the joints with preload of 200 N were higher than that of the
normal joints with the same gap, indicating that preload is beneficial to the strength of
poorly contacted workpieces. Referring to Figure 8, the joint strength was affected slightly
when the gaps between workpieces is in the range of 0~1.0 mm. The strengths of the
normal and preloaded joints decreased by 6% and 10% for joints with 1.0 mm gap between
workpieces. Further increasing the gap to 1.5 mm, the joint strength decreased to 2.41 kN
and 2.84 kN, which were 66.7% and 75.7% of that normal joint, respectively. For the joints
with a gap of 2.0 mm, the strengths of normal and preloaded joints dropped to 0.92 kN
and 1.42 kN, respectively. The aforementioned results indicated that the existence of gaps
between workpieces had a significant influence on the joint strength and the utilization of
the preload can repair the strength of the joint with gap. However, the joint strength was
still low when gaps between the upper and lower workpieces were above 2.0 mm, and the
welding process needs to be further optimized.

Figure 9 shows the effect of preload on the strengths of poor contact joints (1.5 mm
gap) welded with the optimized welding parameters (i.e., welding pressure of 0.16 MPa
and welding time of 2.1 s). As shown, the strength of joint without preloading increased
by 32.35% from 2.41 kN to 3.19 kN with the optimal parameters, which recovered to
88.3% of the normal joint. These findings showed that optimizing the welding parameters
can improve the weld quality of joints with a gap of 1.5 mm between upper and lower
workpieces. The applied preload recovered the joint strength to above 91.8% comparing to
the normal joint. The joint with 500 N preload exhibited the highest peak load of 3.46 kN,
which was 95.5% of that normal joint. The harmful influence caused by the introduction
of gap between workpieces was mainly eliminated. These results showed that increasing
the welding pressure and preload can amend the strength of the joint with poor contact
between workpieces.
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To investigate the repairing mechanism of the application of preload, the fracture
surfaces of joints under various preloads were examined as shown in Figure 10. Weld area
of joints with preloads of 0, 200, 400, and 500 N were 167.8 mm2, 269.3 mm2, 309.8 mm2,
and 350.5 mm2, respectively. The weld area increased with increasing preload, which
implies the preload can improve the contact between the upper and lower workpieces for
joint with a gap of 1.5 mm and enhance the wave energy transmission and absorption. It
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is concluded that the enhanced joint strength by preloading is mainly attributed to the
increase in fusion area of the joint at the faying surface of Cf/PA6 composite.
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4. Improvement Mechanism of Preloaded Joints with Poor Contact
4.1. Stress and Deformation Analysis

To study the improving mechanism of discrepant joint by preloading, the stress and
deformation of single-lapped UWed joint with a gap of 1.5 mm between workpieces
were simulated. The contact conditions between the workpieces with welding pressure
and with static pressure and preload were simulated with the commercial software Ansys
EM20.1. The contact condition at the faying interface is mainly determined by the stress and
deformation of the upper workpiece under the welding pressure and preload. Therefore, the
stress distribution and deformation of the upper workpiece were simulated and analyzed
under the application of welding pressure and preload.

The upper workpiece (dimensions: 132.0 × 38.0 × 2.3 mm) was meshed with a
size of 1 mm, and the circular area at the overlap region was meshed with local mesh
refinement (0.5 mm), as shown in Figure 11a. The overlap region of two workpieces was
25.0 mm × 38.0 mm, the gap between the upper and lower workpieces was 1.5 mm, the
welding pressure was 0.16 MPa, the preload was 500 N, and the horn diameter was 10 mm.
The static pressure was assumed to act on the 10-mm diameter area, which located in
the center of upper workpiece, and the preload acts on rest of the lap area on the upper
workpiece, as shown in Figures 11b and 11c, respectively.

The upper workpiece was fixed constraint except the overlapped region. The stresses
under welding pressure (F) and preload (P) can be obtained by Equations (1) and (2):

σ =
Fl

2W
(1)

σ0 =
Pl2

2W
(2)

where l = 25 mm is the length of the overlapped region and W is section modulus in
bending. Then, the strain, ε, is calculated by the following:

σ + σ0 = C : ε (3)
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where C is the elastic matrix. The deformation of the overlapped region in upper workpiece
(i.e., displacement), u, can be deduced by Equation (4):

