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Abstract: Poly(amic acid) (PAA) was synthesized from dianhydride 4,4-(4,4-isopropylidenediphenoxy)
bis(phthalic anhydride) and diamine bis [4-(3-aminophenoxy) phenyl] sulfone. Colorless and trans-
parent polyimide (CPI) hybrid films were synthesized through thermal imidization after dispersing
nanofillers using an intercalation method in a PAA solution. C16-GS and C16-MMT, in which hexade-
cylamine (C16) was substituted on graphene sheet (GS) and montmorillonite (MMT), respectively,
were used as nanofillers to reinforce the CPI hybrid films. These two nanofillers were admixed in vary-
ing loadings of 0.25 to 1.00 wt%, and the morphology, thermal properties, and optical transparency of
the hybrid films were investigated and compared. The results suggest that the thermal properties of
the CPI hybrid films can be improved by adding only a small amount of nanofiller. Transmission
electron microscopy results of the CPI hybrid film containing two types of fillers suggested that the
fillers were well dispersed in the nano-size in the matrix polymer; however, some of the fillers were
observed as agglomerated particles above the critical concentration of 0.50 wt%.

Keywords: colorless and transparent polyimide; nanocomposite; film; poly(amic acid); thermal
imidization

1. Introduction

Recently, many studies have been conducted to develop highly functional polyimide
(PI) materials with superior thermo-mechanical properties, excellent processability, and
high optical transparency compared with conventional PI [1–3]. Among the newly devel-
oped PIs, colorless and transparent PIs (CPIs) have attracted significant attention in the
field of electronic materials for diverse applications, such as flexible display substrates,
semiconductors, and electro-optical devices [4–6]. Most CPIs exhibit favorable proper-
ties because the structure of the main chain is bent or comprises bulky –CF3 or –SO2
electron-withdrawing groups that prevent the formation of charge-transfer complexes
(CTCs) between the chains [7,8]. Moreover, it is possible to obtain CPIs with various physi-
cal properties, depending on the design of the monomer used. In addition, these CPIs have
been shown to have superior solubility, thermal stability, and high optical transparency
compared with PIs that have been commercialized for several decades [9,10].

CPI can be widely applied to electronic materials and devices for display as a replace-
ment for glass. In addition, it can be easily synthesized and mass-produced, so it can
be used in solar panels, liquid crystal displays (LCD), and plasma display panels (PDP).
Recently, flexible and transparent indium tin oxide (ITO) in the form of conductive oxide
has been widely used in display substrates and microelectronics fields. However, since
indium is rare and expensive, there are many limitations to the use of ITO glass as a display
material [11]. Therefore, CPI is not only a suitable alternative to overcome the limitations
of glass, but also can be used as a wearable electronic device or a transparent electrode.
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Novel nanocomposite materials that contain a certain amount of nanofiller well-
dispersed in an organic polymer matrix significantly improve the performance of existing
materials and offer routes to material properties that cannot be achieved through tradi-
tional procedures [12,13]. Nanocomposite materials with low nanofiller loadings (<10 wt%)
exhibit considerably improved thermo-mechanical properties as well as unique optical
properties and morphologies owing to their excellent dispersibility. The aromatic pre-
cursor poly(amic acid) (PAA) has significant potential to emerge as a high-performance
nanocomposite CPI via thermal imidization reactions with nanofillers [14,15].

Graphene and clay are well-established nanofillers. Owing to a surface area, thermal
conductivity, and electrical conductivity of 2630 m2/g, 5000 W m/K, and 6000 S/cm,
respectively, single-layer graphene harbors the excellent potential for applications, such
as materials for gas barriers, transparent electrodes, and solar cells as a filler in polymeric
nanocomposites [16–18]. However, because graphene is a two-dimensional aggregate
of carbon, it is necessary to increase the compatibility thereof with the polymer matrix
through chemical or physical modification for viable incorporation into a nanocomposite
material and to prevent micro-phase separation. One of the efficient ways to achieve
homogeneous graphene dispersion in a polymer matrix is to use functionalized-graphene
sheets (F-GSs) that are obtained by separating the agglomerated carbonaceous structure
through an organic reaction [19–21].

