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Abstract: In this paper, the charged polymer escapement phenomenon, via a little hole of nano-metric
dimensions arranged in a constitutive biological membrane, is studied. We will present the case
of the transport process of an ideal polymer in a 3-dimensional extended region separated by a
fine boundary named membrane in a free energy barrier attendance. Additionally, the general
translocation time formula, respectively, the transition time from the cis area to the trans area, is
presented. The model for estimation of the likelihood, designated by P(x, t), as a macromolecular
chain of lengthiness equal to x, to be able to pass by the nanopore in escape period t, was optimized.
The longest-lasting likely escape time found with this model is indicated to be tp = 330 µs. Thus,
the results obtained with the described formula are in good agreement with those announced in the
specialized literature.

Keywords: polymer; nanometric pores; nucleic acids; free energy; translocation time

1. Introduction

The dynamics of polymer translocation through nanopores has been one of the most
active research areas during the past few decades.

The charges and polymer chain connectivity, counter ions, ions of salt, excluded
volume repercussion, primordial hydrogen bond, and water organized themselves and
contributed to the arrangement and functions of these polyelectrolytes, Figure 1.

About what a natural polyelectrolyte is, we can say the following: polyelectrolytes can
be either synthetic or natural. Nucleic acids, proteins, teichoic acids, some polypeptides,
and some polysaccharides are examples of natural polyelectrolytes.

The major advantages of polymers in polymeric nanoparticles are manifold. Of these,
we can quote the most important advantages offered by the polymeric nanoparticles, which
include the following: (1) provide controlled release to the desired site, (2) provide stability
to labile molecules (e.g., proteins), and (3) provide the ability to modify surfaces with
ligands for stealth and targeted drug delivery purposes [1,2].

We will refer here only to the disadvantages of polymer membranes and disadvantage
of polymers as membrane materials, respectively. In nanofiltration (NF), for example, we
are dealing with NF membranes whose pores vary from 0.01 µm to 0.001 µm.

Against such solutions, many polymer-based membranes (which comprise the major-
ity of membrane materials used today) can dissolve, swell, or weaken to the extent that
their lifetimes become unacceptably short or their selectivities become unacceptably low.
What the disadvantages of the membrane structure are, is the second problem.
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Figure 1. Charged polymer and chain connectivity schema.

In Figure 1, a general scheme of a charged polymer and a polyelectrolyte is presented.
This perspective on the proposed subject approached here is a notional breviary of

various heuristic progress related to polymer dimension and electrical charge, as well as
the personal way of approaching and treating the problem in question.

Let us now present the latest techniques for obtaining nano-membranes and nanopores
that are dimensionally compatible with them.

Transport properties of membranes are closely related to morphological properties like
surface porosity and variation of their inner pore structure. Scanning electron microscopy
(SEM), as well as transmission electron microscopy (TEM), are powerful tools to characterize
the microscopical pore structure of membranes in a qualitative manner. In order to provide
more quantitative data on surface and cross-sectional pores, computer image analysis
can be used.

More precisely, the porosity profiles describe the local pore variation within the
membrane quantitatively, generating additional information about the functionality of the
filtration process [2].

The reactive ion etching technology or the electron beam from a transmission electron
microscope (TEM) can be used to construct nanopores on silicon nitride (SiNx) and silicon
oxide (SiO2) membranes. These two approaches demonstrate great repeatability and have
been widely used in fabricating nanopores, but the method of choice is to drill them using
an electron beam in a TEM. Scanning electron microscopy (SEM) is another technique
where only milligram quantities of material may be used to determine particle size, shape,
and texture [3]. In SEM, a fine beam of electrons scans across the prepared sample in a series
of parallel tracks. The electrons interact with the sample and produce several different
signals, which can be detected and displayed on the screen of a cathode ray tube. Particles
less than 1 nm can be viewed, and since the depth of focus is so much greater than that of
the light microscope, information on surface texture can be generated [4].
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The understanding and modeling of polymer translocation through a nanopore into a
membrane is a difficult task. Nevertheless, in some limitative conditions, Sung and Park [2],
Paun [3], Muthukumar [4], and Kong [5], have obtained reasonable results.