ε̃ =
1
2

[(
∇→u

)T
+∇→u

]
(4)
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The stresses and deformations of the upper workpiece under merely static pressure
and combination of preload and static pressure are shown in Figures 12 and 13, respectively.
The simulated results showed that the stress and deformation of the upper workpiece under
preload and static pressure was greater than that of the workpiece under static pressure; the
high deformation area was also larger (see Figure 12a,b and 13a,b). The upper workpiece
formed a cantilever beam due to the existence of gap. Thus, stress of the upper workpiece
was mainly concentrated in the support end of the anvil and the center of the lap area. This
condition resulted in the maximum deformation at end of the upper workpiece (Figures
12c and 13c), forming an approximate wedge gap, which gradually worsened the contact
condition between the upper and lower workpieces. However, the stress of the upper
workpiece was larger than that without preload due to the combined effect of preload and
static pressure. In addition, the downward deformation (i.e., Figure 13c) was larger than
that of static pressure (i.e., Figure 12c). Thus, the gap between workpieces was narrowed,
and the contact condition of the upper and lower workpieces was improved under preload.

4.2. Modeling of Ultrasonic Transmission with Preloading

The high-frequency ultrasonic vibration transfers to the workpieces through welding
horn during UW of thermoplastic composites. Ultrasonic waves are reflected, transmitted,
and absorbed in the form of mechanical waves at the faying interface and inside the
material [16,27]. Under the application of welding pressure, the heat generations by friction
at the faying interface and viscoelastic dissipation of the material itself are concentrated at
the welding interface to enable the material to melt, outflow, solidify, and form a welded
joint. According to the analysis in Section 4.1, the preload improves the contact condition
between upper and lower workpieces, thereby enhancing the transmission and absorption
of ultrasonic dissipation between the workpieces.
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Figure 12. Simulation of stress and deformation of the upper workpiece for joint with gap of 1.5 mm
under static pressure: (a) stress distribution of upper workpiece (Units in MPa), (b) top view, and
(c) side view of the deformation distribution of the upper workpiece (Units in mm).

Khmelev et al. constructed an energy dissipation model for ultrasonic welded ther-
moplastic joints, which provides a basis for the analysis of ultrasonic energy transfer [16].
In the model, the workpieces are regarded as homogeneous materials, assuming that the
upper and lower parts are perfect in contact, and the contacted area is the same as that
of the horn diameter. The influence of the welding pressure on the contact condition be-
tween parts is not considered. In our previous research [28], a quality evaluation model of
Cf/PA66 composite joints is proposed based on the Khmelev ultrasonic energy absorption
model. In this study, the quality evaluation model is used to analyze the effect of welding
pressure and preloading on the contact condition between upper and lower workpieces
and ultrasonic energy transmission and absorption. Figure 14 presents the schematic of
ultrasonic propagation.
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Figure 14a shows that ultrasonic vibrations with an intensity of I0 are initially gen-
erated from the ultrasonic oscillation system with an acoustical impedance of z0 = ρ0c0.
Part of the ultrasonic waves is reflected back to the horn, and part of the waves passes
through the boundary. Thus, the coefficient of reflection ηi and wave transmission factor di
at the interface can be determined using Equations (5) and (6) [28]. Interface 0 is the surface
between the horn and upper workpiece, interface 1 is the upper and lower workpiece
interface, and interface 2 is the lower workpiece and anvil surface.

ηi =

(
ρucu − ρlcl
ρucu + ρlcl

)2
(5)

di = 1− ηi (6)

where i = 0, 1, 2, ρu and ρl are the density of the upper and lower adherends, cu and cl are
the sound velocities in the adherends.



Polymers 2022, 14, 2650 12 of 16

Polymers 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 

parts is not considered. In our previous research [28], a quality evaluation model of 
Cf/PA66 composite joints is proposed based on the Khmelev ultrasonic energy absorption 
model. In this study, the quality evaluation model is used to analyze the effect of welding 
pressure and preloading on the contact condition between upper and lower workpieces 
and ultrasonic energy transmission and absorption. Figure 14 presents the schematic of 
ultrasonic propagation. 

x

x x

Horn

Anvil

I0

I1

I2

Upper workpiece

Lower workpiece
Interface 1

Interface 2

Interface 0

ρ0 c0

ρ1 c1

ρ2 c2

ρ1 c1

Horn

Anvil

I0

I1
Upper workpiece

Lower workpiece

Interface 1

Interface 0

ρ0 c0

ρ1 c1

ρ1 c1

x

 gap

(a) (b)

 

Static pressure

x

Horn

Anvil

I0

I1

I2

Upper workpiece

Lower workpiece
Interface 1

Interface 0

Preload Preload
ρ0 c0

ρ1 c1

ρ1 c1

x

Static pressure

Horn

Anvil

I0

I1

I2

Upper workpiece

Lower workpiece
Interface 1

Interface 0

ρ0 c0

ρ1 c1

ρ1 c1

x

 wedge gap

Interface 2Interface 2 ρ2 c2 ρ2 c2

 wedge gap

(d)(c)

 
Figure 14. Schematic of the ultrasonic wave propagation during UW: (a) perfect contact, (b) with 
gap between workpieces, and with a wedge gap under (c) static pressure, or (d) static pressure and 
preload. 

