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Abstract: Rebars made of fiber-reinforced plastic (FRP) might be the future reinforcing material,
replacing mild steel rebars, which are prone to corrosion. The bond characteristics of FRP rebars differ
from those of mild steel rebars due to their different stress-strain behavior than mild steel. As a result,
determining the bond strength (BS) qualities of FRP rebars is critical. In this work, BS data for FRP
rebars was investigated, utilizing non-linear capabilities of gene expression programming (GEP) on
273 samples. The BS of FRP and concrete was considered a function of bar surface (Bs), bar diameter
(db), concrete compressive strength (fc′), concrete-cover-bar-diameter ratio (c/d), and embedment-
length-bar-diameter ratio (l/d). The investigation of the variable number of genetic parameters such
as number of chromosomes, head size, and number of genes was undertaken such that 11 different
models (M1–M11) were created. The results of accuracy evaluation parameters, namely coefficient of
determination (R2), mean absolute error (MAE), and root mean square error (RMSE) imply that the
M11 model outperforms other created models for the training and testing stages, with values of (0.925,
0.751, 1.08) and (0.9285, 0.802, 1.11), respectively. The values of R2 and error indices showed that there
is very close agreement between the experimental and predicted results. 30 number chromosomes,
9 head size, and 5 genes yielded the optimum model. The parametric analysis revealed that db, c/d,
and l/d significantly affected the BS. The FRP rebar diameter size is greater than 10 mm, whereas
a l/d ratio of more than 12 showed a considerable decrease in BS. In contrast, the rise in c/d ratio
revealed second-degree increasing trend of BS.

Keywords: FRP; concrete compressive strength; concrete cover to bar diameter ratio; bond strength;
GEP modelling; parametric study

1. Introduction

Numerous issues have caused the deterioration of civil engineering structures and
infrastructure. Although these structures are designed to serve lives in double-digit years,
many exhibit signs of distress much earlier in their service lives. Distress-induced dete-
rioration of structures is usually caused by factors such as extreme summer and winter
temperatures such as freeze and thaw cycles, and hot weather. Depending on the nature
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and severity of the deterioration, which might impact either the concrete or reinforcing
element, or both, several remedial measures may be required. Traditional methods of
rehabilitation and strengthening involve the replacement of damaged structural element
repair of corroded reinforced concrete elements and the application of protective repair
coatings [1]. However, there are limitations to the traditional methods. For instance, a
technique that has been widely used to repair corrosion-induced concrete spalling is spot
patching. This technique is limited by its inability to hinder chloride-induced corrosion,
whose rates are higher around the corrosion repair sites, and its dependence on the na-
ture of the patch material used [2]. The high cost and inefficiency of traditional repairs
motivated the quest for an alternative repair solution for fiber-reinforced polymer (FRP)
composite materials. Reinforcing bars, grids, sheets, and prestress tendons are just a few
FRP products that are accessible to structural engineers. When new structural members
are made, some of these products, such as reinforcing bars and tendons, are employed
to replace steel reinforcements to improve their service lives. Steel rebar corrosion is a
critical problem that compromises the performance of reinforced concrete (RC) structures.
FRP rebars are among the most appealing substitutes for typical steel rebars embedded
in RC structures to overcome the corrosion problem. Corrosion resistance, light weight,
high strength-to-weight ratio, high-cost efficiency, ease of installation, fatigue resistance,
low creep deformation, and strong chemical resistance are advantages of nonmetallic FRP
rebars over steel [3–5]. The corrosion resistance of FRP rebars is a principal advantage, as
steel-rebar corrosion has long been recognized as a significant and costly maintenance prob-
lem. Different types of FRPs have been developed and introduced in the literature [6–8].
Aramid, basalt, carbon, and glass fibers are normally used to make FRP rebars. Resins
such as epoxy, polyester and vinyl ester are used to bind fibers together. Although FRP has
greater corrosion resistance compared to the typical steel bar, the mechanical properties
and long-term corrosion resistance are also highly related to the kind of FRP when facing
alkaline environmental conditions of concrete penetrant [9]. Different types of FRPs shall be
investigated to evaluate their resistance to corrosion and cost impact. For example, GFRP
and BFRP are vulnerable to alkaline exposure due to chemical breakdown effects [10]. In
comparison, CFRP exhibited outstanding mechanical behavior and corrosion resistance [11].
Varied varieties of FRPs have different costs, e.g., CFRP has a higher price than BFRP and
GFRP. Moreover, FRP bars can have significantly different mechanical and physical prop-
erties, and surface profiles than those of regular steel rebars. The characteristics and the
volumetric ratio of the fibers determine the elastic modulus and tensile strength of FRP
bars [12]. When compared to steel rebars, the performance of such rebars is quite high
when measured by their tension capacity to weight (or volume) ratio; however, their major
shortcoming is poor bonding with concrete [13].