The investigation undertaken makes an obvious demarcation between the fractal
behavior [6,7] of the polymer and the classical one [8–12], which can be taken into view
when estimating an effective translocation time through the membrane [13]. The fractal
analysis [14] of the movement of the polymer and its transport through nanometric pores
will be the subject of future work.

2. Theoretical Background

We will present the case of an ideal polymer in a 3-dimension extended region sepa-
rated by a fine boundary named membrane in a free energy barrier attendance [15]. We
are supposed to have m monomers, which are found in the trans area, and N-m monomers,
which are found in the cis area, as in Figure 2.

Figure 2. Polymer escape in transition, having m monomers in the trans area. I is the cis area, while II
is the trans area.

A simplified image of a polymer with N monomers in a chain (N units), found in
the translocation process through a pore of the nanometric waist, a hole disposed in a
tridimensional wall.

In the barrier center, it is practiced in a little orifice but wide enough so the monomers
from the polymer suite to pass from one side to another.

The related free energy, F(m), which employs polymer scission/partition function Zn,
will be the following:

F(m) = −kBT ln Z (1)

or, under a chemical potential gradient, [1]

F(m) = −kBT ln Z + m∆µ (2)

Here ∆µ = µ1 − µ2 is the chemical potential difference on monomer, between the trans
and cis region [16].

The scission/partition amount Zn, in the case of polymeric suite by n monomers found
in a demi-unbounded domain, into an interaction with a strong barrier and a certain head
always fixed at the center of barrier, can be written as follows:

Zn ∼ nγ−1 (3)
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where we can have γ = 1
2 (Gaussian chains), γ = 0.69 (self-avoiding chains) and γ = 1

(rod-like chains) [13].
To the situation when the partition sum Zn is equal with nγ−1 that is in Equation (3),

the associated free energy becomes the following:

F(m) = (1− γ)kBT ln m + m∆µ (4)

For the m monomers in trans area and N − m monomers of the polymer in the cis area,
the associated free energy is as follows:

βFm = (1− γ2) ln(m) + (1− γ1) ln(N −m)mβ∆µ (5)

when the constant terms in sum are not taken into account and γ1 and γ2, respectively, are
the values of γ in the two regions and kBT = β−1.

If γ becomes of equal value on either part of the barrier (γ1 = γ2),

Fm = (1− γ)kBT ln m(N −m) + m∆µ (6)

In conclusion, the free energy of polymer translocation is a function of m [17,18]. The
second term in Equation (6), m∆µ, enters a linear alteration of border’s baseline.

In Figure 3 we have graphically represented the associated free energy barrier for
m segments located in region II, named trans region (located behind the barrier). Here
Fm = F(m), where m is the monomers number of the polymer found after the barrier, with
1 ≤ m ≤ N.

Figure 3. Associated free energy barrier Fm for m segments located in trans region. The maximum of
the function is the value of the function for m = m* and is denoted by F* = F(m*).

Function Fm admits a maximum at the point where derivative I is annulled, as a
function of m. The calculations are presented in detail as follows:

dFm

dm
=

d
dm

((1− γ)kBT ln m(N −m) + m∆µ) = (1− γ)kBT
N − 2m

m(N −m)
+ ∆µ (7)

dFm

dm
= 0→ m2 −

[
N + 2

(1− γ)kBT
∆µ

]
m +

(1− γ)NkBT
∆µ

= 0 (8)

The value of m for which the first derivative is canceled (equal to zero) is as follows:

m =

[
N + 2

(1− γ)kBT
∆µ

]
±

√[
N + 2

(1− γ)kBT
∆µ

]2
− 4

(1− γ)kBT
∆µ

(9)
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The only positive root is indicated by m* and is equal to the following:

m∗ =
[

N + 2
(1− γ)kBT

∆µ

]
+

√
N2 + 4

[
(1− γ)kBT

∆µ

]2
(10)

The maximum of the function is the value of the function for m = m* and is denoted
by F∗ = F(m∗).

In Figure 4, Fm (free energy) function of m, the segments number located in the
region on the right, after the barrier, for the two distinct values taken by N (200 and 500) is
represented. There are two curves, having two different colors, depending on the maximum
value of N. Thus, we have the orange color for N = 200 and the blue color for N = 500.

Figure 4. Free energy Fm as function of m, for two distinct values taken by N.

