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Abstract: Epoxy resin, CFRP (Carbon Fiber Reinforced Polymer) sheet, and concrete flexural speci-
mens are selected to study the durability of carbon fiber strengthened cementitious materials in a
cold region. Two exposure environments, chloride immersion and salt-freeze coupling, are set up,
and the mechanical deterioration is discussed utilizing a microscopic observation mechanical test and
finite element analysis. The damage to the epoxy resin, CFRP sheet, and concrete exerts a more severe
performance degradation in the salt-freeze coupling environment when compared with the chlorine
salt immersion environment. The freeze–thaw action destroys the bonding surface of CFRP and
concrete based on the microscope observation. The flexural strength of the specimens strengthened
with CFRP is 3.6 times higher than that of the specimens without CFRP, while the degradation rate is
only 50%. These observations show that the strengthened CFRP effectively improves the cementitious
material’s flexural performance in the cold region. The finite element model of epoxy and CFRP
subjected to chloride immersion and salt-freeze coupling environment is established. The degradation
formula of bond performance between CFRP and concrete is proposed. In addition, the flexural me-
chanical numerical model is established with and without CFRP strengthened concrete, respectively.
Research results provide a technical reference for applying CFRP reinforced cementitious materials in
a cold region.

Keywords: CFRP (Carbon Fiber Reinforced Polymer); cementitious materials; salt-freeze coupling
environment; finite element analysis; durability

1. Introduction

Concrete buildings are simultaneously subjected to the coupling effect of chloride
erosion and freeze–thaw cycle (abbreviated to salt-freeze coupled environment) in the
marine environment of the cold region. In the salt-freeze coupling environment, concrete
buildings deteriorate seriously, making it challenging to ensure their performance and
safety. The actual service life of buildings is far from reaching the designed service life [1,2].
The chemical properties of CFRP in a chloride salt environment are relatively stable, and
CFRP bonded with concrete can partially prevent the chemical reaction between concrete
and chloride salt. Thus, the durability and bearing capacity of a concrete structure is
also improved and achieved to strengthen and protect the original damaged concrete
structure [3,4]. Toutanjiet et al. [5] studied the effect of carbon fiber on the mechanical
properties of cement paste composites. Adding polyacrylonitrile-based carbon fiber to
the cement paste matrix can significantly improve the tensile and bending properties of
the composites.

The durability of CFRP reinforced concrete structures is influenced by the following
factors: the durability of concrete materials, the durability of epoxy resin, the durability
of CFRP, and the durability of the interface between CFRP and concrete. However, most
researchers only discussed the durability of the above objects in a single chloride salt
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immersion environment or a single freezing-thawing environment. Therefore, limited
research focus on a comprehensive study of the coupling effect of influencing factors [6].

The carbon fiber sheet is presoaked with epoxy resin adhesive on both sides and
bonded along the tensile direction for the concrete structure strengthened with CFRP.
The CFRP and concrete are stressed together, giving full play to the compressive perfor-
mance of the concrete and the high tensile performance of the CFRP. This improves the
bearing capacity of the concrete structure and achieves the purpose of strengthening the
original concrete structure. The factors influencing stress transfer between carbon fiber
sheets and concrete include the interface bonding performance between CFRP and concrete
and the mechanical properties of the epoxy resin itself. Therefore, it is necessary to study
their durability in a chloride environment. Lu et al. [7] studied the durability of epoxy resin
adhesive in the dry–wet cycle environment of chloride solution. Results show that chloride
salt is deposited on the surface of the epoxy resin adhesive sheet. After 360 dry–wet cycles,
the tensile strength, tensile elastic modulus, and ultimate tensile strain of epoxy resin adhe-
sive sheet decreased by 27.8%, 3.2%, and 64.8%, respectively. Sousa et al. [8] investigated
the durability of epoxy resin adhesive in a chloride solution. The water absorption and
dynamic mechanical analysis (DMA) were performed. The results show that the diffusion
of erosion medium in the sheet does not follow Fick’s second law, and the bending and
shear properties show plastic characteristics. Rudawska [9] discussed the durability of
epoxy resin adhesive in different concentrations of chloride solution, and a digital mi-
croscope and the axial compression test were carried out. The compressive strength of
the sheet decreases with the increase of chloride concentration under the same soaking
cycle. Ascione et al. [10] tested the durability of two commonly used epoxy resin adhesives
(SikaDur30 and Araldite) in a seawater immersion environment. The thermal analysis and
fracture energy of epoxy resins was evaluated using the flexibility beam method. The re-
sults showed that the mechanical properties of epoxy resin degraded more seriously in
saline solution than in tap water solution.

CFRP itself has a tremendous advantage of tension, which can improve the bearing
capacity of the concrete structure. Therefore, it is necessary to study the durability of
CFRP chloride salt and salt-freeze coupled environment, respectively. Hong et al. [11]
studied the durability of CFRP sheets under the coupling action of seawater immersion and
continuous bending load. Test results show that chloride salt is deposited on the epoxy resin
adhesive surface, located in the out-layer of CFRP. Furthermore, the seawater immersion
environment has more severe degradation of the tensile properties of CFRP sheets when
compared with the distilled water immersion environment. Xie et al. [12] evaluated the
durability of CFRP in the dry–wet cycle environment of chloride solution when subjected
to 0, 60, 120, 240, and 360 dry–wet cycles, respectively. The results show that the mechanical
properties of the CFRP sheet decrease slightly due to the hydrolysis of the epoxy resin
matrix, resulting in the damage of the interface between carbon fiber and epoxy resin matrix.
Cruz et al. [13] used Fourier transforms infrared spectroscopy (FTIR) to study the chemical
characterization of the CFRP sheet in a seawater immersion environment, followed by
dynamic mechanical analysis (DMA). Results show that the mechanical properties of CFRP
sheets do not change significantly after one year of immersion.

