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Abstract: The diffusion of small molecules or ions within polymeric materials is critical for their
applications, such as polymer electrolytes. Cross-linking has been one of the common strategies to
modulate solute diffusivity and a polymer’s mechanical properties. However, various studies have
shown different effects of cross-linking on altering the solute transports. Here, we utilized coarse-
grained molecular dynamics simulation to systematically analyze the effects of cross-linking and
polymer rigidity of solute diffusive behaviors. Above the glass transition temperature Tg, the solute
diffusion followed the Vogel–Tammann–Fulcher (VTF) equation, D = D0 e−Ea/R(T−T0). Other than the
conventional compensation relation between the activation energy Ea and the pre-exponential factor
D0, we also identified a correlation between Ea and Vogel temperature T0. We further characterized an
empirical relation between T0 and cross-linking density. Integrating the newly identified correlations
among the VTF parameters, we formulated a relation between solute diffusion and the cross-linking
density. The combined results proposed the criteria for the optimal solute diffusivity in cross-linked
polymers, providing generic guidance for novel polymer electrolyte design.

Keywords: solute diffusion; cross-linked polymers; Vogel–Tammann–Fulcher equation; free volume
theory; molecular dynamics

1. Introduction

Currently, polymers have been widely applied in various fields, such as coating
materials, membranes and filters, storage devices, optical films, and electronic devices,
etc. When apply as a protective coating and filtering membrane, the diffusion of small
molecules or ions within polymers is one of the critical properties [1–3]. Many recent
studies in high-power and high-safety lithium batteries have utilized functional polymers
to fabricate novel solid polymer electrolytes (SPEs), in which the ion conductivity is also
the key property [4,5]. Therefore, modulating polymers to optimize the diffusivities and/or
selectivities of solvated molecules/ions has been one of the main research focuses over the
past few decades.

Various strategies have been applied to modulate the solute diffusivity within the
polymer matrix, including tuning the nature of polymers and solutes, the addition of plasti-
cizers or fillers, and cross-linking polymer networks [1]. The transport properties mainly
depend on the free volume of solute within the polymer hosts and the segmental motions
of the polymer chains [3,6,7]. In general, polymers with low glass transition temperature
(Tg) have higher chain mobilities with greater diffusivity [7]. Adding plasticizers or fillers,
depending on their compatibility with the polymers, can alter the mobilities of polymer
segments and the free volume within polymer matrix, leading to the modulation of solute
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diffusivity [1]. Cross-linking polymers to form network structures improves the overall
mechanical properties. Yet cross-links also restrain the polymer segmental motions and,
thus, generally reduce solute diffusion [8,9].

Most polymer matrices contain both amorphous and crystalline regions. The diffusion
of solute mainly occurs in the amorphous region and is therefore highly related to polymer
segmental motions [7]. The glass transition temperature (Tg) of a polymer matrix distin-
guishes two states of amorphous polymers, i.e., the glassy and rubbery states. Below Tg,
polymer segments behave similarly to solid glass with only local vibrational motions yet
lacking segment translations. Thus, the main transport mechanism of a solute within glassy
polymers is the hopping action between vacant sites within polymer hosts and is less
related to nearly frozen polymer segments [7,10]. Moreover, the solute diffusivity can be
described via the Arrhenius-like formula:

D(T) = D0 e−Ea/RT, (1)

where T is the temperature, and R is the ideal gas constant. Ea denotes the activation energy
of diffusion, and a lower Ea corresponds to higher solute diffusivity. Pre-exponential factor
D0 can be considered as the factor for the probability of solute/polymer configurations for
solute hopping and is related to the configurational entropy [11]. There exists a correlation,
also known as the compensation effect, between Ea and the pre-exponential factor D0 [11]:

ln(D0) = mEa + n, (2)

where the slope m is usually positive. Therefore, the effect of a larger Ea on reducing solute
diffusivity D is compensated by increased D0, according to Equation (2). The explanations
for the compensation effect in the Arrhenius formula differs for various applications. For the
solute diffusion in polymer, one possible origin is entropy–enthalpy compensation [11,12].