When clay montmorillonite (MMT) with a large surface area (700–800 m2/g) is used
as a nanofiller in a polymer composite, the thermomechanical properties and solvent
resistance of the resulting nanocomposite are significantly increased owing to the mutual
attraction between the composite materials. However, because MMT is hydrophilic and
therefore incompatible with lipophilic polymers, it is necessary to chemically combine
MMT with a suitable organic agent. These organoclays are dispersed in the polymer as
nanoparticles to effectively enhance the properties of the composite material [22–24].

In this study, we used 4,4’-(4,4’-isopropylidenediphenoxy)diphthalic anhydride (BPADA)
as a dianhydride and bis [4-(3-aminophenoxy)phenyl] sulfone (m-BAPS) as a diamine
to synthesize a CPI precursor, and thermal imidization was performed with dispersed
nanofillers to synthesize CPI hybrid films. BPADA is commonly used to synthesize CPI and
is known to improve solubility and colorless transparency. To prevent CTC formation and
increase the optical transparency, BPADA and m-BAPS were used to fabricate an overall
curved CPI structure. The F-GS (C16-GS) and organoclay (C16-MMT) nanofillers were
synthesized by reacting hexadecylamine (C16) with GS and MMT, respectively. The same
organic agent was used to enable contrasting effects of GS and MMT on the CPI hybrid films.
Filler loadings of 0.25 to 1.00 wt% with respect to the polymer matrix were investigated.

The purpose of this study is to evaluate the dispersion effect according to the two
nanofillers used in the CPI hybrid and the various contents. A method to manufacture a
CPI hybrid film through solution intercalation is described, and thermal properties, optical
transparency, and morphologies of the CPI hybrid films are explored.

2. Materials and Methods
2.1. Materials

BPADA and m-BAPS were purchased from TCI (Tokyo, Japan). Hexadecylamine and
N,N’-dimethylacetamide (DMAc) from Aldrich (Yongin, Korea). DMAc was dried on a
molecular sieve (4 Å). Graphene oxide (GO) was purchased from Standard Graphene Co.
(Ulsan, Korea). Na+-MMT was obtained from Aldrich (Yongin, Korea), and the cation
exchange capacity was 119 meq/100 g.

2.2. Syntheses of Nanofillers
2.2.1. Synthesis of C16-GS

A mixture of 0.5 g GO dispersed in 1.5 L H2O and 1.0 g C16 dissolved in 25 mL EtOH
was allowed to react at room temperature in a nitrogen atmosphere for more than 12 h. The
mixture was filtered at a reduced pressure to obtain a powder, which was washed using
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1:1 H2O:EtOH (v:v) and dried under vacuum at 70 ◦C for 24 h [25]. A black powder was
obtained in approximately 90% yield.

2.2.2. Synthesis of C16-MMT

C16 (11.47 g) was added to a solution of 100 mL H2O and 4.8 mL HCl in a nitrogen
atmosphere at 80 ◦C for 1 h. In a separate beaker, 20 g Na+-MMT was dispersed in 400 mL
H2O at 80 ◦C for 1 h. The two solutions were subsequently mixed and stirred vigorously
at 80 ◦C for 2 h. A white powder obtained via filtration at reduced pressure was washed
using 1:1 distilled water:ethanol (v:v) and freeze-dried under vacuum at room temperature
for 24 h [26]. The yield of the white powder obtained was approximately 95%.

2.3. Synthesis of PAA

The purity, molar ratio, concentration, and solvent of PAA are important factors in
determining the properties of CPI. After dissolving 6.77 g (1.3 × 10−2 mol) BPADA in
40 mL DMAc under nitrogen, the mixture was stirred at 25 ◦C for 30 min. A solution of
5.62 g (1.3 × 10−2 mol) of m-BAPS in 40 mL DMAc was mixed with the BPADA solution
and stirred at room temperature for 16 h.