The durability of CFRP reinforced cementitious materials also needs to be further
investigated. Nasser et al. [14] studied the durability of reinforced concrete beams strength-
ened with CFRP in chloride solution. Four-point bending was performed to evaluate
the load-displacement relationship, strain, failure mode, ductility, and stiffness. The re-
sults show that CFRP improves the ultimate bearing capacity of the beam. A reduction
coefficient of flexural strength of CFRP reinforced concrete in a chloride environment is
proposed. Choi et al. [15] studied the durability of concrete beams strengthened with CFRP
in chloride solution. It is found that the flexural strength of beam specimens decreases
with environmental exposure, and the effect of the chloride environment on the bonding
performance between concrete and CFRP is evaluated. The durability of reinforced concrete
beams strengthened with prestressed CFRP in the dry–wet cycle environment coupled
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with chloride solution was investigated [16]. It is found that the dry–wet cycle cause loss of
prestressing of CFRP, and the prestress is decreased by about 15% after 60 days of exposure.
Zhang et al. [17] discussed the effect of freeze–thaw damage on chloride ion penetration
into concrete and reinforcement corrosion. The chloride ion diffusion coefficient increases
linearly with freezing and thawing times, and the propagation speed of steel corrosion is
significantly accelerated. Yu et al. [18] studied the axial performance of concrete strength-
ened with CFRP under different environments. The CFRP has good corrosion resistance
and effectively improves the strength and ductility of specimens. Yang et al. [19] developed
the mechanical model of the concrete bridge deck strengthened with CFRP. The numerical
simulation results agree with the test results, and the bridge deck makes full use of the
high tensile and corrosion resistance of CFRP. Castaldo et al. [20] studied the deterioration
of chloride on reinforced concrete structures. The degradation effects of chloride on rein-
forcement, concrete, and the bonding surface between reinforcement and concrete were
discussed. In addition, the model of chloride ion penetration into concrete is established
based on Fick’s second law, and the service life is evaluated. Castaldo et al. [21] proposed
an additional safety factor based on failure mode, and the overall design resistance related
to experimental uncertainty was evaluated. Haukaas et al. [22] proposed a new method
to deal with model uncertainty in finite element analysis. An extended model formula is
developed based on the comprehensive information database to evaluate laboratory testing,
error estimation, and accurate numerical solutions. Gino et al. [23] discussed the influence
of experimental uncertainty on the statistical estimation of uncertain random variables
of the resistance model. The uncertain resistance model is characterized by comparing
experimental results and numerical results, and the cognitive uncertainty is quantified.

The durability of epoxy resin, CFRP sheet, and cementitious materials specimens
is investigated in this study. Two corrosive environments are set up: the chlorine salt
immersion and the salt-freeze coupling environment. The damage degree of the exposed
environment to the above specimens is investigated by microscope observation. The tensile
properties of epoxy resin and CFRP sheet (including the ultimate tensile strain of tensile
strength and stress–strain curve) are measured by tensile test, and the degradation of
the tensile properties of the sheet in the exposed environment is discussed. The flexural
properties (including flexural strength, deflection, and load-deflection curve) of specimens
subjected to bending are measured by a four-point flexural tension test. In addition, the
degradation law of flexural properties of specimens subjected to bending is discussed.
A finite element model is proposed to analyze the internal force distribution characteristics,
failure modes, and mechanical properties.

2. Materials and Methods
2.1. Epoxy Resin Adhesive and Carbon Fiber Cloth

A unidirectional carbon fiber sheet with a thickness of 0.167 mm is used in the test,
as shown in Figure 1a. Carbon fiber can be prepared by blending polyacrylonitrile (Pan)
and lignin and then by a wet-spinning process, and it is often used in concrete engineer-
ing reinforcement. The CFRP bonding adhesive is divided into A and B components,
including a curing agent and epoxy resin (Figure 1b). After 7 days, the curing degree of
epoxy resin is 95%. The material properties are shown in Table 1. The manufacturer of
epoxy resin and carbon fiber cloth is Shanghai Jingdong Construction Technology Co., Ltd.
(Shanghai, China).

Table 1. Tensile properties of CFRP and epoxy adhesive.

Material Tensile
Strength/MPa

Elastic
Modulus/GPa

Elongation at
Break/%

CFRP composite 3520 267 1.78

Epoxy resin adhesive 54.3 2.7 2.25



Polymers 2022, 14, 2190 4 of 27

Figure 1. Carbon fiber sheet and epoxy resin adhesive and: (a) carbon fiber sheet and (b) epoxy resin
adhesive.

