
Citation: Singh, T.; Patnaik, A.;

Ranakoti, L.; Dogossy, G.; Lendvai, L.

Thermal and Sliding Wear Properties

of Wood Waste-Filled Poly(Lactic

Acid) Biocomposites. Polymers 2022,

14, 2230. https://doi.org/10.3390/

polym14112230

Academic Editor: Valentina Siracusa

Received: 6 May 2022

Accepted: 27 May 2022

Published: 30 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Thermal and Sliding Wear Properties of Wood Waste-Filled
Poly(Lactic Acid) Biocomposites
Tej Singh 1 , Amar Patnaik 2, Lalit Ranakoti 3, Gábor Dogossy 4 and László Lendvai 4,*

1 Savaria Institute of Technology, Faculty of Informatics, ELTE Eötvös Loránd University,
9700 Szombathely, Hungary; sht@inf.elte.hu

2 Department of Mechanical Engineering, Malaviya National Institute of Technology,
Jaipur 302017, Rajasthan, India; apatnaik.mech@mnit.ac.in

3 Mechanical Engineering Department, Graphic Era (Deemed to be University),
Dehradun 248002, Uttarakhand, India; lalit_9000@yahoo.com

4 Department of Materials Science and Engineering, Széchenyi István University, 9026 Győr, Hungary;
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Abstract: In our study, the effects of wood waste content (0, 2.5, 5, 7.5, and 10 wt.%) on thermal
and dry sliding wear properties of poly(lactic acid) (PLA) biocomposites were investigated. The
wear of developed composites was examined under dry contact conditions at different operating
parameters, such as sliding velocity (1 m/s, 2 m/s, and 3 m/s) and normal load (10 N, 20 N, and 30 N)
at a fixed sliding distance of 2000 m. Thermogravimetric analysis demonstrated that the inclusion
of wood waste decreased the thermal stability of PLA biocomposites. The experimental results
indicate that wear of biocomposites increased with a rise in load and sliding velocity. There was
a 26–38% reduction in wear compared with pure PLA when 2.5 wt.% wood waste was added to
composites. The Taguchi method with L25 orthogonal array was used to analyze the sliding wear
behavior of the developed biocomposites. The results indicate that the wood waste content with
46.82% contribution emerged as the most crucial parameter affecting the wear of PLA biocomposites.
The worn surfaces of the biocomposites were examined by scanning electron microscopy to study
possible wear mechanisms and correlate them with the obtained wear results.

Keywords: poly(lactic acid); wood waste; biocomposite; sliding wear; microscopy

1. Introduction

Strict government regulations and increased environmental constraints on the burning
and open-air dumping of agricultural, municipal, and industrial wastes have encouraged
material scientists to develop innovative products such as biocomposites [1–3]. Several
studies have highlighted that biocomposites hold the potential to be used in various
applications, including automotive, infrastructure, aerospace, construction, consumer, and
industrial fields [1–5]. According to reports, the forest industry was assumed to play a
significant part in the economy of any country and generated a revenue of 270 billion USD
worldwide in 2018 [6]. Solid wood waste is the main by-product of the forest industry, with
more than 14 million tons of wood waste being generated every year, which is a significant
problem when it comes to disposal [7,8]. Additionally, it was reported that more than
70 million tons of solid wood waste were generated annually during the manufacturing
of wood products [9]. Furthermore, the annual production of synthetic plastics exceeds
320 million tons, which is unfortunately accumulated in productive agricultural parcels as
landfills or incinerated in open-air [10]. Reducing wood waste and synthetic plastic can be
achieved by replacing synthetic plastics with bioplastics to develop biocomposites. The
global biocomposite market size was 16.46 billion USD in 2016, and it is estimated to reach
36.76 billion USD by 2022 with a compound annual growth rate of 14.44% [11].

