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Abstract: A new approach is proposed for simulating binodal and spinodal curves of phase diagrams
for binary polymer systems. It is shown that the Flory–Huggins theory makes it possible to predict
phase behavior in a wide range of temperatures and concentrations based on limited data on the
components’ solubility. The approbation data of the technique are presented in the example of PS–PB
and PS–PMMA systems, for which generalized phase diagrams are constructed.
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1. Introduction

The construction of phase state diagrams has been and remains a priority task both in
the thermodynamics of polymer solutions and melts and in polymer materials science [1–5].
It is known that the boundary curves, liquidus, and solidus lines are of fundamental
importance for the construction and interpretation of phase state diagrams since they
determine not only the type of phase equilibrium but also the arias of formation of various
phase structures in the temperature-concentration regions.

Thus, the binodal curve in systems with amorphous equilibrium separates the region
of the true solutions from the region of the two-phase state. The region located between
the binodal curve and the spinodal curve makes it possible to identify the position on
the diagram of the region of the metastable and labile solutions. Finally, in the middle
region of the diagram, there are boundary curves framing the region of phase reversal.
The construction of generalized diagrams [6] makes it possible to determine the regions of
heterogeneous fluctuations, the position of critical points, and the regions of glass transition,
viscous flow, and the thermal stability of components. Thus, with a generalized phase
state diagram, it is possible to predict the structural and morphological transformations
that occur under certain conditions of processing (high-temperature regimes with rapid
cooling), the exploitation of materials, and also during the synthesis of copolymers. It
is obvious that to solve some material science problems, it is necessary to expand the
temperature and concentration intervals for plotting state diagrams.

The importance of predicting and constructing state diagrams of polymer–polymer
systems is confirmed by the fact that two independent directions are currently being
developed in this area of the physical chemistry of polymers. The first—theoretical
simulation—concerns the statistical thermodynamics of solutions and polymer blends. These
are the classical Flory–Huggins theory, the new Flory theory, the Sanchez–Lacombe the-
ory, and Prigogine–Paterson theory [1–5], the statistical associating fluid theory (SAFT) [7],
the polymer reference interaction site model (PRISM) [8], and the lattice cluster theory
(LCT) [9]. Recently, the adapted mean field theory [10], the hybrid molecular dynamics-
Monte Carlo method [11], the self-consistent field theory (SCFT) [12], and theoretically
informed Langevin dynamics [13] have been used in diagram simulation. All of these
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theories make it possible to obtain analytical dependences of the free energy of mixing
components on the composition of systems and to determine the position of binodal and
spinodal boundary curves and critical states in the framework of classical thermodynamics.
It is interesting to note that comparative studies of the prediction of the above statistical
theories of binary polymer compatibility have shown that the classical Flory–Huggins
theory has a good ability to predict phase equilibrium in polymer solutions and melts [2].

The second direction is associated with the independent determination of the
Flory–Huggins parameter based on the data of inverse gas chromatography, polymer
solutions, intrinsic viscosity, and sorption [3,14–17]. That is, the prediction of the boundary
curves here is partly based on preliminary experimental data for determining the inter-
action parameter. Extrapolation of the obtained physicochemical characteristics to the
temperature ranges of interest to researchers also implies the calculation of the free energy
of mixing and the subsequent expansion of the investigated range of the components’ com-
patibility. It is obvious that the construction of such diagrams is identical to the prediction
of segments of phase-state diagrams. In this case, the biggest difficulties arise with the
construction of binodal curves due to the uncertainty in estimating the compositions of
coexisting phases using binodal equations.

In this work, we chose the second approach, but we estimated the interaction param-
eters not by third-party methods, but from the data on the solubility of the components
in a limited range. At the same time, we propose a more efficient and convenient method
for numerically determining the compositions of coexisting phases and constructing the
position of binodal and spinodal curves in a wide range of temperatures and molecular
weights of binary system components. This approach makes it possible to construct gener-
alized phase diagrams for different types of polymer–polymer systems, which has been
tested on a number of examples.

2. Theoretical Methodology

The Flory–Huggins theory of polymer solutions [1–5] is based on the simplest lat-
tice model of an athermal solution, which contains assumptions about the volumes of
macromolecular chain segments and their relative mobility, which is associated with the
combinatorial entropy of all possible permutations within such a lattice.