Although FRP bars have received increased attention as a reliable and feasible alterna-
tive to steel rebar against corrosion, the bond strength (BS) between concrete and FRP bars
remains a subject of ongoing research [14,15]. The interfacial bond between the FRP bars
and the surrounding concrete is a critical component in the performance of FRP-reinforced
concrete elements under loads. Interfacial connections have been demonstrated to degrade
dramatically when subjected to adverse environmental conditions in various small-scale
experimental tests. A threat to its impeccable bonding property and performance is the
susceptibility of its resin-rich outer layer to degradation under hygrothermal and dry heat
loading [16]. Many authors [12,15–17] have investigated the bond between FRP rebars
and concrete using a variety of bars with varying fiber qualities and quantities, as well as
varying external surface designs. The FRP rebar-concrete bond is dependent on several
factors, including friction attributable to the FRP rebar surface finish, mechanical adhesion
of the FRP rebars against the concrete, chemical adhesion, hydrostatic pressure against the
FRP rebars owing to hardened concrete shrinkage, and bulging of FRP rebars owing to
temperature adjustment and moisture absorption [18–21].

One of the critical factors in reinforced concrete structural design is the BS between the
reinforcing elements (FRP bars) and the reinforced (surrounding concrete). As a result, it
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requires accurate and precise estimation for a reliable and safe reinforced structure design.
Through experimental investigations, researchers have developed empirical models for
the estimation of BS of FRP while equally understanding the influence of parameters like
the bonding length and compressive strength of concrete substrate on it [22–26]. Next,
certain empirical prediction models were devised and incorporated in relevant design
codes based on theoretical analysis and experimental validation. However, most of these
models were developed using limited experiment datasets, which may make them exact
within these data space but lack sufficient generalization capacity for other parameter
settings [27,28]. An example is the standard empirical model reported in the American
Concrete Institute (ACI) Committee 440 Guide for the Design and Construction of Structural
Concrete Reinforced with FRP Bars that was used to traditionally estimate the BS of FRP
(ACI 440.1 R-06 [29]). However, during theoretical deduction process, these constrained
empirical models employed multiple assumptions to depict the complicated nonlinear
relationship between BS and critical key factors, hence, reducing the model’s efficiency. It
has become vital to create an accurate and computationally efficient estimation approach
for FRP BS [30].

The determination of a variety of structural properties of reinforced concrete is an
important issue that has piqued the interest of researchers, who have attempted to sim-
ulate them using different ML techniques [31–34]. With the advancement of computer
science and the increasing volume of associated experimental datasets, data-driven ap-
proaches based on machine learning (ML) algorithms have recently emerged as alternative
methods for establishing prediction models using comprehensive experimental data and
information [35–39]. Some of the most commonly and successfully deployed ML algo-
rithms for estimating the BS of FRP are artificial neural networks (ANNs), support vector
machines (SVMs), multiple linear regression (MLR), genetic and evolutionary algorithms
(GEAs), random forest (RF), and ensemble learning (gradient boosted regression trees
[GBRT]) [18,27,28,35,40–45]. Thakur et al. [13] proposed a bagged M5P tree regression
model out of six different models for the prediction of the bonding strength of FRP bars
embedded in concrete. An ANN was also deployed in another study [45] to estimate the
bonding strength of FRP bars to understand the composite behavior between the bars
and concrete substrate. A new branch of genetic programming called multigene genetic
programming (MGGP) was also proposed, relying on its remarkable prediction capabilities
to estimate the BS of FRP bars. Considering its successful implementation and lofty perfor-
mance in different studies, gene expression programming (GEP) was chosen in this study to
estimate the BS of FRP [31,41,42,46,47]. Free from computational issues of slow convergence
rates and local minimum convergence, GEP uses a linear constant-length expression tree
(ET), a mathematical expression representation arranged in a tree-like the structure of data.
GEP is a tree in which the leaves are the operands of the mathematical expression, and
the nodes are the operators. GEP can tackle somewhat complicated problems with good
performance by utilizing ET [41].

The objective of this study was to propose a new empirical equation to accurately
predict the BS of FRP bars and concrete using a GEP-based model. For this purpose,
273 data points from previously published work were used for computational experiments.
Section 2 presents the experimental data collection and description, the description of the
proposed GEP-based learning model, and the experimental methodology adopted in the
model training process. Section 3 reports the results of the study, comparing the predicted
with the experimental results, then discusses the model performance using statistical
measures in addition to parametric analysis, and, in the end, an empirical equation for the
BS estimation of FRP was also developed.

2. Methodology
2.1. Experimental Database

To build a strong ML model, it is necessary to create a short and broad database
with a clear and concise description, as well as statistically evaluated input variables and



