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Abstract: Nanocomposite (NC) films of polyvinyl alcohol (PVA), lignosulfonate (Lg), and nanosized
palladium (Pd) were synthesized by ex-situ casting method. Samples from the synthesized PVA-
Lg/Pd NC films were irradiated with 5–100 kGy γ doses. The effect of γ doses on the structural,
thermal, and optical characteristics of the NC films were studied using different characterization
techniques. The results indicated that the γ irradiation improves the decomposition temperature from
227 to 239 ◦C, signifying an increase in the thermal stability of the NC films. This was accompanied
by a reduction of the melting temperature due to the increase of the amorphous phase. This can be
attributed to the dominance of crosslinking. On the other hand, the refractive index increased from
2.21 to 2.32 while increasing the γ dose up to 100 kGy. This was associated with a reduction of the
optical bandgap from 3.49 to 3.30 eV, which could be attributed to the increase in the amorphous
phase as a result of crosslinking. This indicates an enhancement of the spreading of the NPs inside the
blend matrix due to γ irradiation. This results in a more compacted construction of the PVA-Lg/Pd
NC films. Furthermore, we used the Commission Internationale de E’Claire (CIE) method to estimate
the change in color among the irradiated NC films and the pristine film. The PVA-Lg/Pd NC attained
a significant color difference value greater than five, meaning permanent color changes.

Keywords: nanocomposites; structure; thermal analysis; UV spectroscopy; radiation

1. Introduction

Nowadays, the fabrication of nanocomposites (NCs) using polymer blends and
nanoparticles (NPs) has attained the consideration of many authors owing to the pos-
sibility of its use in several fields [1]. These polymeric NCs have an individual character,
unlike those of bulk, due to the tiny size of the embedded NPs [2]. Thus, those NCs can be
widely used is many fields such as advanced coatings, single electron transistors, sensors,
optoelectronic devices, and solar cells [3].

Polyvinyl alcohol (PVA) has an excellent film-developing ability and excellent trans-
parency. It is one of the most representative host polymers to NPs due to its significant
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chemical resistance, optical characteristics, and bio-compatibility [4]. The composites man-
ufactured from PVA can be used in several applications including coatings [5], optical
membranes [6], nano-fibers [7], and wrapping matter [8].

The main building units of lignosulfonate (Lg) biopolymer are guaiacyl and p-
hydroxyphenyl which are randomly connected through C−C or ether bonds [9]. Lg is an
abundant natural phenol polymer which can be used in several applications concerning
non-wooded and wooded biomasses [10]. Lg is a preferred compatible matter for polymer
blends. For example, tiny micrometers of Lg can interact strongly with PVA through
H2 bonding [11]. An earlier study was carried out to investigate whether crosslinking
predominates when Lg interacts with PVA [12]. This can be attributed to the abundant
groups in Lg, such as the methoxyl groups, Haro and the OH group [13]. Lignosulfonate
is suitable for blending with manufactured polymers to improve their properties [14]. It
is a sensible additive to polymeric matters owing to its great thermostability and radical
capture ability [15].

Polymer NCs have drawn great attention due to their enhanced physical and chemical
properties. The embedding of NPs within the polymer matrix can produce high quality
films with better selectivity and sensitivity [16]. The inclusion of metallic NPs within
the polymeric matrix enhances its physical character and thus the resultant NC will be
reasonable for several applications [17–19]. Palladium NPs initiate application in bio-
sensing, C–C coupling reactions, and surface-enhanced Raman spectroscopy [20]. The
inclusion of NPs treats the disadvantages that arise from the narrow absorption bands and
the degradation of the polymeric matter [21,22]. This can be achieved by developing their
size-dependent spectral tunability and intrinsic material stability [22].

The number of amorphous regions in polymers has an important role in characterizing
them. Besides, thermogravimetric analysis (TGA) is extensively applied to investigate the
thermostability of polymers by providing information concerning the kinetic parameters of
the thermal decomposition character.

Some polymers have several significant characters that gave them huge technological
and financial importance. However, in spite of this, they have some problems associ-
ated with changes in their physical character. One problem, for example, is the poor
thermostability owed to the structural deficiencies that were formed during the step of
polymerization. Thus, it is essential to stabilize these polymers using γ radiation [23].

