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Abstract: Herein, xylan-g-PMMA was synthesized by grafting poly(methyl methacrylate) (PMMA)
onto xylan and characterized by FT-IR and HSQC NMR spectroscopies, and the xylan-g-PMMA/TiO2

solution was used to electrospun nanofibers at the voltage of 15 Kv, which was the first time employing
xylan to electrospun nanofibers. Moreover, the electrospinning operating parameters were optimized
by assessing the electrospinning process and the morphology of electrospun fibers, as follows: the
mixed solvent of DMF and chloroform in a volume ratio of 5:1, an anhydroxylose unit (AXU)/MMA
molar ratio lower than 1:2, the flow speed of 0.00565–0.02260 mL/min, and a receiving distance of 10–
15 cm. Diameters of the electrospun fibers increased with increasing DMF content in the used solvent
mixture, MMA dosage, and receiving distance. TiO2 nanoparticles were successfully dispersed in
electrospun xylan-g-PMMA nanofibers and characterized by scanning electron microscopy, energy
dispersive X-ray diffraction spectrum, and X-ray photoelectron spectroscopy, and their application
for methylene blue (MB) degradation presented above 80% photocatalytic efficiency, showing the
good potential in water treatment.

Keywords: xylan; PMMA; electrospinning; TiO2; photocatalytic degradation

1. Introduction

Electrospinning, short for electrostatic spinning, is an old fiber fabrication technique,
but now it serves as a convenient and facile method for the preparation of multilevel
functional nanometer-scale polymer fibers [1,2], which was observed in 1897 by Rayleigh,
studied in detail by Zeleny on electro-spraying in 1914 [3], patented by Formhals in 1934 [4],
and finally made tremendous progress in theory and practice due to the efforts of Tay-
lor [5]. Electrospinning, an electrohydrodynamic procedure, is typically considered to be
the process of liquid droplets being electrified to generate jets, followed by stretching and
elongating to yield fibers [6]. In the electrostatic spinning process, the polymer solution
or melt forms a jet in a strong electric field, and the droplet at the tip of the needle will
transform from a spherical shape to a conical shape, known as a Taylor cone, which will
extend from the tip of the cone to produce a fibrous filament. In this way, polymer fila-
ments of nanometer diameter can be obtained [7–9]. Over the past few years, electrostatic
spinning has been extensively adopted for the fabrication of various nanofiber materi-
als, out of which the organic polymers in solution or melt form are the most commonly
used materials [10]. A wide range of synthetic polymers (polyoxyethylene [11], polylactic
acid [12,13], polyacrylonitrile [14], polyamide [15], polycaprolactone [16], polyvinyl pyrroli-
done [17], polyvinylidene difluoride [18], polyethersulfone [19]) and natural polymers
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(collagen [20], chitosan [21], cellulose [22,23], etc.), or a blend of both [11,24], have been ap-
plied in electrospinning to prepare nanofibers, as they are soluble or do not degrade at their
melting points [1,15]. Nevertheless, compared to synthetic polymers, natural polymers
present advantages such as being biodegradable, safe, non-toxic, excellent biocompatibility,
economical, and easily available [10,25–28].

In the aspect of abundant and renewable plant resources, hemicellulose is only less
than cellulose in percentage composition and is defined as the group of heteroglycans
consisting of xylose, mannose, arabinose, galactose, glucose, and 4-O-methyl-D-glucuronic
acid residues, which were not widely applied owing to their complex chemical structure
and low molecular weight [29–32]. Xylan hemicellulose is extracted from wheat straw,
which is soluble in water and composes 53.58–68.34% of hemicellulose material [33–35].
Prevalent studies showed that xylan is composed of a backbone of β-(1→4)-linked hy-
droxylase units, where the C-2 and C-3 positions are linked with hydroxyl groups or
their derivates [33,36]. Due to its newly certified surface-active, bioactive, antimicrobial,
biocompatible, and oxygen barrier properties [37,38], considerable interest has been fo-
cused on xylan in applications of sewage treatment [39], food packaging [40,41], drug
delivery [35,42], and tissue engineering [36,43]. In addition, many organic polymers used
in electrospinning have been reported in the past, but there are few reports about xylan
electrospinning. Therefore, employing xylan to prepare novel nanofiber materials that com-
bine the properties of xylan itself with the advantages of nanofibers by the electrospinning
method is a worthy research direction.