Average Time of Polymer Translocation

The average time of polymer translocation to move between cis area and trans area
through a nano-pore existent in a fixed solid wall, namely, the escape period, is given by
the following equation:

τ =
1
k0

∫ N

n1

exp(Fm1)dm1

∫ n1

0
exp(−Fm2)dm2 (11)

or depending on the previous formula of the associated free energy Fm = F(m), we have the
explicit integrals for F(m1) and F(m2), as follows:

τ =
1
k0

∫ N

n1

e(1−γ)kBT ln m1(N−m1)+m1∆µdm1

∫ n1

0
e−(1−γ)kBT ln m1(N−m1)−m1∆µdm2 (12)

Thus, the mean escape period/duration noted τ for the polymer lengthiness equal
to Na, consisting of N enchained segments-monomers (each of size a), can be found with
formula (12), and k0 is a proportionality constant.

3. Materials and Methods

Single-stranded polymer escape time over a membrane nanopore has been well com-
puted using a physicochemical model developed by the authors. To deepen our under-
standing of the process, we conducted mesoscopic computer simulations to elucidate how
polymer chain conformation regulates the dynamic evolution of nanoparticle structures
during the transport process of polymer nanocomposites [19].
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The polymer translocation process, even of biopolymers, across membranes with
nanometric pores is omnipresent in biological systems (such as DNA and RNA escape
through nanopores in nuclear chemistry), next to it being protein transport via nano-
membrane canal-route and microbe or virus injection into cellular alveolus.

As well supported in a frontier work by Kasianowicz et al. [17], but also based on
the results obtained by us in the article recently published in the journal Polymers [13],
it was correctly proved that an exterior electric field around the nanopore can lead to
single-stranded DNA and RNA particles through the secretion-stuffed (possibly with pure
water, that is) of the classic alfa-hemolysin canals.

The Polymer Escape Probability

As a consequence of the considerations performed by Lubensky et al. [20], we enter
the likelihood designated by P(x, t), as a macromolecular chain of lengthiness equal to x, to
be able to pass by the nanopore in escape period t.

The macromolecule has a lengthiness of L = Na, where N = monomers number of
polymer and a = monomer length. Initial conditions are related to the fact that at x = 0,
respective t = 0, the polymer head penetrates the nanopore.

The macromolecule probability current density, noted J(x, t), can be represented by the
following formula:

∂P(x, t)
∂t

+
∂J(x, t)

∂x
= 0, (13)

a first-order differential equation, with constant coefficients and homogeneous.
In the case of a macromolecule only, it can be accepted that J is a linear function of P

(second-order terms in P or more are missing), as follows:

J(x, t) = νP(x, t)− D
∂P(x, t)

∂x
. (14)

The likelihood P(x, t) afterward respects the following equation of diffusion-type
having a drift constituent (owed at electromagnetic field presence, for example):

∂P(x, t)
∂t

= −ν
∂P(x, t)

∂x
+ D

∂2P(x, t)
∂x2 , (15)

where the constant coefficients D, and v signify the effective diffusion coefficient and mean
speed of drift, respectively.

The diffusion Equation (15) can be solved analytically only for cases with simple
geometry, constant diffusion coefficients, and simple boundary conditions. Therefore, in
analytically untreatable cases, recourse is had to numerical methods (simulations) for solv-
ing diffusion equations. Initial and boundary conditions in the most general formulation
of diffusion Equation (15) are P(x, t0) = P0(x), 0 < x < L and P(0, t) = P0

0 respectively
P(L, t) = P0

L .
The one-dimensional diffusion equation expresses the evolution in time of the proba-

bility of the migrant polymer in an infinite flat layer and thickness L. Discretization in the
x-direction of Equation (15) is performed using the Lagrange polynomial of second-degree
interpolation, while for time discretization and expression of the derivative, the Taylor
series development and the Crank–Nicolson method are used.

Based on the numerical method described above, we proceeded to establish algorithms
and program modules. The programming of the algorithms within the modules was
performed through a versatile computing code written in C++ programming language. The
program was written and tested according to an original procedure developed at this stage,
using discrete numerical methods. The testing included both testing the source programs
while writing the program and the integrated application.

Note. The discretization for a diffusive process is better behaved with a fully implicit
scheme (if the Crank–Nicolson approach is used, one needs to make sure that spurious os-
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cillations in the solution do not develop). We used finite-differences as the iteration method
for the solution of boundary-value diffusion problems. The finite-difference method is
defined as dimension per dimension, and this makes it easy to increase the “element order”
to obtain higher-order accuracy.