The γ radiation causes breakage of the polymer chains, thus creating free radicals that
are chemically active. These active free radicals cause the formation of new bonds among
the chains via crosslinking. This affects the macro molecular structure and morphology
of the polymeric NCs [23]. Additionally, the optical character of materials represents an
important criterion for researchers owing to the extensive applications in photo electronic
instruments [24]. Also, the change of color in polymers due to γ irradiation is an essential
property which aids in interpreting the modification in the polymer properties. It can be
applied in marketable applications, including radiation processing and dosimetry [25].

In the present study, we synthesized a polymer blend from polyvinyl alcohol and
lignosulfonate. The resultant blend was used as a host material for palladium nanoparticles
aiming to obtain a novel nanocomposite of enhanced thermal and optical properties.
Finally, the synthesized nanocomposite was irradiated with γ radiation with the aim of
investigating the possibility of improving its properties to be used in industry.

2. Experimental
2.1. Materials

We purchased the sodium Lg (∼94%, SLS and Mn = 7000) from Sigma–Aldrich Com-
pany, St. Louis, MO, USA, while we obtained the PVA from Sigma–Aldrich GmbH, Cairo,
Egypt. Polyethylene glycol, methanol HPLC-grade, palladium chloride, methylene chlo-
ride, hexane, and acetone were obtained from Merck, Kenilworth, NJ, USA.
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The Pd NPs were synthesized and characterized following the same technique used
in our previous study [26]. The Pd has a particle size in the range 2–22 nm with 10 nm on
average [26].

The PVA-Lg/Pd NC was prepared by means of casting technique. We dissolved pure
Lg and PVA (50/50 w%) in 100 mL of hot deionized water through strong stirring for 4 h at
85 ◦C. Then, we added 0.5 w% of the formerly prepared NPs to the PVA-Lg solution (2 g in
30 mL), through magnetic stirring following the equation:

x(wt%) =
wf

wp + wf
× 100 (1)

where wp is the weight of PVA-Lg blend and wf is the weight of Pd NPs. Then the mixtures
were cast into Petri dishes and dried in a vacuumed oven at 80 ◦C. Finally, we fixed the
attained films on a plate at 40 ◦C for 96 h to remove the remaining solvents. The film
thickness (0.15 mm) was estimated using a thickness gauge (Model 11/2704 Ast MD 370
standard) that was calibrated by the Arab British Dynamics (Cairo, Egypt).

2.2. Irradiation Facility

A 60Co source (Canada A.E.A Ltd., Ottawa, ON, Canada) of dose rate 1 kGy/h was
used. The irradiation was performed at the NCRRT of Egyptian Atomic Energy Authority,
Cairo, Egypt.

2.3. Experimental Apparatus

X-ray diffraction (XRD) was carried out by Shimadzu 6000. The diffractometer was
operating with Cu-kα ray of wavelength of 1.5406 A◦ and scanned in the 2θ range 10–60◦,
at a 2◦/min speed.

Fourier transform infrared spectroscopy (FTIR) was achieved, in the wavenumber
range 400–4000 cm−1, with a Shimadzu spectrophotometer (Type 8201 PC, with precision
± 4 cm−1).

The thermal measurements were conducted using a Shimadzu-50 instrument
(Shimadzu, Tokyo, Japan). The TGA curves were measured in the temperature range
from room temperature up to 500 ◦C at 10 ◦C/min. For differential thermal analysis (DTA)
scans, we used α-Al2O3 powder as a reference matter. The scans were obtained in the
temperature range from room temperature up to 300 ◦C, at 10 ◦C/min, with nitrogen gas
flow rate 20 cm3/min.

The absorbance records, in the wavelength from 200 up to 800 nm, were collected
using a Shimadzu UV spectrophotometer, Ttype 3101 PC, Berkshire, UK. The Commission
Internationale de E’Claire (CIE) was used to determine any color variation between the
irradiated samples and the pristine sample. All the mathematical equations used were
presented in detail in our previous publication [27].