Diameters of electrospun fibers range from 100 nm to 1 µm, which means electro-
spun fiber mats provide a huge specific surface area with high porosity. Furthermore, the
microscopic fine structure of the electrospun fibers is controllable [44,45]. Due to those ad-
vantages, electrospun fibers have potential in catalysis [46,47], filtration membrane [48,49],
drug delivery [50,51], photocatalysis [52], antibacterial [53], and other applications [54,55].
In recent years, numerous methods have been reported to increase the specific surface
area of catalysts for enhancing the efficiency of catalytic reactions [56,57]. A straightfor-
ward method of increasing the surface area is to make the catalyst into a nanometer scale.
However, this will cause enormous wastage when those nanometer-scale materials are
in use due to their difficulty in separating nanometer-scale catalysts from the remaining
raw materials and products. A further improvement is loading the catalysts on a porous
and hard substrate, which generally is a kind of adsorbing material, such as glasses or
ceramics. However, this would decrease the reactive sites, and those inorganic substrates
always have some inevitable surficial defects, and the interaction between the catalyst
and the substrate is physical and weak. To minimize these negative effects and to ex-
pand the available catalytic material resources, nanoscale organic polymer electrospun
fibers can be promising candidates for catalysts or their substrates attributed to their fine
microscopic nature, huge specific surface area, high porosity, and convenience in prepa-
ration [58,59]. Therefore, compounding nanofibers with catalysts is a promising idea to
prepare efficient photocatalysts.

In numerous photocatalysts, titanium dioxide (TiO2), due to its excellent chemical
stability, low cost, non-toxicity, safety, and efficient photocatalytic activity, is used exten-
sively in energy and environmental areas [60–64], such as hydrogen production from
decomposing water [65–67], pollutant decomposition in water [68,69], and carbon diox-
ide reduction [70–72]. The photocatalytic properties of TiO2 depend on the crystalline
structure, which modifies its bandgap. In fact, there are three polymorphs: anatase, rutile,
and brookite [73,74]. TiO2 is one of the most important photocatalytic materials because
it is a wide-bandgap semiconductor material (~3.2 eV) suitable only to absorb UV light,
and hence photogenerated charge carriers, electrons in the conduction band, and holes
in the valance band [63,64]. The electrons are of high reducibility, which can deoxidize
the substance absorbed on the surface of TiO2, while the holes are of high oxidizability,
which can oxidize the absorbed substance by capturing its electrons. When it is applied in
photocatalytic degradation, the holes of TiO2 oxidize the absorbed water on the surface,
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producing hydroxide free radicals (•OH), and the electrons of TiO2 react with oxygen-
producing superoxide free radicals (•O2− and •OOH), which can all violently oxidize
adsorbed pollution on the surface of TiO2 [75–77]. Despite the considerable advances that
have been achieved in TiO2 in the field of photocatalysis, many problems remain, which
presents some attractive challenges. One of the issues that cannot be ignored is that the
normal usages of TiO2 include powder, coating on the membrane surface, or casting into an
alloy block, which all decrease the actual catalytic efficiency of TiO2 and are uneconomical
for the high cost of separating nanometer-scale catalysts from the remaining raw materials
and products. However, loading TiO2 on electrospun fibers can solve those problems.

In this study, PMMA was grafted on biopolymer xylan to electrospun nanofibers for
the first time. The chemical structural features of the synthesized products were proven
by FT-IR and NMR analyses. The factors, including the molar ratio of raw materials,
solvent, flow speed, and receiving distance, affected the electrospinning process, and
the prepared nanofibers were studied by assessing the operability of the process and
the SEM, EDX, and XPS analyses of the electrospun fibers. Nano-TiO2-doped xylan-g-
PMMA electrospun nanofibers were also obtained, and their photocatalytic activity for MB
degradation was measured.