Iterative convergence relates to the number of iterations required to obtain residuals
that are sufficiently close to zero, either for a steady-state problem or for each time step in
an unsteady problem. This error is in addition to the numerical error associated with the
truncation error terms.

The magnitude of the difference between the exact value and the approximation is
the absolute error, where the relative error is simply the ratio of absolute error to the exact
value, which can also be expressed in terms of percentage. To examine the rate of decrease
in the relative error, it can be examined the speed of convergence of the algorithm. It is fast
with us because we used the known procedure of modified Gauss elimination method.

Mathematically speaking, we are dealing here obviously with the vast-specimen com-
portment of maximum probability evaluates (MPE’s) of the diffusion process characteristic.
Everything is performed by an uninterrupted observation along continuous period (for
t tends to infinity, t→ ∞ ). The triggered effect (according to central limit theorem of a
normal distribution for the MPE and the asymptotic chi-squared probability report test) is
agreed accurately to standard asymptotic probability results and attends trippingly to the
central limit theorem of a stochastic function.

Being in the center of attention the not excessively short polymers, the boundary
effects, whereas the polymer is introduced and/or taken out by the nanopore are negligible.
The speed v is considered as an average speed in time and on the ensemble, as in the
Equation (15). Additional interest goes to the casual prevalence of the translocation/escape
speed (which translates directly into time of escape/translocation) regarding its mean

value v and leads to quantifying the diffusion coefficient D = lim
t→∞

<[x(t)−x(0)−vt]2>
2t , where

<· · ·> represents the average value of the quantity in parentheses, and x(0) is the origin
position/place of the polymer.

Transportation likelihood of DNA through a membrane nanopore called Pe, evidently
function of escape time te, for time-drive established at 200 µs, is represented in Figure 5 [21].
Every diagrammatic item of data has been estimated from about 1000 cases fulfilled, as
pictured in histograms form out of the graphical representation, according to Figure 6.

Error bars (±mean square deviation) situated on every experimental point were
calculated by determining the events grouplet/faction in superposed zone between the
two real peaks.

Figure 5. Escape translocation probability as a function of escape time.
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The time duration of escape event, te, is determined at every passage and the histogram
of transport escape length period has been realized out of 5000 passages (principal image
of presentation), Figure 6. The longest-lasting likely escape time (top of present histogram
repartition) is indicated to be te = 285 µs.

4. Results Discussions

The model developed above precisely describes the polymer transport process via
nanomembranes’ with nanometer-dimensional pores and considers a two-dimensional
drift-diffusion phenomenon together with its related familiar formulas [13]. The bio-
polymers escape-translocation procedure by the membranes’ small waist orifices is refound
throughout biological complex structures, if we think primarily of nucleic acids (DNA and
RNA) transport across holes at a nanometric level, or even of protein driven across mem-
brane canals (the so-called inland waterways), along with the microbial germs inoculation
in living cellular artifacts.

It has been measured the escape time of polymer translocation process via nanomem-
brane for two distinguished nucleic acids of the same extension/dimension, but with a
configuration variable existing just in the itemized order construction. In Figure 7, two
reference examples are presented, such as the histograms of testing of hetero-DNAs for
(a) poly (dAdC)64 and (b) poly (dA64dC64), respectively.

Figure 7. Translocation times histogram: (a) poly(dAdC)64 and (b) poly(dA64dC64) under F = 0.5 [13].
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Because the chemical potential difference ∆µ controls the escape time τ, the limiting
situation for ∆µ can lead to the same simple analytical formulas for τ [22].

For example, in the ∆µ = 0 case and symmetric barriers, the solution of the Equation (6)
is τ = αN2, where α depends on k0, γ1 and γ2. In the particular case γ1 = γ2 = 1

2 we have
τ = M2

16k0
N2. By combining the two examples above, we obtain the following result:

τ =

{
αN2, |∆µ| = 0

N2

16k0
, |∆µ| = 0 and γ1 = γ2 = 1

2
(16)

In other words, in the absence of the potential (∆µ = 0), the translocation time has a
square behavior, τ ∼ N2.