The mix ratio of epoxy resin and curing agent is 2:1, and curing for 7 days at room
temperature of 25 ◦C. The epoxy specimen size and strain gauge layout point are shown
in Figure 2. Similarly, the carbon fiber is cut into 250 mm in length and 200 mm in width,
then brushed with epoxy resin adhesive on both sides to constitute a CFRP sheet, as shown
in Figure 3.
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2.2. Concrete

Concrete design strength is 30 MPa in this test, and its composition materials include
water, cement, sand, and gravel, as shown in Figure 4. Table 2 shows the concrete mix
design, and the ordinary Portland cement is selected for cement. Fine aggregate is medium
sand with a modulus coefficient of 2.4. Coarse aggregate is gravel, of which a particle size
of 5~10 mm accounted for 30% and 10~20 mm accounted for 70%.

Table 2. Concrete mix proportion.

Material Water Cement Sand Crushed Stone

content/(kg/m3) 209 387 635 1169
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The unreinforced and CFRP reinforced concrete prism specimens are selected, and the
dimension of a specimen is 100 mm width by 100 mm height by 400 mm length. A notch of
30 mm height is prefabricated on the midspan’s tension side to guarantee bending failure,
and a rectangle shape of 100 mm × 300 mm CFRP strip bonded on the tensile side of
CFRP reinforced concrete specimen, as shown in Figure 5a,b. The flexural performance
and durability of CFRP reinforced concrete are discussed. Figure 6 shows the four-point
loading position, and a strain gauge is bonded on the surface of CFRP to measure the strain
variation during loading development.
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2.3. Exposure Environment

There are two kinds of exposure environments: chlorine immersion and salt-freeze
coupling effect, respectively. Figure 7a shows the specimen immersed in NaCl solution
with a mass concentration of 3.5% at room temperature of 25 ◦C; that is, in the chlorine-salt
immersion environment. As shown in Figure 7b, the freeze–thaw cycle test is carried out
using the quick-freezing method, with a freeze–thaw cycle period of 4 h. The freezing–
thawing medium is NaCl solution with a mass concentration of 3.5%, which is the salt-freeze
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coupling environment. The central temperature of specimens and the inner freezing and
thawing machine are monitored, and the temperature curve variation is shown in Figure 8.

1 
 

  
(a) (b) 

 
Figure 7. Exposure environment: (a) chlorine salt immersion environment and (b) salt-freeze
coupled environment.
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The epoxy resin, CFRP sheet, and concrete specimens are grouped and numbered
when subjected to various environments and duration. The definition of numbering infor-
mation is shown in Tables 3 and 4. The serial number of Carbon Fiber Reinforced Polymer
is abbreviated to CFRP, and the epoxy resin is abbreviated to EP. Similarly, the reinforced
concrete specimen is abbreviated to RF, and the unreinforced concrete specimen is abbre-
viated to URF. For environmental effect, no deterioration is abbreviated to ND, chlorine
salt immersion environment is abbreviated to SI, and salt-freezing coupled environment is
abbreviated to SF.
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Table 3. Number of epoxy resin and CFRP sheet.

Exposure Environment Epoxy Resin Adhesive Sheet CFRP Sheet

No deterioration EPND CFRPND

Chlorine salt immersion for 100 h EPSI-100 CFRPSI-100

Chlorine salt immersion for 200 h EPSI-200 CFRPSI-200

Chlorine salt immersion for 300 h EPSI-300 CFRPSI-300

Chlorine salt immersion for 400 h EPSI-400 CFRPSI-400

Salt-freezing coupling 25 times EPSF-25 CFRPSF-25

Salt-freezing coupling 50 times EPSF-50 CFRPSF-50

Salt-freezing coupling 75 times EPSF-75 CFRPSF-75

Salt-freezing coupling 100 times EPSF-100 CFRPSF-100

Table 4. Number of concrete specimens.

Exposure Environment Unreinforced Specimen Reinforced Specimen

No deterioration URFND RFND

Chlorine salt immersion for 100 h URFSI-100 RFSI-100

Chlorine salt immersion for 200 h URFSI-200 RFSI-200

Chlorine salt immersion for 300 h URFSI-300 RFSI-300

Chlorine salt immersion for 400 h URFSI-400 RFSI-400

Salt-freezing coupling 25 times URFSF-25 RFSF-25

Salt-freezing coupling 50 times URFSF-50 RFSF-50

Salt-freezing coupling 75 times URFSF-75 RFSF-75

Salt-freezing coupling 100 times URFSF-100 RFSF-100

2.4. Microscopic Observation

A digital microscope is used to observe the damage degree of epoxy resin, CFRP sheet,
and concrete specimens, respectively. The typical epoxy resin of EPND, EPSI-400, and
EPSF-100 is selected to observe its surface deterioration. Similarly, CFRPND, CFRPSI-400,
and CFRPSF-100 are selected for CFRP; URFND, URFSI-400, and URFSF-100 are selected
for the unreinforced specimen; and RFND, RFSI-400, and RFSF-10 are selected for the
reinforced specimen, as shown in Figure 9.
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2.5. Mechanical Test

In order to investigate the mechanical performance deterioration in a corrosive en-
vironment, tensile tests are carried out on epoxy resin and CFRP sheets. The tensile test
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process is composed of mechanical control and data acquisition system, and the loading
rate is 2 mm/min, as shown in Figure 10.
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Figure 10. Tensile mechanical test: (a) epoxy resin and (b) CFRP sheet.