Polymers 2022, 14, 2230. https://doi.org/10.3390/polym14112230 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14112230
https://doi.org/10.3390/polym14112230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-2316-4107
https://orcid.org/0000-0003-2907-0734
https://orcid.org/0000-0003-3670-327X
https://doi.org/10.3390/polym14112230
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14112230?type=check_update&version=2


Polymers 2022, 14, 2230 2 of 16

Numerous scientists have examined how to improve the various properties of biocom-
posites, including thermal, thermomechanical, and mechanical features, by utilizing distinc-
tive waste materials [12,13]. The potential of sugarcane bagasse and maize hull agro-wastes
in thermoplastic starch-based biocomposites was studied by Dogossy and Czigany [14].
The influence of industrial wastes, namely copper slag and drill cuttings, on thermal, phys-
ical, mechanical, and antibacterial properties of poly(ε-caprolactone)-based biocomposites
was investigated by Hejna et al. [15]. Kim et al. [16] studied the mechanical properties
and biodegradability of rice husk and wood waste-filled poly(butylene succinate)-based
biocomposites. Panaitescu et al. [17] evaluated the thermal and mechanical properties
of wood waste-reinforced poly(3-hydroxybutyrate) biocomposites. Dhakal et al. [18] ex-
amined the influence of date palm fiber waste biomass on the mechanical properties of
polycaprolactone-based biocomposites.

In recent years, there has been a remarkable interest in poly(lactic acid) (PLA) for many
reasons, such as increasing environmental awareness, reducing product prices by capacity
growth, and taking advantage of good processability [19,20]. PLA is a bio-based polymer,
originating from the fermentation of corn, sugar beet, potatoes, and other agriculture-
based substances. The major advantages of PLA are its biodegradability under certain
temperature/pressure conditions and its non-toxic nature. It has good stiffness and strength
compared with synthetic polymers, and it can be altered and adjusted for a wide range
of applications, including packaging, textile, and biomedical purposes [21–26]. However,
PLA has its drawbacks as well, including rapid physical aging, poor impact resistance,
relatively high price, and low thermal stability. These drawbacks associated with PLA can
be overcome by adopting, blending, copolymerization, or adding some materials such as
filler/reinforcement [27–30].

Khan et al. [31] studied hemp hurd’s impact on the mechanical properties of PLA-
based biocomposites. They concluded that the evaluated tensile and flexural strength
of the manufactured biocomposites decreased, whereas crystallinity and the tensile and
flexural modulus improved by increasing hemp hurd content. They also pointed out
that with glycidyl methacrylate grafting, the biocomposites with ≥20 wt.% hemp hurd
loading demonstrated mechanical properties nearly equal to bare PLA. Orue et al. [32]
explored the potential of alkali-treated walnut shells waste as filler for the PLA matrix.
They incorporated alkali-treated walnut shell powder (10, 20, and 30 wt.%) into the ma-
trix for biocomposite fabrication. A relative improvement of 50% in tensile strength was
reported for treated walnut shell waste-filled biocomposites compared with the untreated
counterpart. However, the tensile modulus values of treated walnut shell waste-filled
biocomposites remained almost similar to unfilled PLA, and they maintained a consistent
behavior with increased filler content. Boubekeur et al. [33] investigated the influence
of 1–3 mm sized wood waste (a mixture of eucalyptus and Aleppo pine wood) particles
on the mechanical properties of PLA-based biocomposites. The authors concluded that
Young’s modulus and crystallinity of the manufactured composites increased, while stress,
impact strength, and elongation at break decreased with increasing wood waste percent-
age. Bajpai et al. [34] investigated the wear performance of natural fiber-reinforced PLA
composites. Three categories of natural fibers (nettle, sisal, and Grewia optiva) were ap-
plied, and laminated composites were fabricated as per a hot compression process. The
experimental results showed that incorporating natural fiber mats into the PLA matrix as a
reinforcement remarkably enhanced the wear resistance of the neat polymer. There was
a 10–44% decrease in friction coefficient and about 70% decrease in the specific wear rate
of manufactured composites compared with neat PLA. Kanakannavar et al. [35] studied
the effect of natural fiber 3D braided woven fabric as reinforcement in PLA composites for
tribological performance. The research concluded that the fabric reinforcement decreased
the specific wear rate of PLA, and about a 95% decrease was detected in the samples
containing 35 wt.% reinforcement.

Although the literature is rich in research of the impacts of wood waste on the physical,
mechanical, thermal, and thermo-mechanical properties of PLA-based biocomposites, the
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sliding wear behavior of wood waste-filled PLA-based biocomposites has not been studied
so far. Moreover, the inclusion of some natural fibers and sustainable biocarbon was
reported to enhance the wear resistance of PLA-based biocomposites [34–36]. Therefore,
our research studied the production of PLA biocomposites using North Indian rosewood
waste and investigating their thermal and dry sliding wear properties.

