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Abstract: To increase the human lifespan, healthcare monitoring devices that diagnose diseases and
check body conditions have attracted considerable interest. Commercial AgCl-based wet electrodes
with the advantages of high conductivity and strong adaptability to human skin are considered the
most frequently used electrode material for healthcare monitoring. However, commercial AgCl-
based wet electrodes, when exposed for a long period, cause an evaporation of organic solvents,
which could reduce the signal-to-noise ratio of biosignals and stimulate human skin. In this con-
text, we demonstrate a dry electrode for a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)
(PEDOT:PSS)-based blended polymer electrode using a combination of PEDOT:PSS, waterborne
polyurethane (WPU) and ethylene glycol (EG) that could be reused for a long period of time to
detect electrocardiography (ECG) and electromyography (EMG). Both ECG and EMG are reliably
detected by the wireless real-time monitoring system. In particular, the proposed dry electrode detects
biosignals without deterioration for over 2 weeks. Additionally, a double layer of a polyimide (PI)
substrate and fluorinated polymer CYTOP induces the strong waterproof characteristics of external
liquids for the proposed dry electrodes, having a low surface energy of 14.49 mN/m. In addition, the
proposed electrode has excellent degradability in water; it dissolves in hot water at 60 ◦C.

Keywords: electrocardiography; electromyography; PEDOT:PSS; degradability; polymer electrode

1. Introduction

To ensure the world’s aging population has the right to individual life, neurological
diseases, cardiovascular diseases, etc. are becoming notable social issues. As a result, many
studies have been carried out to develop high-performance electrocardiograph (ECG) and
electromyograph (EMG) sensors that can efficiently obtain biosignals from the surface of
the human body. Especially, a non-invasive biopotential electrode is well known for its
key contribution as a component of a biopotential acquisition system from a human being
due to its fast measurement setup on the surface of the human body without leaving a
scar. Robust and reliable biosignal acquisition is strongly dependent on the characteristic
of biopotential electrodes, such as adhesion, wet-degradability, conductivity and micro-
/macroscopic morphology.

So far, much work on the development of biopotential electrodes has been carried
out in terms of material properties and mechanical flexibility to record biosignals. Com-
mercially, wet-type electrodes (typically, Ag/AgCl) have been widely utilized because of
their high conductivity and conformability to human skin [1–3]. However, electrolytes
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of the wet-type electrodes are diffused into the subcutaneous area of the human body,
and organic solvents of the wet-type electrodes evaporated over a long period of time.
Thus, this would cause skin irritation and significant decays of the signal-to-noise ratio
of biosignals, respectively. Instead, the fabrication of dry-type electrodes was intensively
investigated using a thin metal [4–7], a carbon nanotube (CNT) [8–11], polymer–metal
particle composites [12], graphene [13–17] and conductive polymers, such as poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) [18–20].

Major technological issues in the fabrication of biopotential electrodes are mechan-
ical robustness and reliability for long-term biosignal recording. A previously reported
study fabricated organogel-based strain-insensitive conductors using PEDOT:PSS, polyacry-
lamide (AAm) and ethylene glycol (EG) [18]. Excessive ions and impurities in PEDOT:PSS
were eliminated via dialysis. In addition, EG, which has a high boiling point (197 ◦C),
scarcely evaporated at room temperature, so organogel-based PEDOT:PSS maintained the
compositional ratio over a long time. Biocompatible PEDOT:PSS electrode was fabricated
by blending a waterborne polyurethane (WPU) and D-sorbitol, which is a food additive
used in various fields such as cosmetic lotions, creams, toothpastes and food additives [20].
The fabricated dry-type PEDOT:PSS electrodes exhibited excellent electrical conductiv-
ity, strong adhesion properties and long-term stability. Complex microstructured and
macropillar-shaped biopotential electrodes have been reported by a research group of ETH
Zurich, which exhibited low electrical impedance [21]. The complex microstructured elec-
trodes and macropillar-shaped electrodes were fabricated using multiple photolithography
and a stencil printing technique, respectively. However, the fabrication of the biopotential
electrodes involved multiple steps of the lithographic process and could suffer from the
reduction in the fabrication process yield. From these points of view, human-friendly
and environmentally friendly biopotential electrodes are highly required, with simple yet
robust film formation using conductive polymers.