Polymers 2022, 14, 2145 4 of 23

information about the datasets. To this end, a comprehensive database of the required
parameters for the prediction of BS of FRP was created. Details of the dataset used for the
development and validation of the model, which comprises 273 experimental observations
of BS of FRP concrete from published works, can be found in the study of Thakur et al. [13],
also reported by Refs. [48–51]. To investigate the possible parameters governing the
behavior of the BS of FRP, a thorough literature research and statistical analysis were
carried out to come up with an optimized dataset for adequate evaluation. For model
training and validation, the input variables were bar position (Bp), bar surface (Bs) condition,
concrete-cover-to-bar-diameter ratio (c/d), concrete compressive strength ( f ′c), bar diameter
(db) and bar-embedment-length-to-bar-diameter ratio (l/d), and the target variable was the
BS of the FRP. Table 1 lists the input and output parameters (experimental design variables)
used in this study. The distribution of input and target parameters throughout model
development is seen in Figures 1–3. Violin plots are drawn to manifest the distribution
of input variables in Bs, namely helical wrapped, spiral-wrapped, and sand-coated for
FRP bars (Figure 1). The box plots in each violin plot are also presented. The majority
of the specimens of FRP rebars range from 10 mm to 20 mm, fc′ (30–50 MPa), c/d (2–6),
and l/d within 40. A good proportion of the specimens are helically wrapped FRP rebars,
whereas in most of the specimen tested, FRP rebars are located at the bottom. These graphs
are especially useful since they help identify parameter values for which there is data
inadequacy and additional data is needed [52].

Table 1. Descriptive statistics of the database used to develop models.

Attribute Type Input Input Input Input Output

Descriptive
Statistics

Diameter of
Bar (db)

Concrete
Compressive
Strength (fc

′)

Concrete-Cover-Bar-
Diameter Ratio

(c/d)

Embedment-Length-
Bar-Diameter Ratio

(l/d)

Bond Strength
(BS)

Unit mm MPa − − MPa

Mean 14.80 40.09 3.60 30.31 6.63
Standard error 0.30 0.40 0.11 1.36 0.24

Median 15.75 40.20 3.00 20.16 5.28
Mode 15.75 44.36 2.00 20.00 3.60

Standard deviation 4.98 6.61 1.82 22.43 4.01
Sample variance 24.80 43.69 3.30 503.11 16.04

Kurtosis 0.51 −0.62 2.35 0.66 1.21
Skewness 0.78 −0.37 1.53 1.31 1.24

Range 22.23 31.63 7.66 93.68 20.24
Minimum 6.35 23.43 1.68 3.56 0.76
Maximum 28.58 55.06 9.34 97.24 21.00

Sum 4039.67 10945.13 981.75 8275.05 1808.68
Count 273.00 273.00 273.00 273.00 273.00

Confidence level
(95%) 0.59 0.79 0.22 2.67 0.48
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Figure 1. Violin frequency plots input parameters: (1) diameter of bar (db), (2) concrete compressive
strength (fc′), (3) concrete-cover-bar-diameter ratio (c/d), (4) embedment-length-bar-diameter ratio
(l/d), (5) bond strength (BS) with respect to the bar surface (Bs). Different colors shows the voilin
plots distinctly for three types of bar surfaces.
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Figure 2. Violin frequency plots distribution of input parameters: (1) db, (2) (fc′), (3) c/d, (4) l/d, (5) BS
with respect to the Bs. Different colors shows the voilin plots distinctly for two types of bar position.



Polymers 2022, 14, 2145 6 of 23

Polymers 2022, 14, x  6 of 25 
 

 

 

Figure 2. Violin frequency plots distribution of input parameters: (1) db, (2) (fc’), (3) c/d, (4) l/d, (5) BS 

with respect to the Bs. Different colors shows the voilin plots distinctly for two types of bar position.  

 

Figure 3. Magnitude variation of variables used in the development of models. 

(1)

(5)(4)

(3)(2)

0.5

1

1.5

2

2.5

3

3.5

1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

1
5

4

1
7

1

1
8

8

2
0

5

2
2

2

2
3

9

2
5

6

2
7

3

B
ar

 P
o

si
ti

o
n
 (

B
p

) 

Instance No. 

Frequency; 

2     = 236

1     = 37

0.5

1

1.5

2

2.5

3

3.5

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

B
ar

 S
u

rf
ac

e 
(B

s)
 

Instance No. 

0

5

10

15

20

25

30

35

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

D
ia

m
et

er
 o

f 
b

ar
 (

d
b
) 

Instance No. 

20

25

30

35

40

45

50

55

60

1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

1
5

4

1
7

1

1
8

8

2
0

5

2
2

2

2
3

9

2
5

6

2
7

3

C
o

n
cr

et
e 

co
m

p
re

ss
iv

e 

st
re

n
g

th
  
(f

c'
) 

Instnace No. 

0

2

4

6

8

10

1

1
6

3
1

4
6

6
1

7
6

9
1

1
0

6

1
2

1

1
3

6

1
5

1

1
6

6

1
8

1

1
9

6

2
1

1

2
2

6

2
4

1

2
5

6

2
7

1

C
o

v
er

 /
 d

im
ae

te
r 

(c
/d

) 

Instnace No. 

0

20

40

60

80

100

120

1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

1
5

4

1
7

1

1
8

8

2
0

5

2
2

2

2
3

9

2
5

6

2
7

3

L
en

g
th

 /
 d

im
ae

te
r 

(l
/d

) 

Instnace No. 

0

5

10

15

20

25

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

B
o

d
 s

tr
en

g
th

 (
B

S
) 

Instnace No. 

Figure 3. Magnitude variation of variables used in the development of models.