2. Experimental Details
2.1. Materials and Biocomposite Fabrication

PLA (Nature Works, USA, Ingeo 2003D grade) with a melt flow index of 6 g/10 min,
a density of 1.24 g/cm3, and a melting temperature of 170 ◦C was used in this research.
North Indian rosewood waste (60 mesh) was procured from the Krishna Timber Store
in Dadhol, Himachal Pradesh, India. Before use, the wood waste was treated with 2%
sodium hydroxide solution for 12 h at room temperature. After that, the treated wood
waste was washed with distilled water and dried in an oven for 4 h. The SEM (scanning
electron microscope) micrograph of the North Indian rosewood waste particles is presented
in Figure 1a. Before biocomposite manufacturing, both the wood waste and PLA were
dried for 6 h in a DEGA-2500 dehumidifier at 80 ◦C. The melt compounding/mixing of
the PLA biocomposites containing 0, 2.5, 5, 7.5, and 10 wt.% of North Indian rosewood
waste was performed using an LTE 20–44 twin-screw extruder (Labtech Engineering, Samut
Prakarn Thailand; L/D ratio of 44; screw diameter of 20 mm) with a screw speed of 30 rpm
and a temperature profile of 155–185 ◦C. After melt compounding, the composites were
cooled and granulated. Subsequently, the granulated samples were injection molded into
dumbbell-shaped samples (Figure 1b) using an Arburg Allrounder Advance 420C (Loßburg,
Germany) injection molding machine with a nozzle temperature of 195 ◦C. The following
parameters were used for the injection molding process: injection rate of 40 cm3/s, holding
pressure at 75-65-25 MPa for 15 s, cooling time of 30 s, and mold temperature at 30 ◦C [37].

Figure 1. (a) SEM micrograph of North Indian rosewood waste, (b) fabricated biocomposites.

2.2. Thermogravimetric Analysis

The thermogravimetric tests were performed on a Shimadzu TGA-50 model scientific
instrument, while the evaluation was performed using TA-60WS software. The powdered
sample (~10 mg) of biocomposites was placed in a platinum pan. The thermal stability was
recorded at a heating rate of 10 ◦C min−1 in a nitrogen atmosphere from 30 ◦C to 500 ◦C.

2.3. Sliding Wear Study

The sliding wear behavior of the produced biocomposites was investigated utilizing
an ASTM G-99-compliant pin on disk machine (Model: TR-411, DUCOM, India). The
schematic of the pin on disk machine and its detailed working principles were discussed
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elsewhere [38]. A 20 mm × 5 mm × 5 mm specimen was machined from the manufactured
composites, and it was held stationary within the fixture, which was normal to the disk.
For load-speed sensitivity, a series of trials were carried out by varying the normal load
(10 N, 20 N, and 30 N) and the sliding velocity (1 m/s, 2 m/s, and 3 m/s) on the pin on
disk machine for a fixed sliding distance of 2000 m. The biocomposite sample weight
was measured prior to and after the wear test by utilizing an electronic weight balance
(Wensar Weighing Scales Ltd., India) with an accuracy of 0.0001 g. For each sample, the
wear experiment was repeated three times, and the volumetric wear in cm3 was computed
by using the following equation [37]:

Volumetric wear =
v

ρ
(1)

where v = sample weight loss (g) and ρ = sample density (g/cm3).
The density of the manufactured biocomposites was determined by using standard

water displacement method, and it was found to be 1.24 g/cm3, 1.225 g/cm3, 1.211 g/cm3,
1.198 g/cm3, and 1.183 g/cm3 [39].

2.4. Experiment Design

In this study, the combination of control parameters for sliding wear minimization was
determined using the Taguchi method. The Taguchi method is one of the most important
statistical techniques used to demonstrate the influence of different control parameters with
various levels. The sliding wear tests on the manufactured biocomposites were conducted
under various working conditions, using four control parameters each with five levels:
wood waste content (A: 0, 2.5, 5, 7.5, and 10 wt.%), normal load (B: 10, 20, 30, 40, and 50 N),
sliding distance (C: 500, 100, 1500, 2000, and 2500 m) and sliding velocities (D: 0.6, 1.2, 1.8,
2.4, and 3 m/s) (as listed in Table 1).