PEDOT:PSS, a representative high-conductivity polymer, is a polymer mixture com-
posed of conductive PEDOT and insulating PSS. PEDOT:PSS has attracted attention over
the decades due to high transmittance in the visible light region and solution processability.
PEDOT:PSS can be applied to various electronic devices and display fields, such as wear-
able devices, transparent electrodes and solar cells [22–24]. Recently, research has been
reported to improve the conductivity, thermoelectric characteristics and mechanical flexibil-
ity of PEDOT:PSS. Ionic liquids such as butyl-3-methylimidazolium, tetrafluoroborate and
2-methylimidazolium hydrogen sulfate improve the conductivity of PEDOT:PSS [25,26]. In
addition, deep eutectic solvents (DES), which are biocompatible, and biodegradable sol-
vents increased the thermoelectric and sensing characteristics of PEDOT:PSS [27,28]. Lastly,
the addition of elastomer to PEDOT:PSS leads to high mechanical characteristics [29]. The
PEDOT:PSS composite, with improved conductivity, sensing and mechanical characteristics,
is a strong potential candidate for use as an electrophysiological epidermal electrode.

In this light, we present waterproof dry-type PEDOT:PSS (WPD) electrodes covered
with a commercially available fluorinated polymer (CYTOP), WPU and polyethylenimine
(PEI) on a polyimide (PI) substrate to measure human electrocardiography (ECG) and
electromyography (EMG). Due to the doubled cover of CYTOP on the electrode structure,
a powerful waterproof characteristic was realized on the ECG and EMG electrodes. The
waterproof dry electrode sensed biosignals without deterioration over 2 weeks. More-
over, the material constituting the dry electrode had an excellent eco-friendly degradable
characteristic to minimize the production of electronic waste. Our proposed PEDOT:PSS-
based dry electrode demonstrated a stable ECG and EMG signal recording wirelessly with
real-time monitoring.

2. Materials and Methods

The PI substrate that acted as a framework to form the proposed electrode was cut to
a certain size (2 cm × 2 cm). The standardized PI substrate was sonicated in acetone and
isopropyl alcohol (IPA) for 10 min sequentially and then dried with nitrogen gas (99.99%).
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After all the residue was removed in an oven at 95 ◦C for 5 min, the CYTOP solution was
diluted 1:5 by CYTOP solvent (CT-SOLV180) and stirred for 6 h. The CYTOP solution with
0.5 mL was coated on the standardized PI substrate at 3000 rpm for 30 s and then annealed
with a hotplate at 100 ◦C for 20 min, and 150 ◦C for 1 h sequentially in order to remove
the CYTOP solvent. A total of 0.5 mL of the PEI solution (Sigma-Aldrich, St Louis, MO,
USA) was coated at 3000 rpm for 30 s in the opposite layer of the PI substrate, in which the
CYTOP was not coated to form an adhesion layer for selective molding and firm fixation
of the PWE solution. The PWE solution was prepared by mixing a PEDOT:PSS solution
(Heraeus, Hanau, Germany), WPU (Sigma-Aldrich, St Louis, MO, USA) and ethylene glycol
(Sigma-Aldrich, St Louis, MO, USA) overnight (mixing ratio, 6:1:2). The WPU solution was
prepared by stirring overnight at a ratio of 10:1, using deionized water as a solvent. The
prepared PWE solution was drop-cast on the coated PEI layer and then, a 110 ◦C annealing
process was performed in an oven. The drop-casting process of the PWE solution and
annealing process using the oven was repeated 4 times (total of 2500 mL: 500 mL, 500 mL,
750 mL, 750 mL).