2.4. Preparation of the CPI Hybrid Film

There are three major methods for preparing a nanocomposite using a filler: a so-
lution intercalation method, a melt intercalation method, and an in situ polymerization
method [27]. Among them, the solution intercalation method requires that the filler and
the polymer have compatibility and be well dispersed or dissolved at the same time in
the specific solvent used. From this point of view, it is difficult to select a solvent, and
post-treatment of the solvent after production is difficult. However, the solution intercala-
tion method is mainly used in the process using a solvent [28]. In this study, the solution
intercalation method was used because the monomers for PI synthesis were reacted in
DMAc solvent. Several methods for preparing nanocomposites are shown in Scheme 1.
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The same procedure was followed to produce all CPI hybrid films; therefore, the
synthesis procedure of only a CPI hybrid film containing 0.5 wt% C16-GS is described
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as a representative example. A mixture of 0.06 g C16-GS in 70 mL DMAc was dispersed
via sonication at room temperature for 3 h. The solution was then added to the prepared
PAA solution and sonicated for 1.5 h. The PAA hybrid solution was cast onto a glass plate
and placed under vacuum at 50 ◦C for 2 h and at 80 ◦C for 1 h to remove the solvent.
Thereafter, CPI hybrid films were prepared via thermal imidization at various temperatures
and durations. The reaction conditions are listed in Table 1, and the overall chemical
structure of the materials and reaction steps for the CPI hybrid synthesis are shown in
Scheme 2. Nanofiller loadings were varied from 0 to 1.0 wt%.

Table 1. Heat treatment conditions of the CPI hybrid film.

Sample Temperature (◦C)/Time (h)/Pressure (torr)

PAA 25/16/760→ 50/2/1→ 80/1/1

CPI Hybrid 110/0.5/1→ 140/0.5/1→ 170/0.5/1→
195/0.8/1→ 220/0.8/1→ 235/2/1
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2.5. Characterization
2.5.1. Atomic Force Microscopy (AFM), Field Emission Scanning Electron Microscopy
(FE-SEM), and Transmission Electron Microscopy (TEM) Analyses

An AutoProbe CP/MT scanning probe microscope was used to obtain images during
AFM analysis (Multimode, NanoScope III, Digital Instruments Inc., New York NY, USA).
After dispersing the samples in a solvent, the solution was sonicated for 3 h and spin-coated
on a silicon wafer.

To observe the cross-section of a film, the sample was quenched in liquid nitrogen,
segmented, and then examined using FE-SEM (JEOL, JSM-6500F, Tokyo, Japan). To increase
the conductivity of the segmented surface, it was sputter-coated with gold using an SPI
sputter coater. TEM (JEOL, JEM 2100, Tokyo, Japan) was used to investigate the morphology
of graphene and clay dispersed in the CPI matrix. The specimens were cured with epoxy
resin at 70 ◦C for 24 h, and samples with a thickness of 90 nm were prepared under vacuum
using a microtome equipped with a glass knife. The TEM acceleration voltage was 120 kV.
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2.5.2. Fourier Transform Infrared (FT-IR) and 13C Magic Angle Spinning-Nuclear Magnetic
Resonance (MAS NMR) Spectroscopy Analyses

FT-IR spectroscopy (PerkinElmer, Spectrum Two, Llantrisant, UK) was used to confirm
the synthesis of the nanofillers and CPI. Room-temperature solid-state 13C cross-polarized
(CP)/MAS NMR spectroscopy (Bruker 400 DSX NMR, Berlin, Germany) was performed
at a Larmor frequency condition of 100.61 MHz. Chemical shifts were corrected using
tetramethylsilane as reference.

2.5.3. X-ray Diffraction (XRD) Analysis

A wide-angle X-ray diffractometer (Rigaku, SWXD/X-MAX/2000PC, Tokyo, Japan)
was used to determine the interlayer distance of the nanofiller dispersed in the CPI matrix
using Cu-Kα (λ = 1.5406 Å) radiation. The measurement range was 2θ = 2◦–15◦ at a scan
speed of 2◦/min.

2.5.4. Thermal Analysis

Differential scanning calorimetry (DSC, 2-00915, Delaware, USA) and thermogravimet-
ric analysis (TGA, SDT 0650-0439, Delaware, USA) were used to evaluate the thermal prop-
erties of the CPI film, and the temperature increase during measurement was 20 ◦C/min.
Thermomechanical analysis (TMA, SS6100, Tokyo, Japan) was employed for measuring
the coefficient of thermal expansion (CTE) using a sample with dimensions of 5 × 30 mm2,
and the heating rate was 5 ◦C/min under the condition of an expansion force of 0.1 N. The
resulting values were obtained via secondary heating.