2.2. Modelling Using GEP

The GEP models were created using GeneXprotools. Initially, the data was retrieved
into the interface of the tool, where the attributes were divided into target and input vari-
ables. The data was randomly partitioned into training and validation data. Previous stud-
ies showed that the partitioning in the ratios of 70/30 yielded the best performance [53–60].
Therefore, the current study adopted some partitioning percentages. In the next step, the
setting parameters were changed such that number of chromosomes varied from 30 to 200,
with the head size from 8 to 12, in accordance with Khan et al. [59]. The number of genes
plays a vital role in the performance of the model because of the complexity of the output
mathematical equation [61]. Three different numbers of genes, i.e., 3, 4, and 5, were used in
the evaluation of the models in this study. A further increase in the number of genes may
improve the performance; however, it may complexify the mathematical equation. The
genetic operators were kept as per Iqbal et al. [39]). Different linking functions between the
genes are scrutinized; however, addition yielded the best performance; therefore, it was
employed in the current study. The flowchart showing GEP modelling is shown in Figure 4.
The mode was executed with RMSE as the fitness function. The detail of trails is given in
Table 2.

Previous studies have reported that the best parameter setting for the GEP model is
based on trial and error [62–66]. GEP algorithm was allowed for random portioning of
training and validation datasets. This way, the developed models tend to overfit during
the training process and improve its performance for the training set while decreasing the
performance of validation data [67]. To tackle this problem, Gandomi, A. H. and D. A.
Roke [68] suggested selecting a model with a minimum objective function (OF) [69]. OF
varies from 0 to the maximum, with a value approaching zero indicating a better model
comparatively [49,55]. Different statistical indices such as correlation coefficient (R), root
mean square error (RMSE), and mean absolute error (MAE) were used for model evaluation
(Equations (1)–(3)). The R value ranges between 0 and 1, with 1 reflecting a perfect correla-
tion, whereas values near to zero show a very weak correlation between the predictors and
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the target variable. The value of R equalling 0.8 and above has been generally agreed to
yield a more robust and reliable prediction of the forecasted values [55,58,61,70–75].

R =
∑n

i=1(ei − ei )(mi −mi )√
∑n

i=1(ei − ei )
2(mi −mi )

2
, (1)

MAE =
∑n

i=1|ei −mi|
n

(2)

RMSE =

√
∑n

i=1 (ei −mi )
2

n
, (3)

where ei and mi are the nth experimental and model BS (%), respectively; ei and mi denote
the average values of the experimental and model BS (%), respectively, and n is the number
of samples in the dataset.
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Figure 4. Flowchart of GEP modelling.

To find the best hyperparameters values for the current problem, a total of 11 trials
(M1 to M11) were performed with varying numbers of chromosomes, head sizes, and
number of genes, as shown in Table 2. Initially, chromosomes were varied from 30 to 200,
keeping the head size constant at 8 and the number of genes at value of 3, which indicated
that optimum model performance was achieved at a chromosome size of 8. Next, the
head size was varied between 9 to 12, keeping the chromosomes (8) and genes (3) constant
again. It was revealed that a head size of 9 produced the best model performance. Finally,
using the above optimum values for a number of chromosomes and head size, a number
of genes was varied, and the optimum model performance was obtained when number
of genes was set to 5. To conclude, the proposed model yielded superior performance
at parameters values of 30, 9, and 5 as the number of chromosomes, head size, and the
number of genes, respectively.
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Table 2. Details of the trials scrutinized in this study.

Model
Total
Data
Sets

No. of
Inputs

No. of
Chromosomes

Head
Size

Used
Variables

Number
of

Genes

Training Data Set Validation Data Set

R2 RMSE MAE R2 RMSE MAE Overall
R2

Overall
MAE

M1 273 6 30 8 6 3 0.899 1.258 0.875 0.945 0.936 0.678 0.922 0.7765
M2 – – 50 – – – 0.871 1.42 1 0.937 1.03 0.793 0.904 0.8965
M3 – – 100 – – – 0.878 1.382 0.972 0.941 1.004 0.764 0.9095 0.868
M4 – – 150 – – – 0.9005 1.249 0.935 0.922 1.156 0.883 0.91125 0.909
M5 – – 200 – – – 0.896 1.273 0.893 0.937 1.047 0.796 0.9165 0.8445
M6 – – 30 9 – – 0.903 1.235 0.879 0.95 0.926 0.696 0.9265 0.7875
M7 – – – 10 – – 0.9 1.247 0.864 0.932 1.073 0.835 0.916 0.8495
M8 – – – 11 – – 0.903 1.23 0.879 0.945 0.973 0.698 0.924 0.7885
M9 – – – 12 – – 0.908 1.19 0.87 0.936 1.03 0.786 0.922 0.828

M10 – – – 9 – 4 0.908 1.204 0.826 0.906 1.288 0.938 0.907 0.882
M11 – – – 9 – 5 0.925 1.08 0.751 0.932 1.11 0.802 0.9285 0.7765

Note: (–) shows the same value of the setting parameter as the one in the above cell.