Table 1. Levels of the control parameters used in the experiment.

Control Parameters
Levels

Units
I II III IV V

A: Wood waste 0 2.5 5 7.5 10 wt.%
B: Normal load 10 20 30 40 50 N

C: Sliding distance 500 1000 1500 2000 2500 m
D: Sliding velocity 0.60 1.2 1.8 2.4 3 m/s

In a full factorial design, nearly 625 (54) trials would be required to contemplate the
impact of four control parameters, each having five levels. In contrast, the Taguchi method
decreases the number of trials by utilizing orthogonal arrays, resulting in a lower number
of trials with noticeable precision. Therefore, the impact of four control parameters with
five levels (as presented in Table 1) was studied using L25 orthogonal design as presented
in Table 2. Further on, to assess the test results, the signal-to-noise (SN) ratio was also
investigated. The Taguchi method has three categories of the SN ratio, namely lower-
the-better, nominal-the-better, and higher-the-better. In this work, a ‘lower-the-better’
characteristic was utilized, since the intention was to minimize the wear by using the
following equation [38].

SN ratio = −10 log

[
1
n

(
∑
n

y2

)]
(2)

where y = volumetric wear and n = number of trials.
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Table 2. Experimental design.

Test Run
Control Parameters

Test Run
Control Parameters

A B C D A B C D

1 0.0 10 500 0.6 14 5.0 40 500 1.8
2 0.0 20 1000 1.2 15 5.0 50 1000 2.4
3 0.0 30 1500 1.8 16 7.5 10 2000 1.2
4 0.0 40 2000 2.4 17 7.5 20 2500 1.8
5 0.0 50 2500 3.0 18 7.5 30 500 2.4
6 2.5 10 1000 1.8 19 7.5 40 1000 3.0
7 2.5 20 1500 2.4 20 7.5 50 1500 0.6
8 2.5 30 2000 3.0 21 10 10 2500 2.4
9 2.5 40 2500 0.6 22 10 20 500 3.0

10 2.5 50 500 1.2 23 10 30 1000 0.6
11 5.0 10 1500 3.0 24 10 40 1500 1.2
12 5.0 20 2000 0.6 25 10 50 2000 1.8
13 5.0 30 2500 1.2

2.5. Contribution Ratio Analysis

After the SN ratio analysis, each control parameter was analyzed for their contribution
ratio (ψ) towards the volumetric wear by using the following steps [40].

Step I: Calculation of the overall SN ratio mean. In this step the overall SN ratio mean
(<) was computed for the 25 trials using the following equation:

< =
1

25

25

∑
n=1

(SN ratio) (3)

Step II: Level mean of the SN ratio. In this step, the level mean of the SN ratio (h̄i) was
calculated for each control parameter using the following equation.

h̄i =
1
5

5

∑
j=1

(SN ratio)ij (4)

where j is the level of the ith control parameter.
Step III: Sum of squares calculation. In this step, the sum of squares (
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where j is the level of the ith control parameter. 
Step IV: Contribution ratio calculation. In the final step, the contribution ratio (ψ ) of 

the individual control parameter was calculated by using the following equation:ƛ 

× 100 (7)

2.6. Scanning Electron Microscopy

The worn surfaces of pure PLA and wood waste-filled PLA biocomposites were
further examined for possible wear mechanisms using a Hitachi S-3400N scanning electron



Polymers 2022, 14, 2230 6 of 16

microscope (SEM; Hitachi Ltd., Tokyo, Japan). Prior to the SEM inspection, the samples
were sputter-coated with a gold–palladium alloy in order to prevent charging.