To investigate the chemical structure and the change in the energy level of WPD
electrodes, the X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spec-
troscopy (UPS, AXIS Supra, Kratos, Manchester, UK) measurements were performed and
using a monochromatic Al Kα (hv = 1486.6 eV) source. The morphological properties of the
WPD electrodes were characterized by scanning electron microscopy (SEM, S-4700, Hitachi,
Tokyo, Japan) and atomic force microscopy (AFM, Park NX10, Park systems, Suwon, South
Korea). The image size of AFM was 10 µm × 10 µm, and the resolution was 0.05 nm.
The surface energy was investigated by contact angle measurements (DSA100, KRUSS,
Hamburg, Germany) and calculated with KRUSS advanced software.

3. Results and Discussion

Figure 1 shows the fabrication process of the proposed waterproof dry electrode
and the chemical structures of the materials. The proposed electrode which detects the
human biopotential signals such as ECG and EMG was composed of three polymers:
PEDOT:PSS [30,31], WPU [32,33] and EG [34]. PEDOT:PSS is a polymer with high conduc-
tivity and was used as the main active material of the proposed electrode. In addition,
PEDOT:PSS, which has high transmittance in visible light regions and solution process-
ability, has attracted attention in fields such as wearable devices, transparent electrodes
and solar cells. However, PEDOT:PSS film is not suitable for reliable contact with mov-
ing human skin due to its relatively low physical durability and flexibility. The added
WPU provides elasticity and flexibility characteristics to PEDOT:PSS films to minimize
the damage to the electrode due to the movement of the human body. In addition, EG
provides additional conductivity to the PEDOT:PSS films, allowing the WPD electrode to
reliably detect ECG and EMG biopotential signals. The PEI plays the role of the adhesive
layer between the blended polymer electrode solution and the PI substrate. Moreover, the
hydrophobic CYTOP layer coated on the PI substrate protects the WPD electrode from
external liquids. The PI substrate acts as the framework for the WPD electrode and leaves
an additional waterproof effect. A detailed description of the fabrication process of the
waterproof dry electrode is presented in the Section 2.

The position of the WPD electrodes attached to the human body for detecting the
ECG and EMG biopotential signals and the shape of the waveform are shown in the
3D illustration (Figure 2a,b). There were two-electrode and three-electrode systems for
detecting ECG and EMG biopotential signals, respectively. The two-electrode system was
composed of positive and negative electrodes, whereas the three-electrode system added a
reference electrode to set the biopotential standard. It is noted that a blue-wired electrode
indicates positive and negative electrodes, while a yellow electrode indicates a reference
electrode. Figure 2c and d show the front side and back side photography of the fabricated
WPD electrode, respectively. In addition, the WPD electrode with flexible and elastic
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characteristics by the PI substrate is shown (Figure 2e). Figure 2f shows the WPD electrode
was attached to real human skin using a medical sticker to detect the biopotential signals.
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Figure 1. The 3D illustration of the waterproof dry-type PEDOT:PSS (WPD) electrode fabrication
process and chemical structure of constituent materials.

Figure 2g is a block diagram of a real-time monitoring system to obtain ECG and EMG
biopotential signals. The system was divided into two sub-systems: the sensor node and
the host node. In the sensor node, there was a 180 kΩ resistor placed between the WPD
electrode and the amplifier to ensure that the current flow never exceeded 10 µA. The analog
amplifier and filter block conditioned the biosignal acquired from the WPD electrode with
a voltage gain of 60 dB (AD8232, Analog Devices). An instrumentation amplifier initially
amplified the signal from the WPD electrodes and attenuated common-mode signals. An
active filter conditioned the signal with a second-order high-pass and a low-pass active
filter to eliminate unnecessary motion artifacts and high-frequency noise. The active filter
was designed with a passband from 0.34 Hz to 41 Hz and 40.17 Hz to 727 Hz for ECG and
EMG, respectively. A right leg drive circuit was used to further improve the common-mode
rejection. To eliminate powerline noise caused by general consumer electronics, a Twin-T
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notch filter block was implemented. The biosignals were then sampled at 12 bits with a
sampling rate of 7 kSps using the Analog-to-Digital Converter (ADC) embedded in the
Bluetooth low-energy system-on-chips (BLE SoC, nRF52832, Nordic Semiconductor). The
sampled data were collected in a buffer and transmitted from a burst mode to the host node
every 24 ms. This sensor node sub-system was manufactured in a printed circuit board
(PCB) with a size of 13 mm x 30 mm. The wirelessly transmitted data were received by the
host node, which could either be a smartphone or a personal computer, where the data
were displayed in real time by a custom-made software application.
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Figure 2. The ECG and EMG biopotential signal detecting system, and the wireless real-time mon-
itoring system. The 3D illustration of 2-electrode systems and 3-electrode systems for detecting
human ECG and EMG biopotential signals. Blue electrode: positive and negative electrodes, yellow
electrode: reference electrode. (a) The position of WPD electrodes attached to a human chest to detect
the ECG biopotential signals; (b) the position of WPD electrodes attached to a human right leg to
detect the EMG biopotential signals; the photography of the fabricated WPD electrodes; (c) the front
side of the WPD electrodes; (d) the back side of the WPD electrodes; (e) the flexibility of the WPD
electrodes; (f) the WPD electrodes attached to a real human body; (g) the block diagram of a real-time
monitoring system.