3. Results and Discussion

This section presents the performance of models alongside the investigation of the
best hyperparameters setting for the GEP model. The performance was measured in terms
of statistical indices, regression slopes, and predicted to experimental ratio. Based on the
accurate model, GEP formulation was achieved from the best fit model.

3.1. Effect of Variable Genetic Parameters

Table 2 shows the model’s performance in terms of different evaluation metrics (as R2,
RMSE, and MAE) as the number of the numbers of chromosomes are increased from 30
to 200. The trend for training, validation, and average values for the selected measures is
plotted. As shown in Figure 5, the R2 values exhibited a downward trend as the number of
chromosomes initially increased from 30 to 70. However, a further increase in the number
of chromosomes leads to a corresponding considerable increase in the R2 correlation values.
Considering the patterns of RMSE and MAE with an increasing number of chromosomes,
it may be noted that both the metric showed a slight increase initially when the number
of chromosomes is increased from 30 to 50. However, these metrics witnessed an overall
downward trend as the number of chromosomes was further increased to 200, both for
training and validation datasets. The maximum correlation and minimum error metrics
were achieved at a chromosome size of 30.

Figure 5 depicts the model’s performance with subsequent variation in the head size
this time. Again, the y-axis shows the predictive performance of the model based on
the same statistical indices for both training and validation data. A similar scenario was
observed with an increasing number of chromosomes and increasing head size. It may be
noted from Figure 6 that an initial increase in the head size from 8 to 9 is accompanied by an
increase in R values and a decrease in the values of chosen error indices. A further increase
in head sizes showed a fluctuating pattern for various metrics; however, the optimum
performance of the model for both training and validation data was observed at a head size
of 9. Figure 6 plots the performance of the models as a function of an increase in number of
genes. The results indicated that the best model performance is obtained with five numbers
of genes. For the corresponding values of R2 for the training and validation data, it was
observed that the maximum values of R2 were 0.92, and 0.93, respectively. Similarly, both
the RSME and MAE error indices had minimum values at a gene size of five. It is worth to
mention that any further increase in the number of genes may have yielded improvement
in the model performance; however, this was not explored since it is likely to complexify
the output mathematical relation.
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Figure 5. Effect of the number of chromosomes on the performance of the models: (a) R2, (b) MAE,
and (c) RMSE.
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Figure 6. Effect of head size on the performance of the models: (a) R2, (b) MAE, and (c) RMSE.
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In summary, it may be stated that the optimum prediction performance was obtained
at chromosomes head size, and number of genes of 30, 9, and 5, respectively. Results shown
in 2 and Figures 5–7 for the proposed GEP model provide evidence for these observations.
Recently, Mousavi et al. [76] proposed the application of the GEP model for investigating the
compressive strength of high-performance concrete and reported that the model achieved
the best performance at hyperparameters values of 200 as the number of chromosomes, 8 as
the head size, and 3 as the optimum number of genes. It may be argued that the optimum
hyperparameter setting and selection of the GEP model are dependent on trail and access
method. The primary goal of hyper-parameter optimization is to achieve high R2 and lower
values for the error indices (RMSE and MAE). Hence, this optimized model was later used
for extracting the ETs and the development of mathematical equations.
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Figure 7. Effect of number of genes on the performance of the models: (a) R2, (b) MAE, and (c) RMSE.

3.2. Performance of the Models

This section is focused on the slope of the performance of the developed models in
terms of the slope of the regression line, statistical evaluation, and predicted/experimental
ratio (pred/exp). For the development of an efficient machine learning (ML) model, the
ratio between the number of experimental records (i.e., 70% Training and 30% Validation
data points, which in this case are 192 and 81, respectively) and explanatory input variable
(6 number considered in the current study) must not be less than three and must preferably
exceed 5 [77]. In this study, this ratio is far beyond the recommended limit (i.e., 32 in the
training set and 13.5 in the validation set) for the considered BS estimation, which indicates
a relatively more reliable ML model.

3.2.1. Statistical Evaluation

The experimental (actual) and prediction results of the GEP model for BS of FRP bars
in concrete in the training and validation stage are visualized in Table 2. The statistical
evaluation shown in Table 2 manifests the value of R2 as significantly higher than 0.88,
reflecting the close agreement of experimental to predicted results. It can be seen that M11
excels other models considering the values of R2. However, it is generally agreed that
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a higher R2 alone is not an exclusive and reliable indicator to assess the superiority and
robustness of an artificial intelligence (AI) model [58]. Therefore, for comparison purposes,
the current study considered other important indices such as RMSE and MAE, to verify
the efficacy of the formulated GEP models. The GEP model prediction results based on
different statistical metrics are shown in Table 2. It may be observed from the experimental
results that R2 values for M11 models for both training and validation sets are comparable
and are also greater compared to other models. The average R2 value for this model is
the highest (0.928). A value of R2 greater than 0.8 shows close agreement of experimental
and predicted results [78]. The corresponding values for RSME and mean MAE (0.776)
are also the lowest, indicating the robustness and superior prediction performance of the
M11 models. M1 is identified as the next best model. The prediction results shown in
Table 2 demonstrate an acceptable performance for all the formulated GEP models. Such
reliable and precise performance of the GEP model may be attributed to its algorithmic
structure, which employs the diverse reproduction process for transferring appropriate
data to the next stage generation and mutant operator for optimization without assuming
predefined assumptions about the data [57,79]. Further, the GEP technique produces
random functions and choices that agree with experimental observations [61,80,81]. In
comparison to the previously developed AI models such as multilinear regression, random
tree, M5P, random forest, stochastic-M5P, bagged-M5P tree, and Gaussian process, the GEP
model presents comparable performance; however, it excels other AI models in terms of
yielding a simple mathematical equation, whereas the previously developed models are
black-box models [13].