Sung and Park regard the polymer translocation as a stochastic phenomenon, in which
a solid obstacle placed in front of the polymer is crossed. Polymer escape duration now τ
becomes the average first passage period (average escape time) of the diffusion process
between two extreme numbers of segments n = 0 and n = N, [2].

The results, in the case when µ1 = µ2, are the following:

τ =
M2

16
L2

D
∼ L3 (flexible chain) (17)

and, in the case of a rigid rod, where F(m) = 0,

τ =
L2

2D
∼ L3 (rigid rod). (18)

In the above equations, D signifies diffusion coefficient subject to scaling, more pre-
cisely D~L, where L represents chain profile lengthiness (a polymer length).

As Muthukumar [4] affirms, the difference in the exponent for the N-dependence of τ
between the two models is the dynamics of translocation and the nature of k0, while the
formalism is exactly the same.

When the entropic terms are weak compared to the third term on the right-hand side
mβ∆y in Equation (4) and for a favorable chemical potential gradient (∆y < 0), τ is given
by the following:

τ =
N
k0

kBT
|∆y|

{
1− kBT

N|∆y|

[
1− eαP

(
−N|∆y|

kBT

)]}
∼ L3 (19)

with the limits

τ =

{ kBT
k0|∆y|N, N|∆y| > 1

N2

2k0
, N|∆y| < 1

(20)

In addition, the conditions equivalent from a physical point of view to the situation in
which the drift term dominates the transport problem are as follows:

τ ∼ N2, for N|∆µ| < 1. (21)

In the case of polymer translocation against the chemical potential gradient, the escape
time τ can be expressed by exp (N) for a large polymer size.

In Figure 8, escape translocation time functions of N for three distinct mathematical
equations, drawn in three different colors, are shown. Thus, the blue color represents the
variation as a function of N2, the red color represents the variation as a function of N3, and
the green color represents variation as a function of exp (N).

Note. Today, transport accelerators of a polymer through nanometric pores are
used, among which we notify the nanoparticle-assisted polymer translocation through a
nanopore. Thus, the translocation time decreases consistently, which makes any of the
calculation formulas be multiplied by a subunitary coefficient [23].
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Figure 8. Escape translocation time (µs), for three distinct equations that function of N.

Remarks. Theoretical and simulation results obtained from calculations made by us are
in splendid accord with the data obtained experimentally by valuable authors in the works
placed in the bibliography [24,25].

A linear dependence of the most probable time, tp, with N has been experimentally
verified for DNA molecules larger than 12 nucleotides [26,27].

Thus, even more, Slonkina and Kolomeisky [28] have made an improvement to it by
using a tierce area, which can take into account the finite depth of an ideal membrane and
the real orifice dimension, but also polymer translocation under a pulling force. It is worth
considering [29,30].

In the last period, more precisely in the year 2022, flow-induced translocation of
linear and ring polymers has been studied using a combination between multiparticle
collision dynamics and molecular dynamics concepts [31], but also Langevin dynamics
(LD) simulations [32].

5. Conclusions

In the current paper, a model for polymer transport through membranes with nano-
metric pores is developed.

The news produced in the article is related to the following aspects: The way of
solving transport equations, which is a direct and modern one, and especially the boundary
conditions, are the novelties brought here. They may be more relevant by obtaining
improved solutions that are much simpler and easier to represent graphically.

As a success of this paper, we mention that we applied these equations to a new
spectrum of polymers, especially organic, natural, even DNA, etc.

An important result is the estimation of the macromolecule escape duration, which is
the time to accomplish the polymer translocation between the left part and the right region
of the barrier, where it is found entirely at the end of the process.

In the case of unsymmetrical membranes but of large polymeric chain size, in the
strong-negative-bias limit (∆µ� 0)τ we will have a linear dependency of monomer num-
ber total in the polymer, ~N.

Although the model presented in this study is an idealistic theoretical model, it leads
to correct particular results without discussion.

The theoretical estimations are functions of the polymer size and make a distinction
thus between polymer waist, long polymer, and short polymer, respectively. The detailed
model presented here is confirmed by experimental results.
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The transport time duration for all escape events, named te, has been determined at
every polymer transition, and the long time period histogram of individual processes has
been realized out of 5000 passages. The longest-lasting likely escape time (noted at the top
of the present histogram repartition) is determined to be tp = 330 µs.