Traditionally, in the framework of the Flory–Huggins theory, the free energy of mixing
two polymers is represented as follows:

∆G = RT
V
Vr

[
ϕ1

r1
lnϕ1 +

ϕ2

r2
lnϕ2 + χ12 ϕ1 ϕ2

]
(1)

where R is the universal gas constant, T is the temperature, V is the polymer mixing volume,
Vr is the reference volume, usually taken as the molar volume of a repeating unit in the
system (in calculations, a reference volume of 100 cm3/mol is traditionally used [2]), ϕ1
and ϕ2 are the volume fractions of the first and second components in the system, r1 and r2
are their polymerization degrees, χ12 is the Flory–Huggins interaction parameter.

Expressions for chemical potentials are as follows:

∆µ1 = RT
[

lnϕ1
r1

+
(

1
r1
− 1

r2

)
ϕ2 + χ12 ϕ2

2

]
∆µ2 = RT

[
lnϕ2

r2
+
(

1
r2
− 1

r1

)
ϕ1 + χ21 ϕ2

1

] (2)

The conditions at the critical point are as follows:

ϕ1,cr =

√
r2√

r1 +
√

r2
ϕ2,cr =

√
r1√

r1 +
√

r2
(3)

χcr =
1
2

(
1√
r1

+
1√
r2

)2
(4)
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Spinodal concentrations are defined as the points at which the second derivative of
the free energy of mixing with respect to concentration is zero. The spinodal equation takes
the form:

1
r1 ϕ1,s

+
1

r2 ϕ2,s
− 2χ = 0 (5)

where χ is the averaged value of the pair interaction parameter.
The binodal equations are calculated from the condition that the chemical potentials

of both polymers are equal in two coexisting phases:

ln(ϕ′1)
r1

+
(

1
r1
− 1

r2

)
ϕ′2 + χ12(ϕ′2)

2 =
ln
(

ϕ
′′
1

)
r1

+
(

1
r1
− 1

r2

)
ϕ
′′
2 + χ12

(
ϕ
′′
2
)2

ln(ϕ′2)
r2

+
(

1
r2
− 1

r1
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ϕ′1 + χ21

(
ϕ′1
)2
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ln
(

ϕ
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2

)
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+
(

1
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− 1
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ϕ
′′
1 + χ21

(
ϕ
′′
1
)2

(6)

where ′ and ” refer to different coexisting phases.
For thermodynamic analysis of the obtained experimental data on binodal curves (or

their fragments), the presented equations lead to the following expressions for the pair
interaction parameter:

χ12 =
ln
(

ϕ
′′
1
)
− ln

(
ϕ′1
)

r1

((
ϕ′2
)2 −

(
ϕ
′′
2
)2
) −( 1

r1
− 1

r2

)
1

ϕ′2 + ϕ
′′
2

(7)

χ21 =
ln
(

ϕ
′′
2
)
− ln(ϕ′2)

r2

((
ϕ′1
)2 −

(
ϕ
′′
1
)2
) −( 1

r2
− 1

r1

)
1

ϕ′1 + ϕ
′′
1

(8)

The averaged value of the pair interaction parameter, assuming the absence of its
concentration dependence, can be represented as follows:

χ =

ln
(

ϕ
′′
1 /ϕ′1

)
r1

−
ln
(

ϕ
′′
2 /ϕ′2

)
r2

2
(

ϕ′2 − ϕ
′′
2
) (9)

Figure 1 shows a scheme of the methodology for the thermodynamic analysis of binary
polymer systems and the construction of generalized phase diagrams. At the initial stage,
fragments of binodal curves are plotted based on the experimentally obtained data on the
solubility of polymers in each other (Figure 1a). Then, according to the compositions of the
coexisting phases ϕ′1 and ϕ

′′
1 at different temperatures T, using Equation (9), the numerical

values of the pair interaction parameter χ are calculated, and its temperature dependence
is plotted (Figure 1b). Extrapolation of this dependence to χcr makes it possible to obtain
information about the critical solution temperature of the components (in this case, the
upper critical solution temperature — UCST). In coordinates χ = A + B· 1T it is possible to
identify χ data in a wide range of temperatures at T ≥ Tex, T ≤ Tex, T ≥ USCT. Based on
these data, using Equations (5) and (6), the boundary spinodal (dashed line) and binodal
(solid line) curves are calculated, and a generalized phase diagram is constructed (Figure 1c)
in the selected temperature range, which traditionally denotes the region of homogeneous
states (I), the region of labile structures (II), and the region of metastable states (III).