Figure 14a shows that ultrasonic vibrations with an intensity of I0 are initially gener-
ated from the ultrasonic oscillation system with an acoustical impedance of z0 = ρ0c0. Part 
of the ultrasonic waves is reflected back to the horn, and part of the waves passes through 

the boundary. Thus, the coefficient of reflection ηi  and wave transmission factor id  at 
the interface can be determined using Equations (5) and (6) [28]. Interface 0 is the surface 
between the horn and upper workpiece, interface 1 is the upper and lower workpiece in-
terface, and interface 2 is the lower workpiece and anvil surface. 

2
ρ ρη
ρ ρ

 −=  + 
u u l l

i
u u l l

c c
c c  

(5)

1 η= −i id  (6)

Figure 14. Schematic of the ultrasonic wave propagation during UW: (a) perfect contact, (b) with
gap between workpieces, and with a wedge gap under (c) static pressure, or (d) static pressure
and preload.

For an incident wave with energy intensity I, the wave reflection or transmission at
the faying surface are calculated using Equation (7) and Equation (8), respectively.

Iir = ηi I (7)

Iit = di I (8)

Then, the wave intensity of the upper workpiece (i.e., Cf/PA6 composite) is expressed
as following:

I1 = I0d0 = I0

[
1−

(
ρ0c0 − ρ1c1

ρ0c0 + ρ1c1

)2
]

(9)

Ultrasonic wave would attenuate during transmission, and it attenuates to I1e−αx as
the wave passes through the thermoplastic composite workpiece with a thickness of x and
attenuation coefficient α. The energy dissipation in upper workpiece is calculated using
Equation (10).

Wi1 = (I1 − I1e−αx)S + (η2 I1e−3αx − η2 I1e−4αx)S1 (10)

where S1 is area of the welding zone (i.e., area of interface 1), and η2 is the wave reflection
coefficient of the interface. S2 is the area of interface 2, and the energy absorbed by the
lower workpiece is defined as Wi2:

Wi2 = (I1e−αx − I1e−2αx)S1 + (η2 I1e−2αx − η2 I1e−3αx)S2 (11)
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If a gap exists between upper and lower workpieces, then the reflection coefficient of
the interface between Cf/PA6 and air reaches nearly 0.99 [22], indicating that almost all of
the ultrasonic waves are reflected by the interface, and ultrasonic welding fails, as shown
in Figure 14b.

The simulation results of stress and deformation in Section 4.1 show that when the
gap between upper and lower workpieces is above 1.5 mm, a wedge gap would form
between the workpieces under the application of welding pressure. The area for ultrasonic
transmission at interface I becomes S1w and the corresponding reflection area at interface II
is S2w, as shown in Figure 14c. Similarly, under the application of welding pressure and
preload, the transmission area at interface I is S1p(S1p > S1w), and the reflection area at
interface II is S2p, as shown in Figure 14d. As seen in Figure 14c,d, the transmission area at
interface I equals to the reflection area at interface II, namely, S1w = S2w, S1p = S2p.

Comparing to the joint under welding pressure, the absorbed energies by upper and
lower workpieces, ∆Wi1 (Equation (12)) and ∆Wi2 (Equation (13)), are lower than that with
application of welding pressure and preload once the gap between the upper and lower
workpieces is above 1.5 mm.

∆Wi1 = (I1η2e−3αx − I1η2e−4αx)(S1p − S1w) (12)

∆Wi2 = (I1e−αx − I1e−2αx)(S1p − S1w) + (I1η2e−2αx − I1η2e−3αx)(S2p − S2w)

∆Wi2 = (I1e−αx − I1e−2αx + I1η2e−2αx − I1η2e−3αx)(S1p − S1w) (13)

The whole energy dissipation during UW process can be expressed as:

∆Wi = Wi1 + ∆Wi1 + Wi2 + ∆Wi2 (14)

These analyses show that the energy absorbed by the upper and lower workpieces
during UW with preloading is higher than that of normal joint. Thus, the viscoelastic
dissipations in workpieces increase as well.