2. Materials and Methods
2.1. Materials and Chemicals

Xylan used in this study was isolated from wheat straw by the alkaline peroxide
method [32], which has a weight-average molecular weight of 18,350 g mol−1. The isolated
xylan was purified with 75% ethanol-water solution and then dried at 60 ◦C for 24 h in
a vacuum oven. N, N-Dimethylformamide (DMF) and MMA were purchased from J&K
Scientific Co., Ltd. in Beijing, China and ammonium persulfate ((NH4)2S2O4) and sodium
sulfite (Na2SO3) were purchased from Tianjin Hongyan Chemical Reagent Factory in China.
TiO2 nanoparticles of 30 nm were supplied by ST-NANO SCIENCE & TECHNOLOGY Co.,
Ltd., Shanghai, China. All chemical reagents were of analytical grade.

2.2. Synthesis of Xylan-g-PMMA

The xylan-g-PMMA were synthesized from xylan and MMA by using ammonium
persulfate ((NH4)2S2O4) and sodium sulfite (Na2SO3) as a catalytic system. Xylan (2000 mg)
was first dissolved in deionized water (40 mL) at room temperature, and subsequently,
DMF (40 mL) was added. Then, the mixture was placed in a rotary evaporator to remove
the deionized water at 50 ◦C. After adding lithium chloride (400 mg), it was stirred to
acquire a homogeneous solution. For the synthesis of xylan-g-PMMA, the xylan solution
was kept in a 50 ◦C water bath, in which (NH4)2S2O4 (50 mg) and Na2SO3 (50 mg) were
added, stirring for 5 min. MMA was added to the mixture at different AXU/MMA molar
ratios of 1:2, 1:4, 1:6, and 0:10 and stirred for 6 h at 50 ◦C. At the end of the reaction, the
mixture was poured slowly into excess ethanol and filtered. This was followed by drying
the product in vacuo for 12 h to obtain a solid.

2.3. Viscosity Measurement and Structural Characterizations

Xylan-g-PMMA (500 mg) was mixed with different ratios of xylan: MMA was dis-
solved in a mixture of DMF (5 mL) and chloroform (1 mL) at room temperature, respectively.
Shear viscosity (η) values for the xylan-g-PMMA solutions were obtained from an NDJ-
79A rotational viscometer (Changji Geological Instrument Co., Ltd., Shanghai, China) at
room temperature.

FT-IR spectra of the xylan and xylan-g-PMMA were recorded by a Nicolet 510 spec-
trophotometer (Thermo Scientifific, Waltham, MA, USA) in the 4000–400 cm−1 region.
1H, 13C heteronuclear single-quantum coherence (HSQC) NMR spectra were recorded by
a Bruker AVANCE spectrophotometer (400 MHz), and 50 mg of dried xylan-g-PMMA
with AXU/MMA at a molar ratio of 1:4 was dissolved in 0.5 mL of dimethyl sulfoxide-d6
(DMSO-d6) at 40 ◦C and recorded at room temperature. All chemical shifts were relative to
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the resonance of tetramethylsilane (TMS, δ = 0). Electrospun fibers’ images were obtained
by using a VEGA 3 LMH SEM microscope (TESCAN, Brno, Czech Republic) at 10 kV after
being transferred to an SEM stud and coated with gold.

2.4. Electrospinning

Electrospun fibers were fabricated by a 500 mg xylan-g-PMMA solution using an
SS-2534H electrospinning device (Ucalery, Co., Ltd., Beijing, China) at 15 kV under room
temperature and 20% humidity. Various xylan-g-PMMA solutions were placed in a 5 mL
syringe with a metal needle (0.81 mm × 0.51 mm), respectively. Electrospun fibers were
collected on aluminum foil.

2.5. The Preparation of Electrospun Xylan-g-PMMA/TiO2 Fibers

TiO2 nanoparticles were added to the solutions of xylan-g-PMMA with different mass
ratios of 0%, 10%, and 30%. To reduce the loss of TiO2 loaded on the electrospun fibers in the
further application, triethoxyvinylsilane was added into the spun liquid in the mass ratio
of 62%, to TiO2. The well-dispersed mixtures were electrospun at the optimal condition
for 30 min according to Section 2.4. The electrospun fibers were obtained on aluminum
foil and characterized by the VEGA 3 LMH SEM microscope and INCA X-ACT energy
dispersive spectroscopy (Oxford, UK).