SEM measurement was used for the analysis of WPD electrodes (Figure 3a). SEM
images of the WPD electrode layer without PEI and the WPD electrode layer were captured.
The wrinkles were observed on the surfaces of both dry electrodes fabricated using the
drop-casting process. AFM measurement was conducted to analyze the surface properties
of the proposed WPD electrode layer with or without the PEI layer and, additionally,
the presence or absence of CYTOP on the PI substrate was confirmed (Figure 3b). The
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roughness of the PI substrate and the PI substrate on CYTOP was 6.96 nm and 7.13 nm,
respectively. In addition, the roughness of the WPD electrode layer without PEI was 7.45
nm, whereas it increased to 15.44 nm when the PEI layer was added. The surface was
not smooth, due to the two types of WPD electrodes produced via drop-casting. Lastly,
the presence of the PEI layer increased the contact surface area with human skin with
additional roughness, allowing for stable ECG and EMG biopotential signal detection [35].
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Figure 3. The morphological analysis of the WPD electrodes. The SEM surface image of (a) the WPD
electrode layer without PEI and WPD electrode layer; the AFM surface image of (b) the PI substrate,
CYTOP coated PI substrate, WPD electrode layer without PEI and WPD electrode layer.

XPS was performed to shed light on the chemical structure of the WPD electrodes.
Figure 4a shows the S 2p spectra of PEDOT:PSS and WPD electrodes. The PEDOT chain
peak occurred in the range of binding energy of 162 to 166 eV and the PSS chain peak
occurred in the range of binding energy of 166 to 172 eV (Figure 4b) [36,37]. The PEDOT
chain peak intensity of WPD increased more than PEDOT:PSS, which indicated an improve-
ment in conductivity [38]. Sheet resistance measurement was performed to investigate the
conductivity of PEDOT:PSS and WPD electrodes (Supplementary Figure S1). The measured
sheet resistance of PEDOT:PSS and WPD electrodes was equal to 10.67 Ω and 1.158 Ω,
respectively. The sheet resistance of the WPD electrode was improved by EG. The EG
enhanced the conductivity of PEDOT:PSS by removing the insulating PSS chains from
PEDOT:PSS. Figure 4b shows the UPS spectra of the WPD electrode with the optimized
composition ratio. The valence band maximum (VBM) and the cut-off of the WPD electrode
were plotted as 17.21 eV and 3.25 eV, respectively. As a result, the WPD electrode had a
work function of 3.99 eV, which was reduced by 0.85 eV, compared to the work function
of the pure PEDOT:PSS of 4.84 eV (Supplementary Figure S2). The optical bandgaps of
PEDOT:PSS and WPD electrodes were calculated using the Tauc plot method (Supplemen-
tary Figure S3). The optical bandgaps of the WPD electrode and the PEDOT:PSS electrode
were 5.13 eV and 5.12 eV, respectively. The 0.01 eV energy bandgap change between the
PEDOT:PSS electrode and the WPD electrode was negligible. When WPU and EG were
added to PEDOT:PSS to fabricate WPD electrodes, the Fermi level increased by 0.85 eV,
while the energy band was maintained unchanged.
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The contact angle analysis was performed for the hydrophobic characteristics of a
CYTOP-coated PI substrate and the investigation of the surface energy with the WPD
electrode layer. The deionized water (DI water) and formamide were used to measure
the contact angle and surface energy (Figure 5a,b). Figure 5c shows the histogram graph
of the contact angle with deionized water and formamide. When CYTOP was coated on
the PI substrate, the contact angle increased from 87.35◦ to 109.09◦ in DI water and also
increased from 45.73◦ to 93.16◦ in formamide. Additionally, the contact angle characteristics
of the WPD electrode without the PEI layer and the WPD electrode were analyzed. The
contact angle between the WPD electrode without the PEI layer and the WPD electrode
by DI water changed from 46.86◦ to 45.22◦, and the difference of 1.64 degrees was negli-
gible. On the other hand, the contact angle at formamide changed from 24.37◦ to 37.47◦,
and the difference was 13.1◦. Additionally, the surface energy of four types of samples
(PI substrate, CYTOP-coated PI substrate, WPD electrode without PEI layer and WPD
electrode) was analyzed. The surface energy of the PI substrate and the CYTOP-coated
PI substrate was 58.22 mN/m and 14.49 mN/m, respectively. On the other hand, the
surface energy of the WPD electrode without the PEI layer and the WPD electrode was
58.53 mN/m and 52.96 mN/m, respectively. As a result, the PI substrate that prevented
the physical penetration of external liquids and the CYTOP with strong hydrophobicity
prevented the decomposition of the WPD electrode by liquid. [39,40]. To demonstrate the
eco-friendly disposal of the proposed WPD electrodes, a degradability test was performed.
Figure 5e shows photography of the WPD electrode immersed in DI water at 60 ◦C. The
WPD electrode that was ultrasonicated had totally degraded, leaving tiny fragments after
140 min. This shows that PEDOT, WPU and EG composing the WPD electrode all have the
characteristics of being degradable by water, and that degradability proceeds easily with
external stimuli.