The thickness dimension of the pore dictates the classification of polymers into the
following two obvious categories: “long” polymers, the first demarcation, and “short”
polymers, the second demarcation.

Author Contributions: Conceptualization, M.-A.P.; methodology, M.-A.P.; software, V.-A.P.; valida-
tion, V.-P.P., M.-A.P. and V.-A.P.; formal analysis, V.-P.P., M.-A.P. and V.-A.P.; investigation, V.-A.P. and
M.-A.P.; resources, V.-A.P. and M.-A.P.; data curation, V.-A.P.; writing—original draft preparation, M.-
A.P.; writing—review and editing, M.-A.P. and V.-P.P.; visualization, V.-A.P. and M.-A.P.; supervision,
V.-P.P.; project administration, V.-P.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study cannot be accessed
due to commercial confidentiality.

Acknowledgments: The authors would like to thank Jenica Paun, for her continuous kind support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mackenzie, R.J. DNA vs. RNA—5 Key Differences and Comparison; Technology Networks: Sudbury, UK, 2020; pp. 1–6.
2. Sung, W.; Park, P.J. Polymer Translocation through a Pore in a Membrane. Phys. Rev. Lett. 1996, 77, 783–786. [CrossRef] [PubMed]
3. Paun, V.P. Theoretical study of the polymer transport through nanopores. Rev. Chim. 2006, 57, 221–223.
4. Muthukumar, M. Polymer translocation through a hole. J. Chem. Phys. 1999, 111, 10371–10374. [CrossRef]
5. Kong, C.Y.; Muthukumar, M. Monte Carlo study of adsorption of a polyelectrolyte onto charged surfaces. J. Chem. Phys. 1998,

109, 1522–1527. [CrossRef]
6. Nichita, M.V.; Paun, M.A.; Paun, V.A.; Paun, V.P. Fractal Analysis of Brain Glial Cells. Fractal Dimension and Lacunarity.

Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2019, 81, 273–284.
7. Bordescu, D.; Paun, M.A.; Paun, V.A.; Paun, V.P. Fractal analysis of Neuroimagistic. Lacunarity degree, a precious indicator in the

detection of Alzheimer’s disease. Univ. Politeh. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 2018, 80, 309–320.
8. Paun, V.P. An estimation of the polymer translocation time through membrane. Mater. Plast. 2006, 43, 57–58.
9. Paun, V.P. Relaxation model for polymeric materials in the hereditary theory of elasticity. Mater. Plast. 2003, 40, 81–82.
10. Ambjörnsson, T.; Apell, S.P.; Konkoli, Z.; Di Marzio, E.A.; Kasianowicz, J.J. Charged polymer membrane translocation.

J. Chem. Phys. 2002, 117, 4063–4073. [CrossRef]
11. Chen, S.; Olson, E.; Jiang, S.; Yong, X. Nanoparticle assembly modulated by polymer chain conformation in composite mate-rials.

Nanoscale 2020, 12, 14560–14572. [CrossRef]
12. Luo, K.; Ala-Nissila, T.; Ying, S.-C.; Bhattacharya, A. Sequence Dependence of DNA Translocation through a Nanopore.

Phys. Rev. Lett. 2008, 100, 058101. [CrossRef]
13. Paun, V.P.; Paun, M.A.; Toma, A.; Ciucu, C.; Popentiu, F. Transport Phenomenon Simulation for Linear Polymers through

Nanometer Pores. Mater. Plast. 2008, 45, 57–60.
14. Pusca, S.; Paun, M.-A.; Toma, C. Viscoelastic behaviour analysis of the technical polymers by bidimensional pulses generation.