2.5.5. Optical Properties

The cutoff wavelength (λo) and transmittance between 300 and 800 nm of 53–58 µm-
thick films were measured using an ultraviolet-visible (UV-vis) spectrometer (SHIMADZU
UV-3600, Tokyo, Japan). The yellow index (YI) of the CPI and CPI hybrid films was
measured using a spectrophotometer (KONICA MINOLTA CM-3600D, Tokyo, Japan).

3. Results and Discussion
3.1. Nanofillers

Figure 1 shows the FT-IR spectra of the starting materials GO and MMT as well as
their C16 chemically substituted derivatives C16-GS and C16-MMT. In the GO spectrum,
peaks are observed corresponding to O–H (3399 cm−1), C=O (1727 and 1610 cm−1), and
C–O (1058 cm−1) stretching. After reacting GO with C16 (C16-GS), peaks related to N–H
stretching, aliphatic C–H stretching, and C=O stretching are observed at 3606, 2923 and
2852, and 1718 cm−1, respectively. C-N-C stretching peak was also observed at 1371 cm−1.
Although no peaks were observed in the spectrum of pure MMT, N–H (3628 cm−1), and
aliphatic C–H (2927 and 2851 cm−1) stretching peaks were observed in the spectrum of the
organoclay C16-MMT [29].

SEM images of GO and C16-GS are shown in Figure 2. GO exhibited sheets that remain
translucent even when bent and folded and were well-separated from the graphite surface
(Figure 2a). C16-GS was transparent and had a thin, wrinkled morphology because the
substitution with C16 caused significant damage to the graphene surface (Figure 2b). In
general, F-GS substituted with a long alkyl group exhibited higher porosity and volume
expansion compared to GO and had a very low bulk density. Therefore, melt compounding
using F-GS presents significant processing challenges, and a masterbatch is usually required
to mitigate this issue [18]. However, these processing difficulties can be overcome by mixing
the polymer and F-GS in the solution phase.

Graphene is composed of individual carbon layers with a thickness of approximately
1 nm. However, graphene most often agglomerates or bundles to form several layers,
resulting in significant differences between the theoretical and true thickness values. AFM
can provide information regarding the surface topology, defects, dimensions, thickness, and
bending properties of GSs. For monolayer graphene and F-GS, the lateral size and thickness
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can be measured using stepped height scans. An AFM image of C16-GS deposited as a
dispersion on a mica substrate is shown in Figure 3, indicating that the average thickness
of the graphene layers is 1.76 nm. We previously reported that the interlayer spacing of
graphene layers increases as the length of the alkyl group in F-GS increases [30].
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3.2. CPI Structure

The synthesis of CPI was confirmed using FT-IR and 13C MAS NMR spectroscopy,
and the results are shown in Figures 4 and 5, respectively. Peaks corresponding to aromatic
and aliphatic C–H stretching were observed at 3065 and 2960 cm−1, respectively, and peaks
corresponding to –C=O stretching were detected at 1776 and 1717 cm−1 (Figure 4). In
addition, the imide C–N–C stretching at 1337 cm−1 confirmed successful imidization [29].
NMR analysis revealed peaks corresponding to methyl (–CH3), isopropyl (–C–(CH3)2), and
carbonyl (–C=O) groups of the PI structure at 30.96, 42.42, and 165.26 ppm, respectively
(Figure 5). Phenyl carbon peaks were observed at 127.25, 133.01, 142.67, and 151.25 ppm
with spinning sidebands (indicated by an asterisk) [29].
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3.3. XRD Analysis