Additionally, degradability tests of the WPD electrodes immersed in cold water were
performed (Supplementary Figure S4). The WPD electrodes immersed in cold water (22 ◦C)
were degradable in 600 min, with the exception of small fragments. The degradable rate of
WPD electrodes in cold water was about 460 min slower than in hot water. The observed
result indicates that hot water at 60 ◦C activates the chemical reaction of the WPD electrode,
causing it to degrade quicker [41].
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The ECG and EMG biopotential signals were confirmed using the proposed WPD
electrode. The ECG and EMG biopotential signals were received from the chest and left
leg, respectively. Additionally, the medical sticker was used to immobilize the electrodes
with human skin. We compared it with a commercial AgCl-based electrode to prove the
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superiority of the WPD electrode in the detection of ECG and EMG biopotential signals. The
ECG and EMG biopotential signals were measured using both the three-electrode system
and the two-electrode system (Figure 6a–d). The ECG biopotential signal measured with
the WPD electrodes clearly defined the peaks of the PQRST. The ECG could be identified
by the repetitive P wave, QRS complex and T wave. The P wave and QRS complex were
generated by atrial depolarization and ventricular depolarization, respectively. In addition,
the T wave was caused by the repolarization of the ventricles. [42] Additionally, the EMG
biopotential signals, which represent the movement of human muscle, were defined and
gathered using the miniaturized monitoring system. In addition, we also plotted the PQRST
peak of the ECG waveform measured with the WPD electrodes, compared to a commercial
AgCl-based electrode used to investigate the ability to discriminate the waveform of the
ECG measured (Figure 6e,f). In the three-electrode system, the change in the PQRST
biopotential signal of ECG detected with WPD electrodes averaged 16 mV. In addition,
the biopotential of the T peak, detected with the two-electrode system using the WPD
electrode, was measured to be more than 130 mV higher than the commercial AgCl-based
electrode, which proves that the ECG biopotential signals are measured more clearly with
the WPD electrode. Figure 6f,g show the quantified EMG biopotential signals that plotted
the five waveforms. The EMG biopotential signal change in the three-electrode system was
measured to 10 mV, whereas the two-electrode system was measured to 6 mV. As a result,
the WPD electrode and the commercial AgCl-based electrode show similar capabilities for
detecting ECG and EMG biopotential signals. Note that the voltage readings were based
on the amplification and filtering process of the sensor node.
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Figure 6. The biopotential signals of ECG and EMG with the WPD electrodes and commercial AgCl-
based electrodes. (a) The ECG biopotential signals in 3-electrode system; (b) the ECG biopotential
signals in 2-electrode system; (c) the EMG biopotential signals in 3-electrode system; (d) the EMG
biopotential signals in 2-electrode system; (e) the PQRST peak in 3-electrode system; (f) the PQRST
peak in 2-electrode system; (g) the quantified EMG biopotential signals in 3-electrode system; (h) The
quantified EMG biopotential signals in 2-electrode system.