Figure 11 shows the four-point flexural tension test for concrete specimens concerning
various exposure environments; the loading rate is 0.05 MPa/s. In order to obtain the
strain development along the CFRP sheet direction, five strain gauges are bonded on the
CFRP surface and numbered as A, B, C, D, and E from left to right, as shown in Figure 6.
A displacement meter is set at the bottom of the specimen midspan to obtain the deflection
of the flexural specimen.
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3. Results
3.1. Epoxy Resin Adhesive Sheet and CFRP Sheet
3.1.1. Microstructure

The microstructure of epoxy resin is shown in Figure 12. The surface of EPND is
smooth and clean, without any damage. A small amount of sodium chloride crystal is
attached to the surface of EPSI-400, and there are small depressions and micro-cracks
on the surface. However, many sodium chloride crystals are attached to the surface of
EPSF-100, and noticeable depressions and microcracks are observed. The damage of epoxy
resin in a salt-freeze coupling environment is more severe than that in a chlorine-salt
immersion environment.

Similarly, Figure 13 shows that the CFRPND surface is smooth and clean without
damage. A small amount of sodium chloride crystal can be observed on the CFRPSI-400
surface and slight depressions and micro-cracks on the epoxy resin matrix. At the same
time, the inner CFRPSI-400 fiber has no apparent damage. Many sodium chloride crystals
are attached to the CFRPSF-100 surface, and the epoxy resin on the surface has noticeable
depressions and microcracks, while the carbon fiber has no apparent damage. Compared
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with the chlorine immersion environment, the damage to the CFRP sheet in the salt-freeze
coupling environment is more serious.
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All these observations can be explained; the epoxy resin contained an ether bond due
to a chemical reaction between resin and curing agent. Some uncured epoxy resins contain
hydrophilic hydroxyl groups, and curing agents contain tertiary amines and a small amount
of incomplete primary and secondary amines. These groups will be hydrolyzed to varying
degrees in a salt solution, which leads to some depressions on the surface of epoxy resin
and CFRP sheet. Furthermore, low temperature and chlorine ion environment can destroy
the inner structure of epoxy resin, and the internal micro-cracks occur. The epoxy resin
deterioration is derived from group hydrolysis and chloride ions erosion in the chlorine
salt immersion environment. However, the coupled effect of the group hydrolysis, chloride
ion erosion, and freeze–thaw cycles caused the damage to epoxy resin in the salt-freeze
environment. In addition, the microcracks caused by freeze–thaw cycles promote the
penetration of sodium chloride solution, leading to further damage to epoxy resin and
CFRP sheet.

3.1.2. Failure Mode

The appearance and morphology of the epoxy resin and CFRP sheet are observed in
the tensile test. Figure 14 shows the failure modes of EPND, EPSI-400, and EPSF-100, and
there is no significant change at the initial loading stage. The specimens’ sudden breaks
occur when the ultimate load is reached. The fracture of the epoxy resin appears randomly
along with the standard interval, and the exposure environment has no significant influence
on the failure pattern. The failure modes of CFRPND, CFRPSI-400, and CFRPSF-100 have
brittle failures, as shown in Figure 15. There is no significant change in the initial loading
stage. The epoxy resin on the surface of the CFRP sheet cracks with the progress of
loading. The sample will break suddenly when the ultimate load is reached. The failure
process of CFRP sheet is consistent with relevant research [12]. The fracture of CFRP sheet
appeared randomly along with the standard interval, and the exposure environment has
no significant influence on the failure pattern.
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3.1.3. Tensile Performance

The tensile strength and ultimate tensile strain of epoxy resin and CFRP sheet are
shown in Tables 5 and 6. The change rate refers to the damage rate of the mechanical index
of a deteriorated specimen relative to the non-deteriorated specimen. The tensile modulus
of elasticity is shown in Table 7. The stress–strain relationship is shown in Figures 16 and 17,
respectively. The tensile strength of epoxy resin has a decreased trend, and the ultimate
tensile strain has an increasing trend. The elastic modulus decreases, and the second
half of the stress–strain curve is nonlinear, indicating that the mechanical properties of
epoxy resin are seriously degraded in the exposed environment. The CFRP sheet exerts a
similar deterioration trend for mechanical properties due to external epoxy resin protection.
Compared with the chlorine immersion environment, the mechanical properties of epoxy
resin and CFRP sheet degrade more seriously in the salt-freeze coupling environment.
The tensile strength degradation rate of the CFRP sheet is lower than that of epoxy resin,
indicating that the durability of the CFRP sheet is more robust than that of epoxy resin.
With the increase in exposure time, the epoxy resin microcracks development from surface
to inside is caused by the coupled effect of the group hydrolysis reaction, the freeze–thaw
cycles, and chloride corrosion. In addition, epoxy resin is plasticized by water absorption
in chloride solution, resulting in a nonlinear stress–strain curve. The mechanical properties
of CFRP sheets are mainly determined by CFRP fiber because the tensile strength of epoxy
resin is much lower than that of CFRP fiber. The damage to the epoxy resin matrix has
little influence on the mechanical properties of CFRP sheets. The interface damage between
carbon fiber and epoxy resin is the main factor leading to mechanical degradation of CFRP
sheet, and the carbon fiber itself is not damaged.
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Table 5. Tensile strength of epoxy resin and CFRP sheet.