Mater. Plast. 2007, 44, 39–42.
15. Moghimikheirabadi, A.; Kröger, M.; Karatrantos, A.V. Insights from modeling into structure, entanglements, and dynamics in

attractive polymer nanocomposites. Soft. Matter. 2021, 17, 6362–6373.
16. Paun, V.P. Polymer dynamics simulation at nanometer scale in a 2D diffusion model. Mater. Plast. 2007, 44, 393–395.
17. Kasianowicz, J.J.; Henrickson, S.E.; Weetall, H.H.; Robertson, B. Simultaneous multianalyte detection with a nanometer-scale

pore. Anal Chem. 2001, 73, 2268–2272.
18. Muthukumar, M. Translocation of a Confined Polymer through a Hole. Phys. Rev. Lett. 2001, 86, 3188–3191. [CrossRef]
19. Doi, M.; Edwards, S.F. Theory of Polymer Dynamics; Clarendon Press: Oxford, UK, 1986.
20. Lubensky, D.K.; Nelson, D.R. Driven Polymer Translocation Through a Narrow Pore. Biophys. J. 1999, 77, 1824–1838. [CrossRef]
21. Bates, M.; Burns, M.; Meller, A. Dynamics of DNA Molecules in a Membrane Channel Probed by Active Control Techniques.

Biophys. J. 2003, 84, 2366–2372. [CrossRef]

http://doi.org/10.1103/PhysRevLett.77.783
http://www.ncbi.nlm.nih.gov/pubmed/10062901
http://doi.org/10.1063/1.480386
http://doi.org/10.1063/1.476703
http://doi.org/10.1063/1.1486208
http://doi.org/10.1039/D0NR01740J
http://doi.org/10.1103/PhysRevLett.100.058101
http://doi.org/10.1103/PhysRevLett.86.3188
http://doi.org/10.1016/S0006-3495(99)77027-X
http://doi.org/10.1016/s0006-3495(03)75042-5


Polymers 2022, 14, 2090 12 of 12

22. Ma, S.K. Statistical Mechanic; World Scientific: Singapore, 1985.
23. Hamidabad, M.N.; Asgari, S.; Abdolvahab, R.H. Nanoparticle-assisted polymer translocation through a nanopore. Polymer 2020,

204, 122847. [CrossRef]
24. Kasianowicz, J.J.; Brandin, E.; Branton, D.; Deamer, D.W. Characterization of individual polynucleotide molecules using a

membrane channel. Proc. Natl. Acad. Sci. USA 1996, 93, 13770–13773. [CrossRef]
25. Bezrukov, S.M.; Vodyanoy, I.; Brutyan, R.A.; Kasianowicz, J.J. Dynamics and Free Energy of Polymers Partitioning into a

Nanoscale Pore. Macromolecules 1996, 29, 8517–8522. [CrossRef]
26. Meller, A.; Nivon, L.; Branton, D. Voltage-driven DNA trans- locations through a nanopore. Phys. Rev. Lett. 2001, 86, 3435–3438.

[CrossRef]
27. Meller, A.; Branton, D. Single Molecule Measurements of DNA Transport through a Nanopore. Electrophoresis 2002, 23, 2583–2591.

[CrossRef]
28. Slonkina, E.; Kolomeisky, A. Polymer translocation through a long nanopore. J. Chem. Phys. 2003, 118, 7112–7118. [CrossRef]
29. Hamidabad, M.N.; Abdolvahab, R.H. Translocation through a narrow pore under a pulling force. Sci. Rep. 2019, 9, 17885.

[CrossRef]
30. Menais, T. Polymer translocation under a pulling force: Scaling arguments and threshold forces. Phys. Rev. E 2018, 97, 022501.

[CrossRef]
31. Wang, Z.; Wang, R.; Lu, Y.; An, L.; Shi, A.-C.; Wang, Z.-G. Mechanisms of Flow-Induced Polymer Translocation. Macromolecules

2022, 55, 3602–3612. [CrossRef]
32. Sarabadani, J.; Metzler, R.; Ala-Nissila, T. Driven polymer translocation into a channel: Iso-flux tension propagation theory and

Langevin dynamics simulations. arXiv 2022, arXiv:2202.08128v2.

http://doi.org/10.1016/j.polymer.2020.122847
http://doi.org/10.1073/pnas.93.24.13770
http://doi.org/10.1021/ma960841j
http://doi.org/10.1103/PhysRevLett.86.3435
http://doi.org/10.1002/1522-2683(200208)23:16&lt;2583::AID-ELPS2583&gt;3.0.CO;2-H
http://doi.org/10.1063/1.1560932
http://doi.org/10.1038/s41598-019-53935-3
http://doi.org/10.1103/PhysRevE.97.022501
http://doi.org/10.1021/acs.macromol.2c00288

	Introduction 
	Theoretical Background 
	Materials and Methods 
	Results Discussions 
	Conclusions 
	References