3.2.2. Comparison of Regression Slopes

The regression AI models are generally evaluated using the slope of the line trending
between experimental and predicted results [34,82]. This research study also reported the
comparative performance of the developed 11 GEP models based on regression slopes
(Figures 8 and 9). The ideal fitted line having a slope equal to unity (1) is shown by
standard 45 degrees passing through the diagonal. For strongly correlated lines and
excellent model performance, the distribution of plotted points should be closer to the
standard diagonal line. A regression line with a slope approaching 1 and correlation values
of 0.8 and above will exhibit minimal values for the error indices, including RMSE and
MAE [54,55,58,72,73,83]. The slope of the plotted regression line (showing the discrepancy
between the target and actual BS of FRP bars) for the best model corresponds to 0.96
in the training stage and 0.97 in the validation stage. It can be seen from the plotted
regression lines for different models that, in general, points are clustered around the trend
line, indicating a reasonable and acceptable performance for all the models. It may be
noted that both the R2 and regression lines slope values for the validation data are either
equal or greater than those of the corresponding values for training data, showing that no
overfitting issue incurred.
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3.2.3. Model Predicted to Experimental Ratio

The ratio of the model’s predicted results divided by the experimental results was
plotted in the form of frequency ratio and cumulative Percentage (Table 3, Figure 10),
specifically for the ratio between 0.8 to 1.2, which shows a 20% error in the predicted
values. The maximum frequency of observations in between 0.9 and 1.1 indicates that most
of the datapoints lie within ±10% error, reflecting more robust predictions. Observing
the following Table 3, it can be seen that Model 11 yielded the highest cumulative of
86.39% for a bin range of 0.8 to 1.2 at training and 90.24% for the validation stage. Besides,
for bin 0.8–1.0, it also gave the highest frequency equalling 79, among all the developed
models. Therefore, observing the results of error indices, slopes comparison, and pred/exp
comparison, the results produced for M11 are presented from this point onwards.
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Table 3. Comparison of frequency ratios of predicted to experimental values for the
developed models.

Model 1 Model 2 Model 3 Model 4

Pred/Exp Frequency Cumulative % Pred/Exp Frequency Cumulative % Pred/Exp Frequency Cumulative % Pred/Exp Frequency Cumulative %

0 0 0.00% 0 0 0.00% 0 0 0.00% 0 0 0.00%
0.5 0 0.00% 0.5 0 0.00% 0.5 0 0.00% 0.5 2 1.05%
0.8 16 8.38% 0.8 27 14.14% 0.8 31 16.23% 0.8 25 14.14%
1 68 43.98% 1 58 44.50% 1 59 47.12% 1 64 47.64%

1.2 76 83.77% 1.2 75 83.77% 1.2 62 79.58% 1.2 65 81.68%
More 31 100.00% More 31 100.00% More 39 100.00% More 35 100.00%

Model 5 Model 6 Model 7 Model 8

Pred/Exp Frequency Cumulative % Pred/Exp Frequency Cumulative % Pred/Exp Frequency Cumulative % Pred/Exp Frequency Cumulative %

0 0 0.00% 0 0 0.00% 0 0 0.00% 0 0 0.00%
0.5 0 0.00% 0.5 5 2.62% 0.5 0 0.00% 0.5 0 0.00%
0.8 16 8.38% 0.8 18 12.04% 0.8 15 7.85% 0.8 24 12.57%
1 70 45.03% 1 65 46.07% 1 72 45.55% 1 73 50.79%

1.2 76 84.82% 1.2 72 83.77% 1.2 72 83.25% 1.2 67 85.86%
More 29 100.00% More 31 100.00% More 32 100.00% More 27 100.00%
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Table 3. Cont.

Model 9 Model 10 Model 11

Pred/Exp Frequency Cumulative % Pred/Exp Frequency Cumulative % Pred/Exp Frequency Cumulative %

0 0 0.00% 0 0 0.00% 0 0 0.00%
0.5 0 0.00% 0.5 0 0.00% 0.5 0 0.00%
0.8 22 11.52% 0.8 18 9.42% 0.8 13 6.81%
1 65 45.55% 1 67 44.50% 1 79 48.17%

1.2 69 81.68% 1.2 78 85.34% 1.2 73 86.39%
More 35 100.00% More 28 100.00% More 26 100.00%
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data.