Epoxy Resin
Adhesive Sheet

Tensile
Strength/MPa Change Rate/% CFRP Sheet Tensile

Strength/MPa Change Rate/%

EPND 44.68 — CFRPND 3508.98 —

EPSI-100 44.34 −0.76 CFRPSI-100 3493.25 −0.45

EPSI-200 43.98 −1.57 CFRPSI-200 3479.37 −0.84

EPSI-300 43.66 −2.28 CFRPSI-300 3462.75 −1.32

EPSI-400 43.32 −3.04 CFRPSI-400 3448.31 −1.73

EPSF-25 43.24 −3.22 CFRPSF-25 3478.75 −0.86

EPSF-50 41.72 −6.62 CFRPSF-50 3450.09 −1.68

EPSF-75 40.33 −9.74 CFRPSF-75 3417.86 −2.6

EPSF-100 38.82 −13.12 CFRPSF-100 3387.57 −3.46

Table 6. Tensile strain of epoxy resin and CFRP sheet.

Epoxy Resin
Adhesive Sheet Tensile Strain/µε Change Rate/% CFRP Sheet Tensile Strain/µε Change Rate/%

EPND 15,992 — CFRPND 13,616 —

EPSI-100 16,402 2.56 CFRPSI-100 13,703 0.64

EPSI-200 16,499 3.17 CFRPSI-200 13,778 1.19

EPSI-300 16,811 5.12 CFRPSI-300 13,868 1.85

EPSI-400 17,046 6.59 CFRPSI-400 13,954 2.48

EPSF-25 16,602 3.81 CFRPSF-25 13,740 0.91

EPSF-50 17,614 10.14 CFRPSF-50 13,847 1.7

EPSF-75 18,205 13.84 CFRPSF-75 13,972 2.61

EPSF-100 18,883 18.08 CFRPSF-100 14,095 3.52

Table 7. Tensile modulus of elasticity of epoxy resin and CFRP sheet.

Epoxy Resin
Adhesive Sheet

Tensile Modulus
of Elasticity/MPa Change Rate/% CFRP Sheet Tensile Modulus

of Elasticity/MPa Change Rate/%

EPND 2554 — CFRPND 256,622 —

EPSI-100 2482 −2.82 CFRPSI-100 256,122 −0.19

EPSI-200 2474 −3.13 CFRPSI-200 255,632 −0.39

EPSI-300 2421 −5.21 CFRPSI-300 253,048 −1.39

EPSI-400 2325 −8.97 CFRPSI-400 250,471 −2.4

EPSF-25 2455 −3.88 CFRPSF-25 254,066 −1

EPSF-50 2282 −10.65 CFRPSF-50 252,053 −1.78

EPSF-75 2048 −19.81 CFRPSF-75 248,353 −3.22

EPSF-100 1903 −25.49 CFRPSF-100 244,681 −4.65
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3.2. Concrete Flexural Specimen
3.2.1. Microstructure

The entire cement mortar matrix surface is observed for URFND and RFND specimens
without environmental effect, as shown in Figures 18 and 19. The surfaces of URFSI-400
and RFSI-400 have slight microcracks, while severe microcracks occur in URFSF-100 and
RFSF-100. This can be explained by the crystallization extrusion pressure generated by the
precipitation of sodium chloride crystals leading to microcracks in the specimen, and the
microcracks development is positively related to the sodium chloride crystals. In addition,
pore water continuously repeats the process of crystallization–liquefaction–crystallization
under the effect of the freeze–thaw cycle. As a result, the inner crystals continuously
produce frost heaving force and finally lead to the micro-cracks constantly produced
under the repeated action of frost heaving force [6]. It indicates that the damage to spec-
imens in a salt-freeze coupling environment is more severe than that in a chloride salt
immersion environment.

Figure 20 shows the microstructure of the bond surface between CFRP and concrete. No
apparent damage is observed on the RFND and RFSI-400 interface, and micro-cracks appear
on the bond surface of RFSF-100, indicating that the bond surface is more seriously damaged
in the salt-freeze coupling environment than in the chlorine-salt immersion environment.
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3.2.2. Failure Mode

The failure mode of URFND is shown in Figure 21. Similarly, the failure mode of
URFSI-400 is shown in Figure 22, and the failure mode of URFSF-100 is shown in Figure 23.
The unreinforced specimen’s failure pattern had no noticeable change at the beginning of the
loading process. Then, tiny cracks appear. The cracks develop rapidly, scaling up extends
to the top of the specimen, and the failure pattern is normal section flexural damage.

The failure modes of the reinforced specimen are different in various exposure to
environmental conditions. The failure mode is inclined section failure for RFND, and
the upper and lower ends of the inclined crack are located near the loading and support
points, respectively. As a result, the CFRP sheet and interface are not damaged, as shown in
Figure 24. For specimen RFSI-400, its failure mode is similar to that of specimen RFND, as
shown in Figure 25. Figure 26 shows the normal section bending failure for RFSF-100, and
the interface between CFRP and concrete is completely debonding, leading CFRP flakes off
the concrete surface.