We should consider in more detail the procedure for determining data on the coexisting
phase compositions. It is known that the concentration dependence of free energy for
a polymer–polymer system at a temperature T ≤ UCST, corresponding to the limited
mixing of components, is a complex curve with two minima and two inflection points
(Figure 2a). By drawing a common tangent to the dependence ∆G− ϕ, corresponding to
the equality of chemical potentials, it can determine the concentrations at the points of the
curves contact (points 2) about thus assess the information about the coexisting phases
compositions for the binodal curve (ϕ′b and ϕ

′′
b ), and in inflection points (points 3) receive

information for constructing a spinodal curve (ϕ′c and ϕ
′′
c ). Numerical determination of
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binodal and spinodal concentrations of more or less symmetric concentration dependences
of the free mixing energy does not cause any difficulties [18]. This situation is realized
in cases where the molecular weights of the components do not differ much. When
analyzing a similar dependence for a binary system with significantly different molecular
weights of components—for example, a polymer solution, a polymer–plasticizer mixture, a
polymer–oligomer system, and even a high-molecular polymer–low-molecular polymer
blend—significant difficulties arise in the standard approach. It can be seen (Figure 2b)
that in this case the dependence ∆Gm(ϕ) becomes sharply asymmetric, one of the binodal
concentrations shifts to the region of small values, the curve flattens out in this place, which
greatly complicates the numerical determination of the phase composition. In this case,
the direct mathematical solution of the system of Equation (6) leads to a multiplicity of
solutions that are difficult to automatically limit.
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Figure 2. Concentration dependence of the free energy of mixing for symmetric (a) and asymmetric
(b) cases. Common tangent (1), binodal (2), and spinodal (3) concentrations.

Analyzing the principle of equality of chemical potentials in different phases and
its interpretation as a common tangent to the dependence ∆Gm(ϕ), we can assume that
there are the same values at two points of the concentration dependences of chemical
potentials. This means that the dependence ∆µ2(∆µ1) must have a self-intersection point
(two points of the dependence must have the same value). For a single-phase system, this
dependence has no self-intersection points, and for a two-phase system, it has a single point
corresponding to the equality of chemical potentials in different phases, i.e., thermodynamic
condition of phase equilibrium. Figure 3 shows such a schematic concentration dependence
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of chemical potentials where the values of ∆µ1 and ∆µ2 correspond to the same value of
the concentration of the components. Therefore, the enumeration of concentrations in the
range from 0 to 1 gives a set of pairs of chemical potentials for this dependence. The point
of self-intersection (1) determines, in this case, the concentrations of the binodal curve.
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Accordingly, when constructing a generalized phase diagram, the spinodal Equation (5)
can be used to determine the composition of the coexisting phases of the spinodal curve.
The transformation of this equation allows us to express its roots in the following form:

ϕ1,s =
−(r1 − r2 − 2χr1r2)±

√
(r1 − r2 − 2χr1r2)

2 − 4·2χr1r2·r2

2·2χr1r2
(10)

To find the binodal points, we propose using the following mathematical algorithm:

- Using the iteration method, it can be calculated as a set of µ1 and µ2 values for each
temperature by mean of enumeration of successive concentrations ϕ1 in the range of 0
to 1, with a step of 0.01;

- build the dependence of µ2 on µ1, where each point corresponds to a certain set of
concentrations (Figure 3);

- determine the concentration range in which the self-intersection point of such depen-
dence is localized; then, decreasing the iteration step in concentration by one-tenth,
we successively narrow the interval of the self-intersection point ten times to establish
the self-intersection point with an accuracy of ϕ1 of the order of 0.001 and accept the
concentrations for chemical potentials at this point as ϕ′1 and ϕ

′′
1 , corresponding to the

compositions of coexisting phases binodal curve;
- Determine the position of the critical point on the phase diagram based on the cal-

culated value of the concentration at the critical point according to Equation (3) and
the critical temperature according to the point of intersection of the temperature
dependence χ and the calculated value χcr according to Equation (4) (as shown in
Figure 1b).