3. Results and Discussion
3.1. Structural Investigation
3.1.1. XRD

The XRD study was carried out at the range of 2θ (10–60◦) and results are displayed
in Figure 1. The patterns of the NC films showed the semi-crystalline nature of the NC
having a major amorphous phase. A wide diffraction peak appeared at 2θ = 18.5◦ that
almost matched the (101) reflection plane of the PVA polymer [28].
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several industrial requests that require bending without contravention. 
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Figure 1. XRD patterns of the irradiated and pristine NC films.

The variations in the diffraction pattern were predictable owing to the injection of
NPs; nevertheless, we did not observe any diffraction peak belonging to the NPs in the
pattern of the NC film, signifying a full dispersion of the Pd NPs in the PVA-Lg matrix.
The integral intensity (I) of the broad diffraction peak, which refers to the area under the
peak, was calculated and characterized considering the γ dose in Figure 2. The values
of I increased with the increasing dose up to 10 kGy, then decreased with higher doses
up to 100 kGy. We attribute the increase in I to degradation that causes a growth in the
amount of the ordered regions in the NC and reduces the intermolecular stress in the
amorphous regions. This enhances the mobility of chains and allows macromolecules to be
reordered [29]. Comparatively, the γ doses in the range 10–100 kGy damage the crystalline
portions and change the ordered arranged areas into irregular ones by creating hydrogen
bonds among the NPs and the blend chains due to crosslinking. Since crosslinking enhances
the amorphous phase in the NC film, then the NC films may be appropriate candidates for
several industrial requests that require bending without contravention.
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The width of peak at half of the maximal intensity (∆W) is related to the crystallite
size (L). Thus, we used the Scherrer equation to estimate the values of ∆W:

L = (0.89λ)/(∆WCosθ) (2)

where λ is the wavelength of the X-rays. The change of ∆W with γ dose is displayed
in Figure 2. There is no significant change in ∆W that means no change in the width of
the lamella.

3.1.2. FTIR

In order to illustrate the structural modification in the NC films due to γ irradiation,
FTIR spectroscopy was conducted. The induced modifications were evaluated considering
the variation in peak intensity that fits each function group. Figure 3 shows the FTIR spectra
of the irradiated NC samples and the pristine sample.
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The functional groups relating to PVA should appear at 851, 1138, 1433, 2940, and
3360 cm−1 and match the C–C–O stretch (alcohol), CH2 deformation (twist or wag), CH2
deformation coupled with O–H deformation (alcohol), C–H stretch (CH2 asymmetric
stretch), and O–H stretch (alcohol), respectively [30]. The functional groups of the PVA-
Lg/Pd NC were observed at 860, 1100, 1430, 2925, and 3350 cm−1, correspondingly. When
we compare the values of wavenumbers of the pure PVA with those of the NC, we observe
that the peaks of the PVA-Lg/Pd NC are slightly shifted to higher or lower wavenumbers.
We attribute this to the damage in the C–H bond due to the impeding of the Pd NPs which
aids the creation of carbon loaded structure and hydrogen free radicals [31].

The bands representing the C–O stretching vibrations are due to the residual acetate
groups next the manufacture of PVA from oxidation or hydrolysis of polyvinyl acetate
during its manufacture. Also, the C–C bands may be due to crosslinks realized while the
polymer was heated during the NC preparation [32,33]. These bands were decreased with
doses up to 25 kGy and then increased while raising the dose up to 100 kGy. The band
representing the C–C–O stretching is predictable to the crystallization [34] and signifying
the semi-ordered character of PVA. This band exhibited a non-monotonic trend with the γ
dose. Moreover, the O–H stretching band is basically characteristic of phenols and alcohols.
This band nearly decreased when the dose reached 100 kGy, meaning there is damage
to crystalline structure, confirming the predominance of crosslinking. The CH2 bending
vibration, the CH deformation vibration (1330 cm−1), and the CH2 asymmetric stretching
bands showed identical trend as they reduced while raising the γ dose up to 100 kGy. We
attribute the reduction in their intensity to the ionizing effect of γ radiation that damages the
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C–H bond creating free radicals that react with OH groups causing crosslinking. Generally,
the change in band intensity can not only be attributed to the ionizing effect of γ photons
but also to the replacement of some of the carbon atoms by Pd NPs in the backbone of the
polymer blend matrix.