For unreinforced bending specimens, the cracks initially occurred at the notch location
(Figure 6) and then extension. The specimen’s upper side is subjected to compression,
and the downside is subjected to tension. The stress is redistributed for CFRP reinforced
concrete specimens because CFRP and concrete together into a whole load of engineering
structures. The positive tensile stress at the inclined section is the largest, leading to
its tensile failure. The bond strength between CFRP and concrete is reduced, and the
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strengthening effect is weakened, leading to the CFRP peeling off from the concrete surface
after the salt-freeze coupling effect.
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3.2.3. Bending Performance

The bending strength of specimens can be calculated by Formula (1) as follows:

f f =
Fl

bh2 (1)

where ff is flexure strength (MPa); F is specimen failure load (N); l is distance between
supports (mm), l = 300 mm; b is specimen width (mm), b = 100 mm; and h is specimen
height (mm), h = 70 mm.

The flexural strength and deflection of specimens subjected to bending are shown
in Tables 8 and 9. The average value and standard deviation of the flexural strength of the
test piece are shown in Figures 27 and 28. Their load–deflection relationship is shown
in Figures 29 and 30, respectively. For unreinforced specimens, the standard deviation
range of tensile strength is 0.06~0.13, the discrete type is small, and the data are relatively
stable. For reinforced specimens, the tensile strength standard deviation range is 0.17~0.4.
The discrete type is large, and the data stability is poor. The flexural strength of the strength-
ened specimens is 360% higher than that of the unreinforced specimens, which indicates
that CFRP can effectively improve flexural strength. The bending strength, deflection, and
compressive stiffness of all specimens decreased slightly after chlorine salt immersion, and
the longer the immersion period, the more noticeable these changes occurred. The speci-
men micro-cracks are generated from surface to interior after being immersed in chlorine
salt, and cracking continues to expand during the loading process until failure in advance,
reducing the flexural strength stiffness and deflection of the specimen.
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Table 8. Flexural strength of concrete flexural specimen.

Unreinforced
Specimen

Flexural
Strength/MPa Change Rate/% Reinforced

Specimen
Flexural

Strength/MPa Change Rate/%

URFND 3.804 — RFND 15.072 —

URFSI-100 3.582 −5.836 RFSI-100 14.706 −2.428

URFSI-200 3.366 −11.514 RFSI-200 14.34 −4.857

URFSI-300 3.252 −14.511 RFSI-300 13.974 −7.285

URFSI-400 3.006 −20.978 RFSI-400 13.608 −9.713

URFSF-25 3.144 −17.35 RFSF-25 13.878 −7.922

URFSF-50 2.556 −32.808 RFSF-50 12.69 −15.804

URFSF-75 1.908 −49.842 RFSF-75 11.454 −24.005

URFSF-100 1.302 −65.773 RFSF-100 10.248 −32.006

Note: Change rate = FND−FD
FND

× 100%, FND: flexural strength of non-deteriorated specimen; FD: flexuralstrength
of deteriorated specimen.

Table 9. Deflection of concrete flexural specimen.

Unreinforced
Specimen Deflection/mm Change Rate/% Reinforced

Specimen Deflection/mm Change Rate/%

URFND 0.576 — RFND 1.579 —

URFSI-100 0.557 −3.299 RFSI-100 1.563 −1.013

URFSI-200 0.537 −6.771 RFSI-200 1.546 −2.09

URFSI-300 0.514 −10.764 RFSI-300 1.53 −3.103

URFSI-400 0.494 −14.236 RFSI-400 1.514 −4.117

URFSF-25 0.505 −12.326 RFSF-25 1.491 −5.573

URFSF-50 0.431 −25.174 RFSF-50 1.392 −11.843

URFSF-75 0.359 −37.674 RFSF-75 1.285 −18.619

URFSF-100 0.289 −49.826 RFSF-100 1.185 −24.953

Note: Change rate = DND−DD
DND

× 100%, DND: deflection of non-deteriorated specimen; DD: deflection of deterio-
rated specimen.
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After the salt-freeze coupling effect, the unreinforced and strengthened bending
specimens exert a similar decrease trend. The whole concrete structure becomes loose
under the repeated action of frost heaving force, resulting in a higher reduction than in the
chlorine salt environment. The bond force between CFRP and concrete is also the main
factor affecting the mechanical properties of the flexural specimens. The degradation of
the bond force reduces the bearing capacity of the flexural specimens in the salt-freeze
coupling environment.
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For CFRP reinforced flexural specimens, the tensile strain of CFRP strips at various
positions is shown in Figure 31. The bond strength gradually decreases between CFRP and
concrete due to the deterioration of epoxy resin with increasing chloride exposure time.
Therefore, the tensile strength of CFRP decreases while the tensile strength of concrete in-
creases, resulting in a decrease in the tensile strain of CFRP at various positions. Compared
with a chlorine salt immersion environment, a salt-freeze coupling environment has more
severe damage to CFRP and concrete bond performance.
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3.3. Finite Element Analysis
3.3.1. Epoxy Resin and CFRP Sheet

ABAQUS r2021x is used to simulate the tensile process of epoxy resin adhesive and
CFRP sheet. The CFRP is regarded as a linear elastic material, and only the tensile stress in
the fiber direction is considered in the finite element analysis. The CFRP is considered a
failure when the CFRP reaches the ultimate tensile strain. There is no difference in damage
form concerning different chlorine salt environments. Thus, the internal stress distribution
and plasticizing effect can be ignored. The linear elastic model is selected to consider
the limit tensile strength and the change in the chlorine salt environment. Similarly, the
mechanical properties fitting curve equation is described above for CFRP and epoxy resin in
a chloride environment, and the specific parameters of constitutive models are determined.
The expressions are as follows:

σ =

{
ECFRPε ε < εCFRP
0 ε > εCFRP

(2)

where ECFRP is modulus of elasticity for CFRP tension (MPa); and εCFRP is ultimate tensile
strain for CFRP.