3. Experiment

The following monodisperse polymers were used as objects for approbation of the
methodology: polystyrene (PS) with an average molecular weight of Mw = 37.8 kDa and
Mw = 0.8 kDa (PS-1 and PS-2, respectively) manufactured by Waters Associates, polybu-
tadiene (PB) with Mw = 61.6 kDa (Aldrich), and polymethyl methacrylate (PMMA) with
Mw = 89 kDa (Glass).

The solubility data of the components were obtained using the optical interferometry
method [19]. Pressed polymer films about 5 × 10 mm in size were placed between two
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optically transparent glasses, on the inside of which a translucent metal layer (nichrome)
was deposited by thermal vacuum deposition. Glasses with polymers between them were
clamped in a temperature-controlled cell (±1 K) at a temperature slightly above the glass
transition (melting) temperature of polymers to a variable thickness of 100–120 µm, fixed
by special metal wedges. The polymers were in optical contact with the inner surfaces of
the glasses. A digital camera through a microscope with standard magnifications fixed the
interference from a light source (helium-neon laser with a wavelength of 632 nm), passing
perpendicular to the film contact plane and forming a concentration profile of polymer
interaction at the contact boundary. The measurements were carried out in the mode of a
stepwise increase and decrease in temperature from 400 to 540 K. The temperature step
was 20–40 K with holding at each step for at least 30–60 min, which makes it possible
to obtain equilibrium data. The reproducibility of data in heating–cooling cycles allows
us to speak about the equilibrium values of the compositions of coexisting phases at
each temperature. This technique makes it possible to simultaneously observe the entire
concentration range at the contact boundary of the two components, and the error in
determining the compositions of the coexisting phases at each temperature is about 5%.
The procedure for conducting the experiment and processing the interferograms did not
differ from the traditional procedure [20–23].

4. Results and Discussion

To test the calculations using the proposed method, experimental results on solubility
in the PS–PB and PS–PMMA systems were used.

Figure 4 shows fragments of binodal curves for the PB–PS-1 and PMMA–PS-2 systems.
The molecular weights of the first pair do not differ much (Mw PB/Mw PS-1 = 1.6), but in
the second case, they differ significantly (Mw PMMA/Mw PS-2 = 111.3). Thus, we tried to
simulate two different cases for polymer–polymer systems according to the scheme in
Figure 2. The data for both systems are characterized by limited solubility, in the range
from 400 to 530 K for the PB–PS-1 system and from 460 to 520 K for the PMMA–PS-2 system.
For both pairs, the experimental range of values was limited by the glass transition/melting
temperatures from below and the thermal oxidative degradation from above. Nevertheless,
it can be said that the solubility of the components increases with temperature growth, and
it should expect the appearance of an upper critical solution temperature (UCST) in the
higher temperatures’ region.
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According to the method proposed above, using Equation (9), pair interaction pa-
rameters were calculated, and their temperature dependences were plotted (Figure 5). It
can be seen that both systems demonstrate a linear change χ in the proposed coordinates,
and interpolation of such a dependence is possible in the form χ = 3.4748·(1/T)− 0.0022
for the PB–PS-1 system and χ = 142.78·(1/T)− 0.1608 for the PMMA–PS-2 system. Such
interpolation allows us to extrapolate data to a wide temperature range and obtain, firstly, in-
formation about the critical temperature from the intersection of the dependence χ− (1/T)
and the calculated value χcr (as shown schematically in Figure 1b). In accordance with
this, the UCST for the PB–PS-1 system is 628 K, and for the PMMA–PS-2 system, it is 598 K.
The calculated values for the concentrations at the critical point ϕPS, cr by Equation (3)
can be given as 0.64 and 0.91 for each of the systems, respectively. Second, extrapolation
of the temperature dependence of the interaction parameter enables us to use data on
the χ − (1/T) ratio to determine the corresponding compositions of coexisting phases
with any temperature step. The phase equilibrium data for the PMMA-PS system and
the temperature dependence of the interaction parameter are in good agreement with the
data obtained by the turbidity point method for this system [24,25], taking into account the
difference in the PMMA molecular weight.
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PB–PS-1 (a) and PMMA–PS-2 (b) systems.