3.2. Thermal Investigation
3.2.1. TGA

TGA was carried out on the PVA-Lg/Pd NC films to obtain information about the
changes in its thermal stability with the γ dose. TGA was applied at a heating rate of
10 ◦C/min and at the temperature range from RT up to 500 ◦C. The TGA curves for the
γ irradiated NC samples and pristine sample are shown in Figure 4. The decomposition
of NC samples occurred in two steps. The degradation temperatures of the two weight
loss steps (To, T1) could be evaluated from the TGA curves and are displayed in Table 1.
The numerical values of To and T1 decreased while increasing the dose up to 10 kGy, then
increased while raising the γ dose up to 100 kGy. We attribute this trend to the initial
scission, followed by the dominance of crosslinking that enhances the thermal stability of
the NC.
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Table 1. Degradation temperatures (To, T1), activation energies of thermal decomposition (Ea1, Ea2)
of the two weight loss steps and melting temperature (Tm) of the PVA-Lg/Pd NC films versus γ dose.

γ dose (kGy) To (◦C) T1 (◦C) Ea1
(kJ/mole)

Ea2
(kJ/mole) Tm (◦C)

0 227 411 288 401 231
5 225 407 273 394 236
10 224 339 264 382 240
25 229 407 296 419 230
50 232 414 318 432 228
75 235 416 334 438 227

100 239 428 341 446 225

Calculation of the activation energy of thermal decomposition, Ea, is convenient for in-
vestigating the thermal stability of the NC films. Numerous thermo-gravimetric procedures
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use the heating rate to evaluate Ea. The method presented by Horowitz and Metzger [35]
was used in the present study. The values of Ea1 and Ea2 for the two decomposition steps
are displayed in Table 1. The activation energies for the two weight loss steps exhibited a
similar character to that of the To, signifying extra thermal stability with a reduced rate of
decomposition when increasing γ dose in the range from 10 to 100 kGy. The γ irradiation
with doses up to 10 kGy causes the degradation of the CH and CH2 bonds that formed
chemically active free radicals [36,37]. An additional factor that contributes to the breaking
of bonds is thermal degradation. Extended heating breaks the bonds randomly and creates
steady molecules with fewer molecular weights. Additionally, heat splits the small molec-
ular products due to the reaction of side groups without changing the initial molecular
weight. In other words, the produced free radicals create chemical reactions leading to the
development of novel bonding via crosslinking, disturbing the chemical construction of
the NC and thereby improving its thermal stability.

3.2.2. DTA

To evaluate the transition temperatures of the pristine and irradiated PVA-Lg/Pd NC
films, DTA was carried out. The measurements were applied from room temperature up
to 300 ◦C at 10 ◦C/min heating rate. The thermograms of the NC films are displayed in
Figure 5. The DTA curves showed an endothermic peak due to melting (Tm). The melting
temperature appeared as a range of non-definite temperatures. This is due to the variety
in chain length and the degree of freedom of the polymeric chains [38]. The numerical
values of Tm were estimated and are displayed in Table 1. The values of Tm increased while
raising the γ dose up to 10 kGy due to degradation, then decreased while raising the dose
up to 100 kGy due to crosslinking which damaged the crystalline structure.
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The mobility of the short chains is great, thus permitting the reorientation of molecules
and form ordered segments. This resembles the cage effect that contains the free radical re-
combination before sharing in interactions that motivate crosslinking [39,40]. Consequently,
the observed difference between the variation of degradation temperatures and the melting
temperature of the dose is due to the fact that Tm identifies the crystalline regions of the
polymeric NC films. It is likely that the low γ doses increases the thickness of ordered
constructions. Comparatively, the high γ doses (10–100 kG) produce defects that split the
crystals reducing Tm [41].
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3.3. Optical Investigation
3.3.1. Absorption Coefficient Investigation

The UV absorbance (A) of the irradiated samples and the pristine sample was mea-
sured. We then used the absorbance data to calculate the absorption coefficient (α) that
describes the amount of light absorbed by a given thickness of a matter. We calculated the
absorption coefficient applying the equation:

α =
Log A

d
(3)

where d is the thickness of the sample.
The spectra of the absorption coefficient of the pristine and γ irradiated PVA-Lg/Pd

NC films are displayed in Figure 6. The absorption coefficient increased while increasing
the energy. Certain authors attributed the increase in absorbance with energy to the
π−π* phenyl ring and locally excited transition n−π* among the energy levels [42]. This
was related to the amount of conjugation between neighboring phenyl rings in the PVA
chains [43]. Other authors attributed it to the creation of color centers [44]. This indicates
that the occurrence of photochemical reactions in the NC matrix owes to the absorption of
UV light that activates the macro-molecules to its single or triple state [42]. Additionally,
the absorption coefficient increased with the γ dose, meaning that the intermediate atoms
of the NC have absorbed the incident photon energy. This can be attributed to the Rayleigh
scattering after the embedded Pd NPs came together with the induced modifications in
the energy levels due to irradiation [45]. The energy transferred by the incident γ photons
creates novel chemical configuration enhancing the absorbance. Also, the presence of more
negative charges creates novel interior bonds in the NC. Besides, the minute size of the Pd
NPs decreases the atomic volume occupied by Pd and thus increases its density, leading to
the enhancement of the absorbance [46,47].
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3.3.2. Urbach Energy Investigation

The disordered materials have tail states in the gap area below the main absorption
edge [48]; these can be calculated from the absorption coefficient (α) following the Urbach
rule [49];

α = αo exp
(

hν
EU

)
(4)

in which, αo is a constant that defines the matter and Eu is the Urbach energy, which refers
to the width of the tail of localized states in the forbidden bandgap [50]. The values of
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Eu were obtained from the slope of exponential dependence of the absorption coefficient
edge vs. energy (Figure 6). The dependence of Eu on the γ dose is displayed in Figure 7.
The numerical values of Eu increased from 0.30 to 0.61 eV while raising the dose up to
100 kGy. This is correlated with the development of the disordered phase caused by γ
irradiation [51].
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3.3.3. Band Gap Investigation

The values of bandgap (Eg) were estimated using the following principle [52];

αhν = B
(
hν− Eg

)n true for E > Eg (5)

in which B is a constant, hν is the energy of the photon, and n is an index of a value
signifying the type of transition [53]. The Eg values of amorphous materials could be
calculated by drawing (αhν)0.5 as a function of hν and then prolonging the linear section
of the curve to the hν axis. The Tauc plots used to obtain energy gaps are presented in
Figure 7.

The change of both Eu and Eg of the NC films with the γ dose is displayed in Figure 8.
The values of Eg exhibited an opposite trend to those of Eu, where they decreased while
raising the dose up to 100 kGy. We attribute the decrease of Eg to the increase of the
amorphous regions in the NC films. This encourages the localized states and generation of
defects inside the Eg arrangement, initiating microelectronic transitions of lower energy.
Furthermore, the significant outcomes of γ radiation on the NC samples were the generation
of chemical active free radicals via the chain scissions that causes the development of
conjugated bonds, decreasing the Eg [54].
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3.3.4. Refractive Investigation

A significant factor used in several optoelectronic applications is the real part of the
complex refractive index (n). The values of n were estimated using the equation:

n =

(
1 + R
1− R

)
+

√
4R

(1− R)2 − k2 (6)

in which R is the reflectance which was estimated from the absorption spectrum following
R = 1−

√
TeA (T is the transmittance and k is the extinction coefficient). K was estimated

using the formula:
k = (λα/4π) (7)

The values of n were plotted against the γ dose in Figure 9a. The refractive index
increased while raising the dose up to 100 kGy. We attribute this trend to crosslinking,
following the interpretation introduced by Shams-Eldin et al. [55] and Ranby & Rebek [56],
where they attributed the decrease of n to degradation, while the increase of n could be
due to the crosslinking of chains.