As the temperature rises above Tg, the polymers gain distinct segmental motions and
become ductile with a rubber-like behavior [7]. The solute diffusivity in rubbery polymers is,
thus, affected by the polymer segmental movements [13], and they are generally described
by an empirical relation known as the Vogel–Tammann–Fulcher (VTF) equation [14,15]:

D(T) = D0 e−Ea/R(T−T0), (3)

where D0 is the pre-exponential factor, and Ea is the pseudo-activation energy of diffusion
related to the polymer segmental motions. T0, as known as the Vogel temperature, denotes
the temperature at which polymers have zero-mobility and is generally taken as 50 K below
Tg for polymer electrolytes [15]. One common interpretation for the VTF-type diffusion in
polymer relies on the free volume theory [3,16–18], in which (T − T0) originated from the
volume expansion with temperature. The Arrhenius and VTF modes of diffusion can be eas-
ily distinguished via the Arrhenius plot, i.e., plotting lnD against 1/T. A linear correlation
in the Arrhenius plot corresponds to the Arrhenius diffusive behavior. In contrast, a curved
relation indicates a VTF mode of diffusion with correlations to polymer segmental motions.
Recent studies on polymer electrolytes illustrated a compensation relation in the form of
Equation (2) between the pre-exponent D0 and Ea for the VTF equation. The compensation
parameters, i.e., the m and n in Equation (2), are influenced by various factors including
polymer nature and cross-linking network and salt types, etc., [8,9,19,20].

In general, cross-linking the polymers enhances the mechanical strength but reduces
the polymer segmental mobility. Moreover, increasing cross-linking density can lead to re-
duced solute diffusivity in polymer matrix or ion conductivity in polymer electrolyte [8,21].
However, several studies also demonstrated the existence of the optimal cross-linking
density with the maximal solute diffusivity/ion conductivity [9,20,22,23]. To elucidate the
effects of cross-linking on solute diffusivity within polymer matrix, we conducted a series
of coarse-grained molecular dynamics simulations with various polymer cross-linking
densities and polymer rigidities. Our simulation data confirmed the conventional com-
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pensation relation between Ea and lnD0 for VTF types of diffusion above Tg. Additionally,
we found a linear correlation between T0 and 1/Ea, which can be further interpreted
through free volume theory. T0 was also found to be correlated to 1 over linker length
1/L, i.e., an indicator of the cross-linking density. These allowed us to reformulate the VTF
equation and correlate the solute diffusivity with the cross-linking density. The combined
results illustrate the criterion for the optimal solute diffusivity, providing insights into the
optimization strategies of the conductivity of novel polymer electrolyte systems.

2. Methods
2.1. Coarse-Grained Molecular Simulations for Cross-Linked Polymer

To simulate a cross-linked polymer matrix, we applied a coarse-grained (CG) bead-
spring polymer model, which has been commonly used to study the structural, mechan-
ical, rheological, and dynamic properties of co-polymers, polymer blends, and polymer
networks [24–30]. Specifically, the model has been shown to produce the Rouse and
entanglement dynamics of polymers, which is critical for solute diffusion in polymer ma-
trix [24]. The interactions between polymer CG beads (type P) are described via the 12-6
Lennard–Jones (LJ) potential:

ULJ(rij) = 4εij

(σij

rij

)12

−
(

σij

rij

)6
, (4)

where σij, εij, and rij are the effective particle size, interaction energy, and the separa-
tion distance between particles i and j, respectively. The interaction is cut-off at 2.5 σij.
The neighbor polymer beads are connected by the finitely extensible nonlinear elastic
(FENE) bond [24,31]:

Ubond(rij
)
= −1

2
kbR2

0ln

[
1−

( rij

R0

)2
]
+ 4εij

(σij

rij

)12

−
(

σij

rij

)6
+ εij (5)

where kb = 30 ε/σ2 and R0 = 1.5 σ (in reduced LJ units of energy ε and length σ) denote the
bond stiffness and the bond divergence length, respectively. The harmonic angle potential
was introduced to polymer chains:

Uangle(θ) =
1
2

kθ(θ − θ0)
2 (6)

where θ0 = 180◦ denotes the equilibrium angle. Various bending stiffness kθ values of 0,
0.2, 1.0, 2.0, 4.0, and 6.0 ε/radian2 were applied to modulate the polymer bending rigidity.