XRD patterns in the range 2θ = 3◦–15◦ of GO, C16-GS, MMT, C16-MMT, and CPI
hybrid films with varying nanofiller loadings are shown in Figure 6. GO exhibited a weak
peak at 2θ = 12.30◦, while C16-GS showed a very sharp peak at 2θ = 3.86◦ (Figure 6a). The
interlayer spacing d of C16-GS (d = 22.89 Å) was larger than that of GO (d = 7.19 Å) owing
to the long alkyl group substituent on the GO surface. For the CPI hybrid film, no F-GS
peak was observed until a loading of 1.00 wt%. This indicates that C16-GS is completely
dispersed in the CPI matrix with no agglomeration.
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A diffraction peak was observed at 2θ = 8.60◦ (d = 11.99 Å) for pristine MMT, while
C16-MMT exhibited a peak at 2θ = 3.69◦ (d = 25.96 Å) (see Figure 6b). The significant
increase in the interlayer spacing of the organoclay was ascribed to the substitution of
the clay surface with the long alkyl chain [26,31]. No clay peak was observed up to a
0.50 wt% C16-MMT loading; however, at a loading of 0.75 wt%, a very small peak appeared
at 2θ = 6.73◦ (d = 13.12 Å), and the intensity of this peak increases for a loading of 1.00 wt%.
This observation can be explained by the agglomeration of the organoclay nanofiller above
a certain critical concentration [32–34].

Because the interlayer separation of C16-MMT (d = 25.96 Å) was larger than that of C16-
GS (d = 22.89 Å), it is easier to insert a polymer chain when C16-MMT is used as the nanofiller
rather than C16-GS, and thus, improved hybrid properties can be expected [22,26,31].

In general, XRD analysis is used to investigate the aggregation and interlayer separa-
tion of the composite. However, it provides only a preliminary indication, and it is necessary
to observe the insertion or exfoliation of nanofillers using electron microscopy [35,36].

3.4. Morphology

FE-SEM was used to observe the fracture surfaces of CPI hybrid films with various
C16-GS loadings, and micrographs are shown in Figure 7. The GSs are distributed in a
uniform direction in the form of straight plates. Following initially good dispersibility,
the agglomeration of F-GS in the CPI matrix gradually increases with increasing loading.
These results show that as the amount of C16-GS increased, several empty spaces were
detected in the matrix, indicating poor dispersibility in the CPI matrix. From the results of
this study, the dispersibility of F-GS increased up to a certain concentration but decreased
above the critical concentration.
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TEM was used to confirm the dispersed morphology of C16-GS in the CPI polymer
matrix. Figure 8 shows TEM images of the hybrid films containing 0.50 and 1.00 wt% C16-
GS. The bright white line represents the graphene layer, and the space between the white
lines corresponds to the CPI matrix. In the film containing 0.50 wt% C16-GS (Figure 8a),
the GSs were exfoliated and randomly dispersed over a large area. However, at 1.00 wt%
loading (Figure 8b), agglomerated GSs with a uniform arrangement were observed. This
observation agrees well with the FE-SEM results, and the negative effect of agglomeration
on the thermal and optical properties is described below.
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Figure 8. TEM micrographs of CPI hybrid films containing (a) 0.50 and (b) 1.00 wt% C16-GS with
different magnifications.

Organoclay is well-dispersed in the CPI polymer matrix for a loading of 0.50 wt%
(Figure 9a). However, at a C16-MMT loading of 1.00 wt%, the clay showed an overall
agglomerated morphology (Figure 9b), which corroborates the findings from the XRD
analysis (Figure 6b). C16-GS is uniformly oriented and has a straight and rigid plate shape,
whereas C16-MMT is randomly oriented and well-dispersed in the matrix, which improves
the physical properties of the hybrid film [37].
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3.5. Thermal Properties

Figure 10 shows the DSC thermograms of the CPI hybrid films with various nanofillers
loadings, and Table 2 summarizes their thermal properties. The glass transition temperature
(Tg) of the pure CPI film is 170 ◦C and that of the hybrid film gradually increases with the
nanofiller content. For example, the Tg values increased to 185 and 191 ◦C for 0.50 wt% C16-
GS and C16-MMT, respectively. This reflects the decreased mobility of the polymer chains
sandwiched between hard plate-shaped nanofiller layers. Eventually, the segmental motion
of the polymer chain was disturbed, and Tg increased. The increase in Tg is explained by
two factors [38,39]. First, the nanofiller layers dispersed in the polymer matrix significantly
decrease the free volume of polymer chains, thus increasing the Tg of the hybrid. The
second factor is the constraint of the polymer chains inserted inside the filler gallery, which
prevents the segmental motion of the polymer chains.
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Figure 10. DSC thermograms of nanofillers, CPI, and CPI hybrid films with various nanofiller
loadings of (a) C16-GS and (b) C16-MMT.