3. Results and Discussion
3.1. Thermal Stability Analysis

The temperature-dependent weight loss curves and the corresponding derivatives
(DTG) for pure PLA and its wood waste-filled biocomposites are illustrated in Figure 2a,b, re-
spectively. The thermal deterioration at temperatures ranging from 30 ◦C to 250 ◦C resulted
in a minor weight loss of about 2 ± 0.5%. The elimination of moisture was the primary
cause of the biocomposites’ weight loss at this point. A single-step decomposition process
was observed both for the bare PLA and the wood waste-filled PLA biocomposites as well,
in the range of (250–400 ◦C). The weight loss in this temperature range corresponded to the
degradation of the PLA resin and the decomposition of hemicellulose, cellulose, and lignin
that were present in the wood waste [41]. The temperature corresponding to the 5%, 25%,
50%, and 75% weight loss (i.e., T5, T25, T50, and T75) and the temperature of the maximum
decomposition rate (Tpeak) are presented in Table 3. Based on the results, the thermal
degradation of wood waste-filled PLA biocomposites occurred at a lower temperature than
that of pure PLA. Biopolyesters such as PLA tend to degrade at elevated temperatures as a
consequence of various depolymerization processes and thermal oxidation reactions [42].
The incorporation of the less thermally stable wood waste into the polymer matrix facili-
tated the thermal degradation of PLA, thereby leading to an earlier decomposition of the
biocomposites during the heating.

Figure 2. TGA (a) and DTG (b) curves for PLA biocomposites, respectively.

Using 5% weight loss (T5) as the onset of the main degradation step, the temperature
was 327 ◦C for the bare PLA but decreased to 320 ◦C when 2.5 wt.% wood waste was
added. When the wood waste loading was increased even further (5, 7.5, and 10% wt.%),
the composites’ onset degradation temperature decreased to 312 ◦C, 304 ◦C, and 300 ◦C,
respectively. Similarly, with increased wood waste content, the temperatures for 25%, 50%,
and 75% weight loss and the temperatures corresponding to the highest decomposition
rate also decreased considerably. Previous studies reported similar trends with various
natural fiber-filled PLA composites [42–44].
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Table 3. TGA and DTG results of wood waste-filled PLA biocomposites.

Biocomposite
Temperature at Different Weight Loss (◦C) Tpeak (◦C)

T5 T25 T50 T75

PLA 327 348 357 365 360
PLA+2.5 wt.% wood waste 320 346 356 365 359
PLA+5 wt.% wood waste 312 337 350 359 354

PLA+7.5 wt.% wood waste 304 327 340 351 345
PLA+10 wt.% wood waste 300 325 338 348 342

3.2. Influence of Normal Load and Sliding Velocity on Wear

Figure 3 shows the volumetric wear of composites as a function of normal load (10 N,
20 N, and 30 N) at a constant sliding velocity (1 m/s) and a 2000 m of fixed distance.
Figure 3 shows that when the normal load increased, the volumetric wear of all composites
increased dramatically. The volumetric wear fluctuated between 0.0342 cm3 and 0.0660 cm3

in pure PLA samples. Compared with pure PLA, the trend in volumetric wear for 2.5 wt.%
wood waste-filled composite was modest, with an increased normal load. Adding 2.5 wt.%
of wood waste reduced the volumetric wear of the PLA matrix by 26% to 34% under all
loading situations. With the further addition of wood waste ≥ 5 wt.%, the wear of the
composites increased, and it was the highest (0.0658–0.1097 cm3) when 10 wt.% wood waste
was added to the composites. The possible mechanism for the increment in volumetric
wear with increased wood waste content and normal load can be explained. The lower the
wood waste particle concentration, the more that the structural homogeneities remained
on the higher side due to ease in the dispersion of wood waste particles within the PLA
matrix. The firm embedment of the wood waste particles helped to protect the matrix in
the contact zone from heat and mechanical failure, resulting in minor wear.

Figure 3. Volumetric wear of composite as a function of normal load.