σ =

{
EEPε ε < εEP
0 ε > εEP

(3)

where EEP is modulus of elasticity for epoxy resin tension (MPa); and εEP is ultimate tensile
strain for epoxy resin.

The epoxy resin finite element model is a three-dimensional solid structure, and the
mesh division is shown in Figure 32a. The epoxy simulation element type is C3D8R
(8-node hexahedron linear reduction integral solid element) and consists of 3570 units and
4944 nodes. Compared with the complete integral element, the C3D8R element contains
only one integral point in the element’s center, and the solution result is more accurate and
easier to converge.
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Figure 32. Mesh Dividing: (a) epoxy resin adhesive sheet and (b) CFRP sheet.

The CFRP finite element model is a three-dimensional plane structure, and the mesh
division is shown in Figure 32b. The element type is selected for S4R (4-node quadrilateral
linear reduced-integral shell element) and consists of 385 elements and 468 nodes. The S4R
element types can be used for modeling thin or thick shell structures, and it adopts a
reduced-integral mode to guarantee stable performance.

Reinforcement sections are reserved at both ends of epoxy resin and CFRP models.
In order to approach the actual situation, the reinforcement Section 1 is completely fixed
in all six degrees of freedom (U1 = U2 = U3 = UR1 = UR2 = UR3 = 0). A reference point
RP1 is set and coupled with the strengthened Section 2 to monitor the force value during
the loading process, and a linear displacement of loading method is used for reference
point RP1.

The failure modes of epoxy resin in different environments are the same no matter the
environmental effect. Figure 33a shows the stress distribution of EPND, and the maximum
stress and strain are concentrated in the middle segment, which is consistent with the
experimental result. Similarly, Figure 33b shows the stress distribution of CFRPND, and
the maximum stress and strain first appeared in the gage section of four corner points.
The stress and strain at the corner point first reach the ultimate tensile strength, resulting in
split failure of the CFRP sheet, which is consistent with the experimental phenomenon.
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Figure 34 shows the experimental and simulated values of epoxy resin’s ultimate ten-
sile strength subjected to different environmental effects. The maximum error between the
simulated and experimental values is 1.24%, and the fitting effect is satisfactory. The maxi-
mum error between the simulated and experimental values is 1.77% for the CFRP sheet,
as shown in Figure 35. The simulated value is slightly less than the test value because the
fixture in the experimental test cannot ultimately hinder the transverse deformation at the
corner of the sheet. However, a small transverse slip is occurred between the fixture and
the CFRP strip, delaying the corner from reaching the ultimate strength.
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3.3.2. Concrete Flexural Specimen

According to ‘Concrete Structure Design’ (GB50010-2010), the CDP model and the
determination method of concrete material parameters under uniaxial loading are used to
simulate the mechanical behavior in this study. The stress–strain relationship of concrete
under uniaxial tension and compression can be calculated by Equations (4) and (5), respec-
tively. Furthermore, the concrete degradation law of mechanical properties is proposed
under a salt-freeze coupling environment, and the concrete material is also simulated based
on this law [24,25].

σt = (1 − dt)Eεt (4)

σc = (1 − dc)Eεc (5)

where σt is concrete tensile stress; εt is concrete tensile strain; dt is evolution parameters
of concrete uniaxial tensile damage; σc is concrete compressive stress; εc is concrete ulti-
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mate compressive strain; dc is damage evolution parameters of concrete under uniaxial
compression; and E is elastic modulus of concrete.

For the flexural specimen model of concrete, the constitutive relation of CFRP and the
interface between CFRP and concrete are consistent with the axial compression specimen
model. Therefore, the C3D8R solid element is used to simulate concrete material, and the
S4R shell element is used to simulate CFRP material. The mesh division of concrete and
CFRP is shown in Figure 36.
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Figure 36. Mesh Dividing: (a) Concrete; (b) CFRP.

The ABAQUS software provides two methods for establishing a cohesion model based
on traction–separation law: cohesive element and cohesive surface interaction method.
Most studies often use the latter [26,27]. For traction–separation law, most studies adopt a
two-line constitutive model, which is divided into a linear elastic segment before reaching
ultimate strength and a linear decreasing stiffness segment after reaching ultimate strength.
The stiffness and fracture energy expressions are listed as Equations (6) and (7). Damage
initiation is related to traction–separation law, which reaches the moment of ultimate
strength. An initial damage criterion suitable for lamination simulation of composites is
provided by ABAQUS software and can be expressed with Equation (8):

K =
τ

ε
(6)

G =
1
2
· τmax · εmax (7)

where K is bond stiffness (N/mm3); τ is bond stress (MPa); ε is relative slip distance (mm);
and G is fracture energy (N/mm).{

εn

ε0
n

}2
+

{
εs

ε0
s

}2
+

{
εt

ε0
t

}2
= 1 (8)

where εn is normal strain of bond layer; εn
0 is limit normal strain of bond layer; εs and εt

are tangential strain of bond layer; and εs
0 and εt

0 are limit tangential strain of bond layer.
The degradation law of the bond force between CFRP and concrete in different envi-

ronments is shown in Equations (9) and (10).