3.3. GEP Formulations

To get an empirical formulation for forecasting the BS of FRP concrete, the optimal
combination of GEP parameters yielding M11 was used in accordance with the previous
literature [55,58,61,83,84]. The final empirical equation is shown in Equations (4)–(9),
obtained by combining the different mathematical models that were generated from the
GEP model programmed in Matlab. The developed model given in the following equations
is applicable for estimation of the bond strength of FRP rebars with surrounding concrete
using variables; Bs condition, bar location, bar size, fc′, l/d ratio, and the c/d ratio. It is
worth mentioning that the developed model can be used for the prediction of BS in ordinary
conditions. For long-term service life in harsh environmental conditions, further studies
are needed in accordance with the previous literature [85,86].

BS = A + B + C + D + E

A = 3

√√√√(Bp ×
((

c
d
l
d

)
−
(

l
d
− 3.17 + Bp − 8.39

)))
, (4)

B =


(
(db × Bp(Bs − 0.37))

c
d + 3.50

)
−0.865

+ 6.785, (5)
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C =


(
−62.66−

l
d
c
d

)
−2.36− l

d

− f ′c

− (1.68 + 3
√

Bp − 8.79
)
), (6)

D = f ′c −
f ′c × l

d
12.48 db(db + f ′c)− db

4 , (7)

E =
0.566((

−7.17 Bs − 3
√
−7.81)− ((db − 9.56)×−4.71)

)
+ db

) + Bp, (8)

where Bp = position of the bar, Bs = surface of the bar, db = diameter of the rebar, fc′ = concrete
compressive strength, c/d = concrete-cover-bar-diameter ratio, l/d = embedment-length-
bar-diameter ratio, and BS = bond strength.

The equation can be used to predict the BS of FRPs in concrete without experiencing
new experimental data, yielding the cost-effectiveness and economy of the project.

3.4. Parametric Analysis

To establish and verify the reliability of the ML-based simulation on diverse datasets, it
is often important to check its performance on simulated datasets. Two such studies in this
regard are parametric analysis and sensitivity analysis, which aim to assess the effectiveness
of selected GEP models based on the interdependency of physical phenomena [58,87–89].
The sensitivity analysis reflects the response of the predictive model in relation to the
variation of specific input features [69,88,90]. For the current study, parametric analysis
was conducted to examine the respective influence of each input variable on the predicted
BS of FRP concrete samples.

Parametric analysis of all the predictors (db, fc′, c/d, l/d) was conducted to establish
their relative influence in predicting BS of FRP (graphically presented in Figures 11–16). In
addition to the above numeric input parameters, two categorical inputs, such as Bs and Bp,
were also considered in the parametric analysis. A detailed description of three bar surfaces
(type I, II, and III), and bar positions (I and II) has been provided in detail in Section 2.1.
Table 4 shows the possible combination permutation of different input parameters adopted
for parametric analysis. Based on Bs types and bar positions, a total of six (3 × 2) groups of
variable combinations are formulated. For each change, 10 data points were employed to
see the effect of contributing parameters on the BS of glass FRP (GFRP) rebars in concrete.
For instance, considering the first group of variable combinations (Bs I and Bp I) in the
parametric study, initially, db was varied between its minimum and maximum values while
considering the average values of all other numeric variables. Next, the fc′ was varied
between its extreme values, keeping other parameters at their mean values for this first
group of bar surfaces and positions. Likewise, variables c/d and l/d were also varied to see
their respective influence on the predictive performance of the GEP model. The process
was repeated for other Bs and Bp combinations (simulated tables shown as Table 4).

Figures 11–16 display the influence of the considered predictors, i.e., db, fc′, c/d, and
l/d for different combinations of bar surfaces and positions. As shown in Figure 11a, it
is clear that the BS of FRP rebars decreases with an increase in db. When db is initially
increased from 6 mm to 8 mm, BS is increased; however, further increase in the db is
accompanied by a steady reduction in BS. Considering the effect of fc′ on the BS of FRP
rebars (Figure 11b), it may be noted that an initial increase in fc′ has some noticeable role on
the target variable (BS); however, increasing fc′ beyond 35 MPa has no significant influence
on the same. The variable c/d has an approximately linear correlation with the BS, i.e.,
any increase in c/d led to an increase in the corresponding increase in BS values. This
observation is intuitive and is consistent with a number of previous studies [13,45]. Finally,
considering the effect of the input predictor l/d, it may be observed that any increase in l/d
is associated with a rapid decrease in BS value, and the overall pattern of strength reduction
resembles an exponential curve. A number of previous studies also indicated that BS of
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rebars in concrete is inversely correlated with an increase in l/d [13,45]. The trends and
patterns of relationships in Figures 12–16 may be interpreted in the same fashion, which
means that Bs and Bp did not change the trend considerably.

Table 4. Simulated dataset for parametric analysis.