Once the stress, deformation and ultrasonic dissipation during UW are investigated,
the heat generations at the faying interface for joints made with a welding pressure of
0.16 MPa, a welding time of 2.1 s, a gap of 1.5 mm and various preload (i.e., 0 N, 200 N,
400 N, 500 N), are simulated with the commercial software Ansys EM20.1 (the frictional
heat generation between workpieces is not considered for simplicity).

A strain energy in the thermoplastic composites is generated due to viscosity of
the polymer. Therefore, the viscoelastic dissipation (i.e., the ultrasonic vibration energy
absorbed by the polymer material) equals to the strain energy in a single cycle. The
temperature rise (∆T) can be calculated from the energy dissipation in polymer materials
in a single cycle, as follows [29]:

∆T =
∆Wi
cρ

(15)

where c = 1.60 kJ/kg·K and ρ = 1130 kg/m3 are specific heat capacity and density of Cf/PA6,
respectively. In addition, the thermal conductivity of Cf/PA6 is λ = 0.31 W/m·K.

The melting material is generated only on the faying surface between upper and lower
workpieces during UW process, and it is very thin. In addition, the welding time is short
(less than 3 s) and thermal conductivity of Cf/PA6 is poor. Therefore, the contacts between
welding parts and air, and fixture and fixture are regarded as insulation condition [30]. The
heat transfer is simplified as a two-dimensional heat conduction along the faying surface.

λ

(
∂2T
∂x2 +

∂2T
∂y2

)
+ ∆Wi = ρc

∂T
∂t

(16)

where T is temperature of a specific position, x and y is coordinate of the temperature field,
t = 2.1 s is welding time.
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Figure 15 shows the temperature distribution of joint welded with 2.1 s at room
temperature (22 ◦C). As shown, the maximum temperature distribution expanded at the
faying interface gradually with increasing preload, which was consistent with the varying
trends in the joint strength (Figure 9) and nugget area (Figure 10). Combining the results
of nugget size, stress and deformation, and ultrasonic dissipation during UW process, it
was concluded that the application of preload improved the contact condition between
workpieces and increased the transmission of ultrasonic vibration; therefore, the nugget
size and joint strength increased under preload.
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where T  is temperature of a specific position, x  and y  is coordinate of the tempera-
ture field, t  = 2.1 s is welding time. 

Figure 15 shows the temperature distribution of joint welded with 2.1 s at room tem-
perature (22 °C). As shown, the maximum temperature distribution expanded at the fay-
ing interface gradually with increasing preload, which was consistent with the varying 
trends in the joint strength (Figure 9) and nugget area (Figure 10). Combining the results 
of nugget size, stress and deformation, and ultrasonic dissipation during UW process, it 
was concluded that the application of preload improved the contact condition between 
workpieces and increased the transmission of ultrasonic vibration; therefore, the nugget 
size and joint strength increased under preload. 
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5. Conclusions

Extensive UW tests of 2.3-mm-thick nylon6 composites with 30 wt% carbon fiber were
conducted to investigate the effect of preload on weld quality. The results showed that
under the given welding parameters, the preload can greatly improve the joint strength,
especially in the case of a gap between workpieces. Therefore, the application of a preload is
recommended during UW of composite materials in practical manufacturing applications.
However, the welding parameters and magnitude of the preload should be optimized
experimentally to ensure effective joining with different materials, plate thicknesses, and
types of UW machines. The application of preload should be further studied to solve
problems, such as excessive indentation, thinning of penetration, excessive extrusion of
solute, plate deformation, and cracking at the edge of plates caused by excessive welding
pressure. The main conclusions are as follows:

(1) Preload can improve the weld quality of the composites, and the strength increased
by 18.7% for the normal joint with preload of 200 N made with optimal welding
parameters;

(2) The existence of gap between upper and lower workpieces had a considerable negative
influence on joint strength. When the gap was smaller than 1.0 mm, the joint strength
decreased slightly while to 66.7% and 25.4% of the normal joint for gaps of 1.5 mm
and 2.0 mm.

(3) Preload can repair the strengths of joints with gaps. The strength of the joint with
1.5 mm gap can be recovered to 95.5% of the normal joint under optimized welding
parameters;

(4) Application of preloading improved the strength of the joint with poor contact, which
was mainly because the preload compacted the contact between workpieces and
increased the ultrasonic transmission, resulting in the increase in nugget area.
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