Table 2. Thermal properties of CPI hybrid films.

Filler in CPI (wt%)

C16-GS C16-MMT

Tg
(◦C)

TD
i a

(◦C)
wtR

600 b

(%)
CTE c

(ppm/◦C)
Tg

(◦C)
TD

i

(◦C)
wtR

600

(%)
CTE

(ppm/◦C)

0(pure CPI) 170 467 52 54.7 170 467 52 54.7
0.25 180 474 54 53.2 180 508 56 49.3
0.50 185 492 55 52.0 191 511 56 49.0
0.75 181 480 52 54.2 185 504 55 49.0
1.00 177 467 54 52.2 183 483 55 47.1

a Initial 2% weight loss temperature. b Weight residue at 600 ◦C. c Coefficient of thermal expansion for 2nd heating
between 50–150 ◦C.

However, when the content of the nanofillers increased from 0.50 to 1.00 wt%, the Tg
value of the hybrid decreased to 177 and 183 ◦C for C16-GS and C16-MMT, respectively.
This is ascribed to filler agglomeration, which occurs when nanofiller loading exceeds a
critical concentration. Similar results have been reported in several papers [40,41].
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CPI hybrid films comprising C16-MMT possess higher Tg values than films containing
C16-GS. This is because the aspect ratio of MMT (~218) is smaller than that of GS (>250),
which facilitates the dispersion of MMT in the matrix polymer [18,23]. This result confirms
the dispersion state, as indicated by the electron microscopy results (Figures 7–9).

From the TGA results (Figure 11), the initial 2% weight loss temperature (TD
i) of

the pure CPI film was 467 ◦C (Table 2), and the 0.50 wt% C16-GS hybrid has a TD
i value

of 492 ◦C. This was rationalized by dispersed C16-GS hindering heat transfer, thereby
suppressing volatilization [42–44]. However, increasing the C16-GS loading from 0.50 to
1.00 wt% results in a lower TD

i value of 467 ◦C, which is ascribed to nanofiller agglomeration.
The C16-MMT hybrid film exhibited the same trend, attaining a maximum TD

i value of
511 ◦C for loading of 0.50 wt%, and as the nanofiller loading was increased to 1.00 wt%, the
TD

i value decreased to 483 ◦C.
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Figure 11. TGA thermograms of nanofillers, CPI, and CPI hybrid films with various nanofiller
loadings of (a) C16-GS and (b) C16-MMT.

As shown in Figure 11, all the thermograms of the hybrid films exhibit a small weight
loss at ~250 ◦C, owing to the decomposition of C16, and the loss starting at about 450 ◦C is
presumed to be the decomposition of the PI main chain.

The weight residue at 600 ◦C (wtR
600) of the pure CPI film did not significantly change

with the admixture of either nanofiller. This result is due to the retention of the excellent
heat resistance of the plate-like layers of GS and MMT after the decomposition of the
substituted alkyl groups.

Upon heating the polymer, the parallel PI chains relax in a direction perpendicular
to their propagation direction. The GS or MMT layers of the nanofillers are considerably
harder to deform. Therefore, graphene or clay, which can efficiently block heat transfer,
effectively inhibits the traverse thermal expansion of the polymer matrix [45–47]. To endow
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hybrid films with high resistance to thermal expansion, the matrix polymer and nanofiller
must have high thermal stability.

Table 2 summarizes the CTE values of the CPI hybrid films with various nanofillers
loadings obtained after secondary heating in the temperature range of 50–150 ◦C. In the
C16-GS hybrid, CTE values were approximately constant in the range of 52.0–54.7 ppm/◦C
regardless of the nanofiller content. However, the CTE value decreases with C16-MMT load-
ing. For example, the CTE value decreased from 54.7 ppm/◦C for pure CPI to 47.1 ppm/◦C
for the 1.00 wt% C16-MMT hybrid film. Figure 12 shows the TMA thermograms of the CPI
hybrid films with different nanofiller loadings.
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Overall, the thermal properties of the C16-MMT hybrid film were superior to those
of the C16-GS hybrid film. This is attributed to the following reasons. (1) C16-MMT had
a larger d than C16-GS, which facilitates the intercalation of polymer chains (Figure 6).
(2) MMT has a shorter aspect ratio than GS, which facilitates dispersion in a polymer matrix.
(3) The thermal stability of the organoclay was higher than that of F-GS. According to the
TGA results (Figure 11 and Table 1), the TD

i of C16-GS and C16-MMT were 196 and 279 ◦C,
respectively. Owing to the superior thermal stability of C16-MMT compared to C16-GS,
the thermal stability (TD

i, wtR
600, and CTE) of the hybrid using the organoclay nanofiller is

also superior to that of the F-GS hybrid.