2.6. Photocatalytic Degradation Property of Electrospun Xylan-g-PMMA/TiO2 Fibers

MB aqueous solutions of 0.1, 0.2, 0.3, 0.4, and 0.5 mg/L were prepared, and their
absorbance values were measured by an ultraviolet spectrophotometer (752B, Tianjin
Precise Instrument Co., Ltd., Tianjin, China) at 665 nm. The standard curve was obtained
by linear-fitting the values, A = 0.094c + 0.0402, and the linear correlation coefficient
was 0.99759.

Then, 20 mg/L of MB aqueous solution was used for photocatalytic degradation. The
electrospun xylan-g-PMMA/TiO2 fibers collected on aluminum foil were cut into the mats
of 6 × 2.5 cm2, then put into 30 mL of MB aqueous solution under the irradiation of 125 W
ultraviolet light (365–400 nm; Ausbond, China) with a distance of 5 cm between the light
and the surface of the solutions. The absorbance values of the MB aqueous solutions were
detected at 665 nm every 30 min by using the ultraviolet spectrophotometer. The MB
photocatalytic degradation rate (DR) was calculated by the equation of DR = (c0 − c)/c0,
where c0 stands for the initial concentration of the MB aqueous solution.

3. Results
3.1. FT-IR Analysis

Due to the vibration or rotation of different functional groups and chemical bonds,
they absorb infrared light at different wavelengths. Accordingly, FT-IR can be used to
determine which functional groups or chemical bonds are present or changed in a sample,
and for qualitative, quantitative, and reaction process studies of substances [78,79]. To
further understand the chemical bond and group changes of xylan and xylan-G-PMMA,
the samples were analyzed by FT-IR. The FT-IR spectra of xylan and xylan-g-PMMA (the
AXU/MMA molar ratio is 1:4) are shown in Figure 1. The infrared spectrum of xylan
polymer displays a broad absorption band at 3419 cm−1 that is attributed to OH stretch-
ing associated with polar groups linking through intra- and inter-molecular hydrogen
bonding [80]. The absorptions around 2921 and 1428 cm−1 correspond to C-H stretching
and bending vibration of CH2 in the molecule. The absorption at 1637 cm−1 owes to the
absorbed water in the sample. The absorption at 1117 cm−1 arises from the stretching vibra-
tion of C-C in the xylan polymer, and the absorption at 1041 cm−1 results from the bending
vibration of C-OH [81]. These main characteristic absorptions were also observed in the
infrared spectrum of the xylan-g-PMMA. Particularly, the absorption peak at 1729 cm−1

was typically observed in the xylan-g-PMMA spectrum, which is associated with C=O
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stretching of the methoxycarbonyl group [82,83]. All these results indicated the successful
graft copolymerization of xylan and MMA.

Polymers 2022, 14, 2489 5 of 16 
 

 

infrared spectrum of the xylan-g-PMMA. Particularly, the absorption peak at 1729 cm−1 
was typically observed in the xylan-g-PMMA spectrum, which is associated with C=O 
stretching of the methoxycarbonyl group [82,83]. All these results indicated the successful 
graft copolymerization of xylan and MMA. 

4000 3500 3000 2500 2000 1500 1000 500

1117

Tr
an

sm
itt

an
ce

Wavelength (cm_1)

3416

1637

1729 1110
1638

3414
2921

1428

1041

1438

2955

1048

xylan

xylan-g-PMMA

 
Figure 1. FT-IR spectra of xylan and xylan-g-PMMA. 