τIt = 0.993t · τ (9)

τFTn = 0.987n · τ (10)

where τ is bond strength without deterioration (MPa); τIt is bond strength after t hours
of chlorine salt immersion (MPa); and τFTn is bond strength after n times of salt freeze
coupling (MPa).

The underlying block’s four degrees of freedom (Y, Z, RXY, and RYZ) are fixed to keep
the loading scheme consistent with the experiment. Similarly, the upper block is coupled
with the reference point RP-1, and all five degrees of freedom (X, Y, RXY, RYZ, and RZX)
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of the reference point are fixed to obtain output load and displacement. Hard contact and
no friction are used between concrete and the loading point. The reference points of the
above two loading points are applied concentrated linear force in the Z direction, which is
converted into a stress rate of 0.05 MPa/s.

The stress and crack damage distribution of URFND, URFSI-400, and URFSF-100
are shown in Figures 37–39, respectively. The maximum stress is concentrated in the
normal section area at the prefabricated crack. The stress distribution trend of specimens
subjected to bending has no significant change in the chloride salt environment, and the
only difference is the stress value. The failure modes of specimens are prefabricated cracks
that develop upward to the top of the beam, and the normal section is subjected to bending.
The experimental and simulation data of unreinforced concrete specimens under bending
in different environments are shown in Figure 40. The maximum error between simulated
and experimental values is 4.66%, indicating an ideal fitting effect.
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Figure 39. URFSF-100: (a) stress nephogram and (b) damage nephogram of prefabricated crack. 

Figure 37. URFND: (a) stress nephogram and (b) damage nephogram of prefabricated crack.
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Figure 40. Test values and simulated values of flexural strength of unreinforced concrete flexural 

specimen. 
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which could be ignored, indicating that the failure is located in the concentration area of 

the maximum stress. For the specimen RFSF-100, although the maximum stress is located 
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develops upward to the top of the beam, which is the flexural failure of the normal section. 

The damage to the bonding surface on the whole tensile side reaches 1, which represents 
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perimental test and simulation values of the reinforced bending specimens in different 

environments are shown in Figure 44. The maximum error between simulation and test 

values is 5.52%. 
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Figure 40. Test values and simulated values of flexural strength of unreinforced concrete flexural specimen.

The stress distribution, prefabricated crack damage, and CFRP-concrete interface bond
damage of RFND, RFSI-400, and RFSF-100 are shown in Figures 41–43, respectively. For the
specimens RFND and RFSI-400, the maximum stress is located in the line area between the
upper and lower pressure points, while the prefabricated crack does not extend upward.
The bonding surface only had weak damage at the prefabricated crack, which could be
ignored, indicating that the failure is located in the concentration area of the maximum
stress. For the specimen RFSF-100, although the maximum stress is located in the connecting
area of the upper and lower pressure points, the prefabricated crack develops upward
to the top of the beam, which is the flexural failure of the normal section. The damage
to the bonding surface on the whole tensile side reaches 1, which represents the bonding
force completely fails, and CFRP falls off from the concrete surface. The experimental test
and simulation values of the reinforced bending specimens in different environments are
shown in Figure 44. The maximum error between simulation and test values is 5.52%.
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Figure 41. RFND: (a) stress nephogram; (b) damage nephogram of prefabricated crack; and
(c) damage nephogram of bonding surface.
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4. Conclusions 

(1) Groups of the hydrolysis reaction and the erosion of chloride ions causes the apparent struc-
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Figure 44. Test values and simulated values of flexural strength of reinforced concrete flexural specimen.

4. Conclusions

(1) Groups of the hydrolysis reaction and the erosion of chloride ions causes the apparent
structure damage of epoxy resin and CFRP sheet. The coupling effect of chloride ion
erosion and the freezing-thawing cycle leads to the further aggravation of the damage
to the sheet. The apparent structural damage directly leads to the decrease of the
tensile property of the sheet. The tensile strength exerts a higher degradation rate in
the salt-freeze coupling environment when compared with the chlorine salt immersion
environment. For epoxy resin, the degradation rate of tensile strength in a salt-freeze
coupling environment is 327% higher than that in a chloride salt environment, while
the value is 78% for the CFRP sheet.

(2) The finite element model of the tensile mechanical model is developed for epoxy
resin and CFRP. The simulated and experimental values for tensile strength have a
good agreement; the maximum error of epoxy resin is only 1.24%, and of CFRP is
only 1.77%.

(3) Concrete is damaged by the crystallization extrusion pressure caused by the precipita-
tion of sodium chloride crystal in a chlorine immersion environment. The specimens’
damage in the salt-freeze coupling environment is severe, and the flexural strength
degradation rate is higher than in the chlorine salt immersion environment. For the
specimens without reinforcement, the flexural strength degradation rate in the salt-
freeze coupling environment is 187% higher than that in the chlorine-salt immersion
environment. However, the degradation rate reaches 202% for the reinforcement
specimens.

(4) The degradation law of bond performance between CFRP and concrete is discussed,
and a finite element mechanical model is established. The maximum error between
simulation and experimental data is only 5.52%, and the failure mode is basically
consistent with the test data. It can be explained that the CFRP improved the tension
capacity of the specimen, which inhibits the development of prefabricated cracks and
improves the bearing capacity.
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