After displaying a slight volumetric wear at 2.5 wt.% wood waste content, the volu-
metric wear was observed to rise when the wood waste loading was increased further. At
higher concentrations, the possibilities of wood waste particles agglomerating expanded
the composites and counter surface gap. As a result of the increasing distance, the adhesion
between the sliding surfaces decreased, resulting in a more significant weight loss and
volumetric wear. Additionally, with increased loading, the number of wood waste particles
on the composite surface increased. As the normal load grew, more heat was generated
during testing, and the interfacial contact temperature also increased. With this higher
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temperature, the bonding between the wood waste and the matrix weakened, and material
removal became more accessible, increasing the wear. Similar results were reported by
Bajpai et al. [34] for natural fiber-reinforced PLA composites and by Erdoğan et al. [45]
for industrial waste-filled epoxy composites as well. Figure 4 shows the volumetric wear
of composites as a function of sliding velocity (1 m/s, 2 m/s, and 3 m/s) at a constant
normal load (30 N) and a 2000 m of fixed distance. The trend in volumetric wear for pure
PLA was from 0.0502 cm3 to 0.0977 cm3; when wood waste was incorporated, the wear
firstly decreased at 2.5 wt.% wood waste content and then increased with further wood
waste loading. The volumetric wear remained at 0.0372–0.0606 cm3 for the 2.5 wt.% wood
waste-filled composite, which was 26–38% lower than that of pure PLA. In comparison, the
highest volumetric wear was registered for 10 wt.% wood waste-filled composites, which
fluctuated between 0.0792–0.1439 cm3. The thermal softening of the PLA resin occurred as
the sliding velocity rose due to increased heat production, resulting in increased wear with
increased sliding velocity. The variation of volumetric wear with sliding velocity showed
that the wear of the PLA composite increased when the sliding velocity rose higher. As the
sliding velocity grew, the thermal softening of the PLA resin took place due to increased
heat generation. The higher heat weakened the filler–resin bonding, and it became easier to
detach the wood waste particles from the composite surface during sliding, which resulted
in increased wear. Bajpai et al. [34] observed a similar mechanism for sliding wear in the
case of natural fiber-reinforced PLA composites. For lower load-velocity sliding conditions,
Megahed et al. [46] concluded that the generation of slight surface deformation resulted in
lower wear. However, surface deformation increased at higher normal load and sliding
velocity conditions, resulting in increased wear.

Figure 4. Volumetric wear of the composites as a function of sliding velocity.

3.3. The Taguchi Analysis for Sliding Wear Performance

According to the literature, biocomposites can be used in various applications where
wear is a critical issue. The wear performance of PLA biocomposites is significantly influ-
enced by the type and amount of reinforcement and testing parameters [28–30]. Therefore,
our investigation was designed to find the most significant control parameter and combina-
tion of parameters that yielded the slightest wear during sliding. The experiments were
conducted as L25 orthogonal array design considering the impact of wood waste content,
sliding distance, normal load, and sliding velocity on wear performance.

The Taguchi method suggests investigating the SN ratio by utilizing conceptual
methodology that includes diagramming impacts and visually identifying the critical
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parameters. The results of the volumetric wear and their corresponding SN ratios are
collected in Table 4. The investigation was conducted in Minitab 18. The volumetric
wear obtained ranged from 0.0091 cm3 to 0.1727 cm3. The lowest and highest volumetric
wear was obtained in test runs 6 and 25, respectively. Additionally, the influence of the
selected four control parameters on the SN ratio of the volumetric wear is presented in
Figure 5, while the SN ratio response is found in Table 5. As shown in Figure 5, there
was a decrease in the volumetric wear of the composites upon increasing the amount of
wood waste content from 0 to 2.5 wt.%; however, it started increasing above 2.5 wt.% wood
waste content.

Table 4. Volumetric wear and corresponding SN ratio.

Test Run Volumetric
Wear (cm3) SN Ratio Test Run Volumetric

Wear (cm3) SN Ratio

1 0.0094 40.5374 14 0.0663 23.5697
2 0.0365 28.7541 15 0.0960 20.3546
3 0.0508 25.8827 16 0.0592 24.5536
4 0.0686 23.2735 17 0.0780 22.1581
5 0.1332 17.5099 18 0.1169 18.6437
6 0.0091 40.8192 19 0.1189 18.4964
7 0.0218 33.2309 20 0.1033 19.7180
8 0.0606 24.3505 21 0.0830 21.6184
9 0.0368 28.6830 22 0.0785 22.1026
10 0.0353 29.0445 23 0.0916 20.7621
11 0.0515 25.7639 24 0.1471 16.6477
12 0.0258 31.7676 25 0.1727 15.2542
13 0.0600 24.4370

Figure 5. Main parameter effects for various SN ratio values of volumetric wear.