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Next, we investigated the proposed electrode’s robustness by reusing the same WPD
electrode for 2 weeks. The ECG and EMG biopotential signal measurements were per-
formed utilizing reused WPD electrodes at 1-week intervals (Figure 7a,b). The ECG and
EMG biopotential signals were clearly detected by the reused WPD electrodes. As a result,
the WPD electrode showed superior performance in detecting ECG and EMG biosignals
over two weeks. We also plotted the PQRST peaks of the ECG biopotential signal detected
with the reused WPD electrodes at 1-week intervals (Figure 7c,d). The ECG biopoten-
tial detected by the two-electrode system presented a 101 mV insignificant difference
biopotential at the R peak. On the other hand, in the ECG biopotential signals measured
with the three-electrode system, the peak intensity differed by an average of 402 mV. The
plotted EMG biopotential signal intensity decreased as the number of reuses of the WPD
electrode increased (Figure 7e,f). The EMG averaged biopotential signals measured with
the two-electrode system and the three-electrode system had a difference of 44 mv and
47 mv, respectively. Again, the biopotential readings were obtained from the sensor node
described in Figure 2.
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electrode for ECG biopotential signals; (b) repeatability tests for 2 weeks with the WPD electrode
for EMG biopotential signals; the biopotential signal detected for 2 weeks at intervals of 1 week; (c)
the PQRST peak in 3-electrode system; (d) the PQRST peak in 2-electrode system; (e) the quantified
EMG biopotential signals in 3-electrode system; (f) the quantified EMG biopotential signals in
2-electrode system.

4. Conclusions

In summary, we presented waterproof dry-type PEDOT:PSS (WPD) ECG and EMG
electrodes protected from external liquid using a double layer of a polyimide (PI) substrate
and fluorinated polymer CYTOP. The morphological characteristics and chemical com-
position ratios of WPD electrodes were investigated through XPS, UPS, SEM and AFM
analysis. Additionally, the waterproofing effect of the PI substrate and CYTOP layer was
verified using the contact angle analysis. The WPU and EG improved the flexibility and
additional conductivity characteristics in the proposed WPD electrodes, respectively. The
WPD electrode clearly detected ECG and EMG biopotential signals using the two-electrode
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system and the three-electrode system. In addition, the WPD electrode and the commer-
cial AgCl-based wet electrodes showed similar performances in detecting ECG and EMG
biopotential signals. The proposed WPD electrode verified the robustness of the electrode
by detecting ECG and EMG biopotential signals for 2 weeks. Our study can be applied
to dry biopotential electrodes research regarding the reliable detection of biosignals in an
external humid atmosphere.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14132586/s1, Supplementary Figure S1: Sheet resistance of
PEDOT:PSS electrode and the proposed WPD electrode. Supplementary Figure S2: The UPS analysis
of the PEDOT:PSS. Supplementary Figure S3: Optical bandgap of the PEDOT:PSS electrode and the
proposed WPD electrode shown in the Tauc plot method. Supplementary Figure S4: Photography of
WPD electrode degradable performance over time immersed in cold water.
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