3.2. NMR Analysis 
Figure 2 presents the 1H-13C HSQC NMR spectrum of the xylan-g-PMMA (the 

AXU/MMA molar ratio is 1:4), and the vertical axis (f1) denotes 13C NMR chemical shifts 
(δC) while the horizontal axis (f2) denotes 1H NMR chemical shifts (δH). As marked in 
Figure 2, the attributions of those signals were: (δC,δH) (100.94, 4.20): (C1, H); (74.91, 3.44): 
(C2, H); (73.40, 3.19): (C3, H); (71.87, 2.97): (C4, H); (62.58, 3.84/3.19): (C5, Ha/Hb); (45.59, 
2.50): (C6, H2); (15.34, 0.68): (C8, H3); (61.07, 3.41): (C10, H3) [33,84,85]. The strong signals 
at (39.52, 2.56) ppm and (51.00, 3.53) ppm were derived from the solvent DMSO and the 
absorbed water in the sample, respectively. No protons connected with C7 and C9 re-
sulted in no signals shown in the 2D spectrum in Figure 2. The chemical shifts were rec-
orded at 44.32 and 177.70 ppm in the 13C NMR spectrum, corresponding to C6 and C9, 
respectively. These typical signals detected in the HSQC NMR spectrum demonstrated 
the targeted synthesis of xylan-g-PMMA. 

Figure 1. FT-IR spectra of xylan and xylan-g-PMMA.

3.2. NMR Analysis

Figure 2 presents the 1H-13C HSQC NMR spectrum of the xylan-g-PMMA (the
AXU/MMA molar ratio is 1:4), and the vertical axis (f1) denotes 13C NMR chemical
shifts (δC) while the horizontal axis (f2) denotes 1H NMR chemical shifts (δH). As marked
in Figure 2, the attributions of those signals were: (δC,δH) (100.94, 4.20): (C1, H); (74.91,
3.44): (C2, H); (73.40, 3.19): (C3, H); (71.87, 2.97): (C4, H); (62.58, 3.84/3.19): (C5, Ha/Hb);
(45.59, 2.50): (C6, H2); (15.34, 0.68): (C8, H3); (61.07, 3.41): (C10, H3) [33,84,85]. The strong
signals at (39.52, 2.56) ppm and (51.00, 3.53) ppm were derived from the solvent DMSO
and the absorbed water in the sample, respectively. No protons connected with C7 and
C9 resulted in no signals shown in the 2D spectrum in Figure 2. The chemical shifts were
recorded at 44.32 and 177.70 ppm in the 13C NMR spectrum, corresponding to C6 and C9,
respectively. These typical signals detected in the HSQC NMR spectrum demonstrated the
targeted synthesis of xylan-g-PMMA.

3.3. Polymer Solution Viscosity

Various xylan-g-PMMA solutions with AXU/MMA molar ratios of 1:2, 1:4, 1:6, and
0:10 were prepared in the mixed solvent of DMF and chloroform, with the weight concen-
tration of 7.42%. The viscosity data of the solutions at room temperature are shown in
Figure 3. It illustrates that, when increasing MMA is added to the polymerization reaction,
the solutions would become stickier. As the viscosity of a polymer (solution) has a strong
positive correlation with its molecular weight, it can be concluded that the increase of
added MMA content in the reaction contributed to the increase of the molecular weight of
the products.
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3.4. Effect of Solvents on Electrospinning

The solvent is essential to solution electrospinning. As stated in the Introduction
Section, the solvent should be equipped with appropriate volatility, with the boiling point
in the range of 70 to 150 ◦C, in a normal experimental situation without any other remedies.
Acetone had been tried in this study, which led to the interruption of the process since
the needle of the syringe was jammed by the solidified copolymer. As a result of its
good volatility, acetone in the flow evaporated too fast to keep enough fluidity in the
flow before it was sprayed. DMF had been attempted as well because the xylan-g-PMMA
could dissolve in it well. Instead of individual fibers, there were only some copolymer
nets obtained, as shown in Figure 4a. This may be due to two reasons: the DMF solvent
evaporated too slow to obtain the fibers with enough solidity and they became aggregated,
and the large surface area of the fiber mats resulted in the excellent adsorption capacity
of the solvent vaporized around the surface of the fiber mats, which made it possible for
the redissolution of the fibers before the solvent was exhausted from the relatively isolated
experimental equipment.
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of DMF + 2 mL of acetone, (c) 5 mL of DMF + 1 mL of acetone, (d) 5 mL of DMF + 1 mL of
chloroform + 1 mL of acetone, and (e) 5 mL of DMF + 1 mL of chloroform. (a–c) 10 kx, (d,e) 20 kx.