Figure 6 shows the calculated data on the free energy of mixing and chemical potentials
in the studied systems. It can be seen that the PB–PS-1 system is characterized by a
more symmetrical concentration dependence for ∆G (Figure 6a). The extrema of the
function is explicitly defined both for the case ϕPS → 0 and for the case ϕPS → 1 . For the
PMMA–PS-2 system (Figure 6c) for ϕPS ∼ 0.2, the first extremum of such a dependence
is uniquely determined, and the localization of the second extremum at ϕPS → 1 cannot
be determined. When passing to the concentration dependences of chemical potentials
(Figure 6b,d), according to the proposed method, in both cases, we can identify the self-
intersection point and determine the corresponding compositions of the coexisting phases
for the binodal curves.

For both systems, the concentration dependences of the iteration method were used to
obtain data on the coexisting phase compositions for the binodal curves, and the coexisting
phase compositions of the spinodal curves were calculated using Equation (10). This made
it possible to construct generalized phase diagrams for both the PB–PS-1 and PMMA–PS-2
systems (Figures 7a and 7b, respectively). In both cases, the diagrams are characterized by
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UCST (gray dots), the position of which is localized in the region of high temperatures above
the destruction temperatures of the components. However, compatibility information in
this area, as well as in the area below the glass transition, is extremely important since blends
in manufacturing processes can be obtained over a wide temperature range. In accordance
with the difference in Mw, the diagram for the PB–PS-1 system is more symmetrical than
for the PMMA–PS-2 system. The calculated binodal (solid lines 1) and spinodal (dashed
lines 2) curves correlate well with the initial experimental data on solubility (black dots)
and accurately determine the position of homogeneous (I) and heterogeneous (II) regions,
as well as the regions of metastable states (III) on the temperature-concentration field of
the diagram. The dot-dashed line (3) shows the change in Alekseev’s diameter (rectilinear
diameter rule) when approaching the UCST. In both cases, this dependence is curvilinear,
and for the PMMA–PS-1 system, this is more pronounced. At the same time, for the
PMMA–PS-2 system, the right part of the diagram coincides to a lesser extent with the
calculated values according to the binodal curve but coincides with the spinodal one. This
can be explained by the error in the experimental determination of the solubility of the
components in this region of the interferograms.
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It should also be noted that such an approach makes it possible to obtain generalized
phase diagrams not only for systems with UCST but also for systems with a lower critical
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solution temperature (LCST). The technique was tested by us earlier on the classical system
polystyrene–poly(vinyl methyl ether) (PVME) [22], which is characterized by the presence
of LCST in the region of 370–470 K, depending on the PS molecular weight. In addition,
the universality and simplicity of the mathematical apparatus of the Flory–Huggins theory
and the presented approach make it possible to solve complex thermodynamic problems of
simulation phase equilibrium diagrams in the presence of two critical solution temperatures.
For example, for the PVME–water system [19], a generalized diagram was constructed
with two LCST in the region of 290–310 K, and it was shown that part of this diagram
represents the equilibrium between PVME and its complex with water, and the other part
of the diagram is the equilibrium between PVME and water after the decomposition of the
complex at an increase in temperature.

5. Conclusions

A method for calculating the coexisting phase compositions of binodal curves through
the concentration dependences of chemical potentials in the framework of the Flory–Huggins
theory was also proposed, using the example of the PS–PB and PS–PMMA systems. This
made it possible to approach the construction of generalized phase-state diagrams with
higher accuracy in cases where the critical point lies in the region of concentrated solutions
due to a large difference in the molecular weights of the components. According to the
proposed approach, there is no difficulty in determining the minima on the concentration
dependence of the free energy of mixing since it is possible to fix the concentrations when
the chemical potentials are equal.

The versatility and simplicity of the approach makes It possible to construct gen-
eralized phase diagrams containing binodal and spinodal curves for polymer–solvent,
polymer–oligomer, polymer–polymer, and polymer–copolymer interactions characterized
by both UCST and LCST.
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