Variable Input Parameters
No. of Datapoints Constant Input Parameters

Parameter Range

db 6.35–28.58 10 Bp = I, Bs = I, fc′= 40.09, c/d = 3.59, l/d = 30.31
fc′ 23.43–55.06 10 Bp = I, Bs = I, db = 14.79, c/d = 3.59, l/d = 30.31

c/d 1.68–9.34 10 Bp = I, Bs = I, db = 14.79, fc′ = 40.09, l/d = 30.31
l/d 3.56–97.25 10 Bp = I, Bs = I, db = 14.79, fc′ = 40.09, c/d = 3.59

db 6.35–28.58 10 Bp = I, Bs = II, fc′= 40.09, c/d = 3.59, l/d = 30.31
fc′ 23.43–55.06 10 Bp = I, Bs = II, db = 14.79, c/d = 3.59, l/d = 30.31

c/d 1.68–9.34 10 Bp = I, Bs = II, db = 14.79, fc′ = 40.09, l/d = 30.31
l/d 3.56–97.25 10 Bp = I, Bs = II, db = 14.79, fc′ = 40.09, c/d = 3.59

db 6.35–28.58 10 Bp = I, Bs = III, fc′= 40.09, c/d = 3.59, l/d = 30.31
fc′ 23.43–55.06 10 Bp = I, Bs = III, db = 14.79, c/d = 3.59, l/d = 30.31

c/d 1.68–9.34 10 Bp = I, Bs = III, db = 14.79, fc′ = 40.09, l/d = 30.31
l/d 3.56–97.25 10 Bp = I, Bs = III, db = 14.79, fc′ = 40.09, c/d = 3.59

db 6.35–28.58 10 Bp = II, Bs = I, fc′= 40.09, c/d = 3.59, l/d = 30.31
fc′ 23.43–55.06 10 Bp = II, Bs = I, db = 14.79, c/d = 3.59, l/d = 30.31

c/d 1.68–9.34 10 Bp = II, Bs = I, db = 14.79, fc′ = 40.09, l/d = 30.31
l/d 3.56–97.25 10 Bp = II, Bs = I, db = 14.79, fc′ = 40.09, c/d = 3.59

db 6.35–28.58 10 Bp = II, Bs = II, fc′= 40.09, c/d = 3.59, l/d = 30.31
fc′ 23.43–55.06 10 Bp = II, Bs = II, db = 14.79, c/d = 3.59, l/d = 30.31

c/d 1.68–9.34 10 Bp = II, Bs = II, db = 14.79, fc′ = 40.09, l/d = 30.31
l/d 3.56–97.25 10 Bp = II, Bs = II, db = 14.79, fc′ = 40.09, c/d = 3.59

db 6.35–28.58 10 Bp = II, Bs = III, fc′= 40.09, c/d = 3.59, l/d = 30.31
fc′ 23.43–55.06 10 Bp = II, Bs = III, db = 14.79, c/d = 3.59, l/d = 30.31

c/d 1.68–9.34 10 Bp = II, Bs = III, db = 14.79, fc′ = 40.09, l/d = 30.31
l/d 3.56–97.25 10 Bp = II, Bs = III, db = 14.79, fc′ = 40.09, c/d = 3.59
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Figure 11. Effect of the contributing parameters on BS for bar position (Bp) type-I and Bs type 1.
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Figure 12. Effect of the contributing parameters on BS for Bp type-I and Bs type II.
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Figure 13. Effect of the contributing parameters on BS for Bp type-I and Bs type III.
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Figure 14. Effect of the contributing parameters on BS for Bp type-II and Bs type I.
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Figure 15. Effect of the contributing parameters on BS for Bp type-II and Bs type II.
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4. Conclusions

Due to corrosion difficulties, FRP rebars are increasingly replacing traditional steel
reinforcements. The goal of this research is to develop a model for predicting the BS of
FRP rebars in concrete. To calculate the BS of FRP reinforced concrete, a new prediction
model in the form of a simple mathematical expression has been developed. The following
findings may be taken from this investigation:

1. For the training and validation datasets, the optimum statistical indices achieved
in case of the eventually selected optimal model (Trial 11) were RMSE (1.08 and
1.11), MAE (0.751 and 0.802), and R2 (0.932 and 0.9285), respectively. In addition, the
MAE values in the constructed model show a mean error of 11.32% (training) and
12.09% (validation). These values are much lower, demonstrating the correctness and
robustness of the defined GEP models for predicting BS of FRP reinforced concrete in
the formulated GEP model.

2. Other statistical assessing indicators, such as (i) slope of regression line between
experimental and anticipated results, (ii) predicted to experimental ratios for all
models, were used to augment the GEP model performance. The best model produced
regression slopes of 0.96 (training) and 0.97 (validation), which are closer to unity (i.e.,
ideal slope) than the others. The best trial predicted/experimental ratios revealed that
86.39% and 90.24% of the values were within 20% of each other.

3. The MATLAB code extracted from the final GEP model was used to create a mathe-
matical equation with easily determinable input parameters to evaluate the BS of FRP
reinforced concrete, avoiding the time-consuming and costly testing of samples and
thus impacting the cost-effectiveness of civil engineering projects.

4. The parametric analysis revealed that a rise in c/d ratio increased the value of BS,
whereas an increase in l/d decreased the BS. The fc′ was observed to have no apprecia-
ble impact on BS beyond 35 MPa. The experimental results corroborate the findings
and confirm the generalization and robustness of the developed GEP models. The
current GEP model may be effectively deployed for future purposes to evaluate the
BS of FRP reinforced concrete.
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