To improve the volatility of DMF and prepare individual fibers, the mixed solvents
were obtained by adding acetone to DMF in the volume ratio of 2:5, and the SEM image
of the electrospun fibers is shown in Figure 4b. As can be seen, the fibers were broken
into pieces. This may be the consequence of too much acetone added, as the fibers were
solidified so much that they were easily broken. When decreasing the acetone added in
DMF to a volume ratio of 1:5, the surface of the fibers became worse, being fragile and
uneven, as shown in Figure 4c. This suggests that acetone may contribute to the dissolution
of the product in the mixed solvent. Another solvent with a low boiling point, though
higher than acetone, chloroform, was also attempted. When chloroform was added into the
DMF in the volume ratio of 1:5, those problems were eliminated, as shown in Figure 4d,e.

In the comparison of the diameters of the electrospun fibers in Table 1, it is found
that the diameters decreased with increasing the added solvent ratio with a low boiling
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point: acetone or chloroform. This can be explained because adding more solvents into
the solution reduced the concentration of the copolymer in solvents, which contributed to
the decrease of the surface tension of the solutions. The less surface tension affecting the
flow, the more intensively the fibers would be stretched. As an additive for DMF solution
electrospinning, chloroform is more efficient than acetone to obtain fibers with enough
tenacity and small diameters.

Table 1. The effect of solvents on the diameters of the electrospun fibers.

Molar Ratio of
Xylan/MMA Flow Speed/(mL/min) Receiving Distance/cm Solvents

Diameters of the Fibers/nm

Max. Min. Mean

1:4 0.05650 15
5 mL DMF + 1 mL acetone (c) 1184.83 596.61 744.52
5 mL DMF + 2 mL acetone (b) 435.57 150.35 297.82

1:4 0.01130 10
5 mL DMF + 1 mL chloroform(e) 160.83 66.28 140.37

5 mL DMF + 1 mL chloroform + 1 acetone (d) 130.82 63.05 99.41

1:6 0.00565 15
5 mL DMF + 1 mL chloroform 253.35 88.88 164.2

5 mL DMF + 1 mL chloroform + 1 mL acetone 209.27 88.92 137.41

3.5. Effect of AXU/MMA Molar Ratio on Electrospinning

The molar ratio of AXU/MMA primarily has an impact on the molecular weight of
the xylan-g-PMMA, which would remarkably affect the electrospinning process. The
electrospinning process could not be conducted using the pure xylan or the xylan-g-
PMMA with the minimal AXU/MMA molar ratio (1:2), and there were no fibers besides
spray-deposited on the aluminum foil. When increasing the MMA ratio added in the
polymerization reaction to the molar ratios of 1:4 and 1:6, plentiful fibers were collected
on the foil, and the diameters of the fibers increased as well (Table 2 and Figure 5). In an
extreme situation with a molar ratio of 0:10, the diameter of the fibers became the largest.
These results correspond to the viscosity data of the polymers in Section 3.3. The more
MMA added to the reaction, the larger the molecular weight of the products, and the
internal resistance of the polymer solutions would become stronger against the electric
field force, thus leading to the increase of the diameters of the fibers.

Table 2. The effect of AXU/MMA molar ratios on the diameters of the electrospun fibers.

Molar Ratio of Xylan/MMA Solvent Receiving Distance/cm Flow Speed/(mL/min)
Diameters of the Fibers/nm

Max. Min. Mean

1:4
5 mL DMF + 1 mL chloroform 15 0.00565

179.79 70.72 125.25
1:6 253.35 88.88 164.2

0:10 362.25 162.3 227.95
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3.6. Effect of Flow Speed on Electrospinning

In the continuous electrospinning process, flow speed is an important operating
parameter, which should be matched with the flow spraying speed in the high-voltage
field, and the latter is correlated to the electrospinning voltage. In this study, the flow speed
was set at different values, while the applied voltage was 15 kV. When the speed was lower
than 0.00565 mL/min, the electrospinning spray became unstable as no sufficient flow
was provided. When the speed was higher than 0.02260 mL/min, there were some fibers
dropped from the needle of the syringe as there were too many liquids spraying to the
receiver. However, in the tolerable range, no remarkable variations were observed on the
fibers as the speed accelerated (Table 3).