The minimum value of 0.0091 cm3 for volumetric wear was obtained for the 2.5 wt.%
wood waste-filled composite. The situation changed when the wood waste content started
increasing. The maximum value of 0.1727 cm3 was obtained for the biocomposite with
10 wt.% wood waste content. This significant behavior was potentially due to the agglom-
eration of the wood particles as a result of their poor interfacial bond with the PLA matrix.
Due to the poor bonding, the wood waste particles were quickly drawn/peeled off from
the PLA matrix during sliding, thus leading to the increased wear of the biocomposites.
From the response displayed in Table 5, it can be assumed that among all the control param-
eters, wood waste content is an essential parameter, followed by normal load and sliding
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velocity, while sliding distance has a minimal impact on the volumetric wear of the tested
biocomposite. Moreover, based on the results, it can be concluded that the combination
of control parameters AII (2.5 wt.% wood waste), BI (10 N normal load), CI (500 m sliding
distance), and DI (0.6 m/s sliding velocity) provided minimum volumetric wear. The result
suggests that 2.5 wt.% wood waste-filled PLA biocomposite can be used for a low loading
application of load and sliding velocity.

Table 5. SN ratio response table.

Level A B C D

I 27.19 30.66 26.78 28.29
II 31.23 27.60 25.84 24.69
III 25.18 22.82 24.25 25.54
IV 20.71 22.13 23.84 23.42
V 19.28 20.38 22.88 21.64

Delta 11.95 10.28 3.90 6.65
Rank 1 2 4 3

In addition, the influence of the most dominant control parameter (i.e., wood waste
content) was analyzed on volumetric wear by drawing contour plots (Figure 6a–c) against
(a) wood waste content and normal load, (b) wood waste content and sliding distance,
and (c) wood waste content and sliding velocity. The contour plots demonstrate that the
volumetric wear tended to increase when the wood waste content, normal load, sliding
distance, and sliding velocity increased gradually. It was revealed that the lowest volumet-
ric wear of 0.0091 cm3 was obtained at 2.5 wt.% wood waste content and the lower value
(10 N) of the normal load. In contrast, the maximum volumetric wear of 0.1727 cm3 was
obtained at 10 wt.% wood waste content and at a high level (50 N) of the normal load.

Figure 6. Contour plots of volumetric wear for wood waste content with respect to (a) normal load,
(b) sliding distance, and (c) sliding velocity.

3.4. Contribution Ratio Results

The contribution ratio of each parameter for volumetric wear is listed in Table 6 and
presented in Figure 7. The overall SN ratio mean value (<) for the 25 trials was determined
using Equation (3) and found to be 24.72 dB. The level mean of SN ratio values for each
control parameter was computed using Equation (4). The sum of squares (
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determined by Equation (5), and for the individual control parameter the
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i value was
determined by Equation (6). Thereafter, the contribution ratio (ψ) for each control parameter
was computed using Equation (7). The results show that wood waste, normal load, sliding
distance, and sliding velocity contributed to the volumetric wear by 46.82%, 36.08%, 4.90%,
and 12.20%, respectively. The contribution results indicate that the wood waste content was
the most significant control parameter affecting the volumetric wear of the biocomposites,
followed by the normal load.
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3.5. Worn Surface Morphology

The results of SEM inspections are presented in Figures 8 and 9. Figure 8a,b show the
worn surfaces of bare PLA tested under 50 N load, 2500 m distance, and 3 m/s sliding
velocity. In the image of lower magnification (Figure 8a), the worn surface was moder-
ately rough, revealing possible micro-ploughing in the matrix. At a higher magnification
(Figure 8b), the worn surface showed more scratches/damage to the matrix, resulting in
increased material removal. As a consequence of sliding, the contact temperature was
uncommonly expanded, which caused an accelerative rupture of the matrix, particularly in
the interfacial zone. Accordingly, the surface damage strikingly expanded with grooves
left by the matrix removal, resulting in a higher weight loss (Figure 8b). Figure 8c,d present
the worn surfaces of 2.5 wt.% wood waste-filled biocomposite tested under 40 N load,
2500 m distance, and 0.6 m/s sliding velocity. In contrast with Figure 8a,b for bare PLA, the
worn surfaces for 2.5 wt.% wood waste-added biocomposite was much smoother, and the
matrix detachment was enormously restricted with the inclusion of wood waste particles.
Even at lower magnification, the worn surface remained uniform with a lesser extent of
micro-ploughing and groove formation, resulting in a slight wear of the biocomposite.
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Figure 8. Worn micrographs of biocomposites: (a,b) bare PLA and (c,d) 2.5 wt.% wood waste-filled
biocomposites at lower and higher magnification.