Since the dielectric parameters provide knowledge about the optical properties of
matter [57], the dielectric constant (ε′) was calculated using the values of k and by applying
the formula [58]:

ε′ = n2 − k2 (8)

Figure 9b shows the change of ε′ with hν. The variation of ε′ with hυ indicates the
reactions between photons and electrons in the NC within this range of energies. The ε′

values increased while raising the dose up to 100 kGy, signifying an improvement of the
density of states in the forbidden gap [59].
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3.4. Color Difference Investigation

The estimation of color changes is an essential process in the field of radiation dosime-
try. The red, green, and blue colors are symbolized by the scientific sets, X, Y, and Z,
respectively, known as the tristimulus values [60]. Also, color saturation is symbolized by x,
y and z, known as the chromaticity coordinates. Both (X, Y, Z) and (x, y, z) were computed
using the method which we used in our previous work [27] and results are displayed in
Table 2. In applying this method, we used the transmission values (370–780) calculated
from the absorbance values represented in Figure 6. The values of X, Y, and Z decreased
while raising the dose up to 100 kGy. An increase in the values of x and y with the γ dose
was noticed. Conversely, the values of z decreased.

Table 2. The tristimulus values (X, Y, Z) and chromaticity coordinates (x, y, z) of the PVA-Lg/Pd NC
samples against γ dose.

γ Dose
(kGy) X Y Z x y z

0 82.78 75.36 42.59 0.381 0.362 0.247

5 76.66 70.58 41.80 0.384 0.372 0.244

10 73.14 67.93 40.61 0.393 0.378 0.233

25 69.82 65.39 39.54 0.400 0.384 0.226

50 63.70 60.62 37.67 0.403 0.389 0.224

75 57.04 55.23 36.19 0.406 0.394 0.221

100 53.85 52.60 34.85 0.412 0.397 0.212

Following the CIELAB system, the color intercepts are aces symbolized by a*, b*, and
L*. The intercept a* expresses the red (+a*) and green (−a*) components, while b* expresses
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the yellow (+b*) and blue (−b*). L* expresses the lightness. The white has an L* of 100, and
the black has an L* of 0. The precision in computing L* is ±0.05 and ±0.01 for both a* and
b*, correspondingly. The change in a*, b*, and L* with the γ dose is displayed in Figure 10a.
The color intercepts a* and b* showed negative values that increased while raising the dose
up 100 kGy. This signifies that the green and blue color components tend to turn into red
and yellow, respectively. This was associated with the increase in darkness.
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The variance in color among the irradiated NC films and the pristine film is known as
color intensity (∆E), which was estimated by means of the equation used in our previous
work [27]. The correspondence of ∆E with the γ dose is displayed in Figure 10b. The values
of ∆E increased while raising the γ dose up to 100 kGy. ∆E achieved permanent color
difference since its values were greater than 5 [61,62]. This indicates that the PVA-Lg/Pd
NC has a tendency towards color changes by γ irradiation. The changes in color are formed
by the chemically active free radicals that were created by degradation. Furthermore, the
chemically active free radicals that possess electrons with non-paired spin cause changes in
color [27].

4. Conclusions

In the present work, PVA-Lg/Pd NC film was successfully prepared using ex-situ
casting technique. The γ irradiations of PVA-Lg/Pd NC films cause degradation and chain
crosslinking and consequently affect the thermal and optical properties.

The XRD and DTA measurements show that the γ doses up to10 kGy enhance the
thickness of lamellae, hence a rise in the melting temperature. Gamma doses 10–100 kGy
generate defects that split the crystals, thus reducing the melting temperature. This can
be due to crosslinking that increases the amorphous phase in the NC film, enhancing its
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resilience, thus the NC film can be a candidate for several industrial processes that require
it to bend without breaking.

The TGA measurements signify the degradation of the NC films due to γ irradiation
up to 10 kGy. This leads to the decomposition of the NC samples earlier than the pristine
sample. At higher doses (10–100 kGy), crosslinking dominates. The domination of the
crosslinking leads to an increase in the thermal stability of the NC films.

Both the refractive index and optical dielectric constant increased while raising the
dose up to 100 kGy owing to crosslinking. This was linked to a reduction in the optical
bandgap. The achieved optical changes may optimize PVA-Lg/Pd NC films for use in
optoelectronic devices.

The pristine NC film displayed a distinctive response to color change by γ irradiation.
The response in color change seemed obvious in the green and blue color constituents
changing to red and yellow, linked to an increase in the darkness of the NC films.
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