Table 3. The effect of flow speed on diameters of the fibers.

Molar Ratio of Xylan/MMA Solvent Receiving Distance/cm Flow Speed/(mL/min)
Diameters of the Fibers/nm

Max. Min. Mean

1:4 5 mL DMF + 1 mL chloroform 10
0.00565 162.79 58.90 111.90
0.01130 140.85 68.28 108.22
0.02260 160.83 66.28 109.36

1:6 5 mL DMF + 1 mL chloroform 15
0.00565 267.74 137.4 177.99
0.01130 320.59 100.0 177.84
0.02260 291.25 106.9 172.07

3.7. Effect of Receiving Distance on Electrospinning

The receiving distance could influence the electrostatic attraction of the flow, which
would negatively affect the diameters of the fibers. It was found that when the receiving
distance was less than 10 cm, the flow sprayed to the foil directly and no fibers were
obtained as the electrostatic attraction was too strong. When the distance was beyond
15 cm, the weak attraction made it possible for the fibers to move with the flow of the air,
and the fibers deposited unevenly on the receiving foil on a large scale, which was harmful
to the collection of the fibers. After the comparison of the three different conditions (in
Table 4), it could be concluded that the diameters of the fibers increased slightly with the
increase of the acceptable receiving distance, which is consistent with the former study [86].

Table 4. The effect of receiving distance on diameters of the electrospun fibers.

Molar Ratio of Xylan/MMA Solvent Flow Speed/(mL/min) Receiving Distance/cm
Diameters of the Fibers/nm

Max. Min. Mean

1:4 5 mL DMF + 1 mL chloroform 0.01130
10 160.83 66.28 109.36
15 211.07 100.11 144.90

1:6 5 mL DMF + 1 mL chloroform 0.01130
10 194.77 84.36 122.72
15 289.62 91.03 143.16

0:10 5 mL DMF + 1 mL chloroform 0.00565
10 391.64 138.68 251.02
15 451.96 144.81 296.17

3.8. Photocatalytic Degradation of MB by Electrospun Xylan-g-PMMA/TiO2 Fibers

According to the above discussions, electrospun xylan-g-PMMA/TiO2 fibers were pre-
pared at the following electrospinning parameters: the DMF and chloroform mixed solvent
in a volume ratio of 5:1, receiving distance of 10 cm, and flow speed of 0.00565 mL/min.
Figure 6a presents the SEM image of the electrospun xylan-g-PMMA/TiO2 fibers, and
it shows that the electrospun xylan-g-PMMA/TiO2 nanofibers were well-prepared, and
the presence of some nodes could be considered to be the aggregated TiO2 linked with
triethoxyvinylsilane, which was proven by the X-ray EDS spectrum (Figure 6b). There is
the presence of a Si signal in the EDS spectrum, which was due to triethoxyvinylsilane. To
reduce the loss of TiO2 loaded on the electrospun fibers, triethoxyvinylsilane was added
into the spun liquid.
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Figure 7. XPS spectra of electrospun xylan/TiO2 fibers (a, 10%; b, 30%). 

Figure 6. SEM image (a) and EDX spectrum (b) of electrospun xylan-g-PMMA/TiO2 fibers.

XPS analysis of electrospun xylan-g-PMMA/TiO2 fibers was also performed (Figure 7),
and it identified the peaks of Ti, Si, O, and C. The XPS spectrum of Si2p of electrospun xylan-
g-PMMA/TiO2 fibers showed that Si mainly existed in two forms (Figure 8). The two peaks
of binding energy, EB, at 102.58 and 100.88 eV corresponded to Si-O and Si-C peaks [87,88],
respectively, indicating that triethoxyvinylsilane reacted with O atoms on the surface of TiO2
(Figure 9). This is because the surface of nano-TiO2 contains a large number of hydroxyl
groups, and the -Si(OH)3 generated by the hydrolysis of -Si(OC2H5) in triethoxyvinylsilane
can react with hydroxyl groups, making triethoxyvinylsilane chemically bonded to the
surface of nano-TiO2 to form Ti-O-Si bonds.
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dosage of loaded TiO2 contributed to the increase of MB degradation rates, and MB mol-
ecules were degraded faster in the first 150 min (Figure 10), and then the MB photocata-
lytic degradation rates of the fiber mats loaded with TiO2 became slow. Additionally, it 
was observed that the fiber mats with 10% TiO2 worked better since its quantity is 1/3 of 
the other, and the increase in the amount of TiO2 did not correspond to a clear improve-
ment in the photoactivity of the system, which may be due to the superficial segregation 
phenomena that arose from more TiO2 nanoparticles. In the SEM image (Figure 6), it was 
observed that TiO2 nanoparticles aggregated in large nodes and were not homogeneously 
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Figure 9. The reaction diagram of TiO2 nanoparticles with silane coupling agent.