Figure 9a–f show the SEM images of the worn surfaces of 5 wt.% (under 50 N load,
1000 m distance, and at 2.4 m/s sliding velocity), 7.5 wt.% (under 40 N load, 1000 m
distance, and at 3 m/s sliding velocity) and 10 wt.% (under 50 N load, 2000 m distance,
and at 1.8 m/s sliding velocity) wood waste-filled PLA biocomposites. In comparison
to Figure 8, the worn surfaces presented in Figure 9 were rougher with severe damage.
Therefore, the worn surfaces were characterized by intense sub-surface damage due to
sliding, while micro-ploughing was responsible for the heavy eradication of the surface
material. The increased scattered wear particles and grooves formed by micro-ploughing
contributed to the decreased wear resistance of these biocomposites. Moreover, the wood
waste particles appeared to be seriously damaged, suggesting a poor filler-matrix interfacial
bonding, which also resulted in elevated wear.
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Figure 9. Worn micrographs of biocomposites: (a,b) 5 wt.%, (c,d) 7.5 wt.%, and (e,f) 10 wt.% wood
waste-filled biocomposites at lower and higher magnification.

4. Conclusions

The thermal and sliding wear properties of Indian rosewood waste-filled PLA-based
biocomposites were investigated. The following conclusions can be drawn:

1. The thermal stability of the PLA biocomposites increased with an increase in wood
waste loading.

2. The wear of the biocomposites increased with an increase in load and sliding velocity.
Compared with pure PLA, the wear in 2.5 wt.% wood waste-added biocomposites
was almost 26–38% lower.

3. The Taguchi analysis demonstrated that the combination of control parameters
AII (wood waste of 2.5 wt.%), BI (normal load of 10 N), CI (sliding distance of 500 m),
and DI (sliding velocity of 0.6 m/s) offers the lowest volumetric wear for the
manufactured biocomposites.
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4. Wood waste content with 46.82% contribution was observed as the most dominant
parameter for controlling the wear of the biocomposites, followed by the normal load,
sliding velocity, and sliding distance with contributions of 36.08%, 12.20%, and
4.90%, respectively.

5. The worn surface study revealed that the micro-ploughing, grooves formation, and
poor filler-matrix interfacial bonding were the possible cause of biocomposites wear.
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45. Erdoğan, A.; Gök, M.S.; Koç, V.; Günen, A. Friction and wear behavior of epoxy composite filled with industrial wastes. J. Clean.
Prod. 2019, 237, 117588. [CrossRef]

46. Megahed, A.A.; Agwa, M.; Megahed, M. Improvement of Hardness and Wear Resistance of Glass Fiber-Reinforced Epoxy
Composites by the Incorporation of Silica/Carbon Hybrid Nanofillers. Polym. Technol. Eng. 2017, 57, 251–259. [CrossRef]

http://doi.org/10.1016/j.applthermaleng.2017.01.025
http://doi.org/10.1016/j.jclepro.2021.127483
http://doi.org/10.1002/mame.201000403
http://doi.org/10.1021/ie0488849
http://doi.org/10.3390/ma10040339
http://www.ncbi.nlm.nih.gov/pubmed/28772694
http://doi.org/10.1016/j.jclepro.2019.07.063
http://doi.org/10.1080/03602559.2017.1320724

	Introduction 
	Experimental Details 
	Materials and Biocomposite Fabrication 
	Thermogravimetric Analysis 
	Sliding Wear Study 
	Experiment Design 
	Contribution Ratio Analysis 
	Scanning Electron Microscopy 

	Results and Discussion 
	Thermal Stability Analysis 
	Influence of Normal Load and Sliding Velocity on Wear 
	The Taguchi Analysis for Sliding Wear Performance 
	Contribution Ratio Results 
	Worn Surface Morphology 

	Conclusions 
	References