3.6. Optical Properties

Figure 13 shows the UV-vis transmittance spectra of the hybrid films with various
nanofiller loadings, and the λo and transmittance at 500 nm (500 nmtrans) values are listed
in Table 3. The λo value of pure CPI (368 nm) gradually increased with the content of the
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two nanofillers. For example, the λo value of the 0.25 and 1.00 wt% C16-GS hybrid films are
380 and 385 nm, respectively, and that of the 1.00 wt%C16-MMT hybrid film is 377 nm. All
the hybrid films obtained in this study exhibit λo values below the visible light wavelengths
(400–800 nm).
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Figure 13. UV-vis transmittance of nanofillers, CPI, and CPI hybrid films with various nanofiller
loadings of (a) C16-GS and (b) C16-MMT.

Table 3. Optical properties of CPI hybrid films.

Filler in
CPI (wt%)

C16-GS C16-MMT

Thickness
(µm)

λo
a

(nm)
500 nmtrans

(%) YI b Thickness
(µm)

λo
(nm)

500 nmtrans

(%) YI

0(pure CPI) 54 368 87 2 54 368 87 2
0.25 55 380 66 10 55 368 86 1
0.50 55 380 63 9 54 370 86 2
0.75 58 383 43 9 53 372 85 2
1.00 57 385 36 15 54 377 85 3

a Cut-off wavelength. b Yellow index.

The 500 nmtrans value substantially decreases from 87% to 36% when the C16-GS
loading increased from 0 to 1.00 wt%; however, it remained constant regardless of the
organoclay loading (Table 3). Similarly, the YI value of the film significantly increases from
2 to 15 when the C16-GS content increases to 1.00 wt%, while it was maintained in the
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range of 1–3 for all C16-MMT loadings. Therefore, colorlessness and transparency were
maintained for the organoclay nanofiller.

The optical transparencies of the C16-MMT hybrid film with the same filler contents
were better than those of the C16-GS hybrid film. As observed from the TEM images
in Figures 8 and 9, at the same loading, C16-MMT had a smaller plate shape and better
dispersion than C16-GS; therefore, the optical properties of pure CPI were better maintained
and remained largely unaffected by the organoclay content. For C16-GS hybrid films, the
transmittance decreased, and the YI value increased as the GS content increased because
the plate aspect ratio was larger than that of MMT, and the dispersion state was worse than
that of MMT. As already explained, these results are closely related to the aspect ratios of
the GS and MMT.

4. Conclusions

In this study, we aimed to examine the effect of different types of nanofillers on the
photophysical properties of the CPI matrix. F-GS and organoclay nanofillers were obtained
by chemically substituting C16 alkyl groups onto GO and Na+-MMT, respectively. CPI
hybrid films were prepared by dispersing F-GS and organoclay as nanofillers in the CPI
matrix at loadings of 0.25 to 1.00 wt%. C16-MMT has a smaller plate size and better
dispersion than C16-GS in CPI. The thermal properties of both types of hybrid films were
optimal at 0.50 wt% loadings. Although slightly poorer than that of the pure CPI film, the
optical transparency of the C16-MMT hybrid film was significantly better than that of the
C16-GS hybrid films.

CPI has been widely used in applications requiring high-performance plastics because
of its excellent thermo-mechanical properties and optical transparency. These excellent
physical properties and applicability can be extended by appropriately controlling the struc-
ture of the monomers constituting CPI composites. The high interfacial adhesion resulting
from the uniform dispersion of nanofillers in the CPI matrix confers nanocomposites with
excellent physical properties that cannot be obtained through conventional manufacturing
processes. These enhanced nanocomposites can be used as film materials in electronic and
optical applications, which are currently being extensively investigated.
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