The photocatalytic degradation property of the xylan-g-PMMA/TiO2 fibers was eval-
uated, and the photocatalytic degradation of MB is illustrated in Figure 10. According to
the obtained results, the electrospun xylan-g-PMMA/TiO2 fibers exhibited a better pho-
tocatalytic degradation property for MB dye. When the dosage of loaded TiO2 increased
to 30%, the fiber mat showed the best photocatalytic degradation rate (above 80%), and
the superiority was obvious during the first 150 min. It can be concluded that increasing
the dosage of loaded TiO2 contributed to the increase of MB degradation rates, and MB
molecules were degraded faster in the first 150 min (Figure 10), and then the MB photocat-
alytic degradation rates of the fiber mats loaded with TiO2 became slow. Additionally, it
was observed that the fiber mats with 10% TiO2 worked better since its quantity is 1/3 of
the other, and the increase in the amount of TiO2 did not correspond to a clear improve-
ment in the photoactivity of the system, which may be due to the superficial segregation
phenomena that arose from more TiO2 nanoparticles. In the SEM image (Figure 6), it was
observed that TiO2 nanoparticles aggregated in large nodes and were not homogeneously
distributed on the surface of the nanofibers; therefore, the active surface decreased. To
summarize, this kind of electrospun xylan-g-PMMA fiber with 10% TiO2 can be applied as
a promising functional material for water treatment.
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Figure 10. Photocatalytic degradation/removal of MB by the electrospun xylan-g-PMMA/TiO2 fibers
(a: 0% TiO2; b: 10% TiO2; c: 30% TiO2). The left figure is the UV-vis spectra for the MB solution alone
and in the presence of the catalyst during the entire photodegradation process, corresponding to
the trends.
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4. Conclusions

Xylan is an important bioactive polysaccharide in nature, but the fabrication of electro-
spun xylan fibers is very difficult because of its low molecular weight and solubility. To
prepare electrospun xylan fibers, xylan-g-PMMAs were synthesized by copolymerization
of MMA and xylan with a catalytic system of (NH4)2S2O4 and Na2SO3, and electrospun
fibers were prepared by solution electrospinning of xylan-g-PMMAs. The mixture of DMF
and chloroform in the volume ratio of 5:1, the AXU/MMA molar ratio lower than 1:2,
the flow speed of 0.00565–0.02260 mL/min, and the receiving distance of 10–15 cm were
found as the optimum operating parameters for electrospinning at the voltage of 15 kV by
assessing the electrospinning process and the morphology of the fibers, and the diameters
of the fibers increased with increasing the MMA content added in the copolymerization,
the DMF content in the solvent, and the receiving distance.

TiO2 nanoparticles were loaded in the electrospun xylan-g-PMMA nanofibers at the
electrospinning parameters: DMF and chloroform mixed solvent in the volume ratio of
5:1, receiving distance of 10 cm, and flow speed of 0.00565 mL/min. The SEM image
and X-ray EDS spectrum proved the successful loading of TiO2 on the fibers. The xylan-
g-PMMA/TiO2 fibers showed good potential in photocatalytic degradation of MB dye.
Additionally, this work demonstrates the first use of xylan to fabricate the nanofibers
by electrospinning, which will provide a new direction to prepare nanomaterials with
xylan. Furthermore, it may offer a novel strategy for the utilization of natural polymers to
synthesize high efficiency, environmental, and economic photocatalysis for water treatment.
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