Two solute species (types A and C) were introduced to mimic the ions and counteri-
ons within solid polymer electrolyte. The interactions between like CG species are also
described using LJ potentials; whereas the interactions between unlike CG species are
modeled with the Weeks–Chandler–Andersen (WCA) potential [30,32]:

UWCA(rij) =

4εij

[(
σij
rij

)12
−
(

σij
rij

)6
]
+ εij, r < rcij

0, r ≥ rcij

(7)

where the cut-off distance rcij is 21/6 σij. The attraction between solute A and C was assigned
with a higher value of 2 ε to account for attractions between counterions. For polymer
electrolyte systems, polymers generally have strong interactions with the conducting ions
to solvate target salts. Analogously, we increased the interaction strength between polymer
P and solute C to simulate the higher affinity between polymer and the conducting solute
C. Table 1 lists the complete non-bonded interaction parameters for all CG species.
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Table 1. Non-bonded interaction parameters.

Type i-j εij(ε) σij(σ) Potential Form

P-P 1.0 1.0 LJ
C-C 1.0 1.0 WCA
A-A 1.0 1.0 WCA
P-C 2.0 1.0 LJ
P-A 1.0 1.0 LJ
C-A 2.0 1.0 LJ

To generate the cross-linked network structures, we started with linear polymer chains
mixed with two solute species, i.e., C and A. Two types of linear polymers were blended:
(1) polymers with only P type CG beads and (2) reactive poly-P polymers of the same length
with additional reactive polymer (RP) beads at two ends, where the non-bonded interaction
parameters for RP and P were identical. To mimic the in situ cross-linking process such as
the photo-induced free radical polymerization [33], a new bond was formed during the
molecular dynamics simulation between RP and P beads of different chains when their
distance was less than 1.12 σ, i.e., the approximate cut-off distance of the WCA potential.
Once a RP terminal formed two additional bonds with P beads from other polymer chains,
it was then transformed into type P and lost its reactivity. The scheme for the cross-linking
process is illustrated in Figure 1. When fully cross-linked, each RP is linked with three
polymer chains. By controlling the ratio of polymers and reactive polymers, we generated
polymer networks with different cross-linking densities. In this work, we evaluated Link%
as follows:

Link% =
NRP

NP + NRP
× 100%, (8)

where NP and NRP denoted the numbers of P and RP beads, respectively. Here, the total
numbers of P beads and A-C solute pairs were fixed at 30,000 and 1875, respectively,
to control the polymer to solute ratio at 16:1. In a fully linked system, each RP has three
bonds and each P has two bonds. Thus, the averaged length for a linker connecting two RP
beads can be calculated as follows:

L =
2× NP

3× NRP
. (9)

With fixed NP, L is shorter for a higher link% system, and 1/L can also be used to quan-
tify the cross-linking density. Since the main objective was to generate the cross-linking
structure for the polymer host, the starting polymer length was set to L and only the
cross-linking process was considered. The cross-linking reaction was terminated when the
yield of the new bonds was above 95%. The detailed system compositions for systems with
different cross-linking densities are listed in Table 2.
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Figure 1. Scheme for the cross-linking reaction between the RP end of a reactive polymer and the P
end from a regular polymer. After forming a total of three bonds with P, the RP transforms into P
type and loses its reactivity.

Table 2. Compositions for polymer solutions with various Link%.

Link%
Polymer Chain

Length (L) ×
Chain Number

Reactive
Polymer Chain
Length (L+2) ×
Chain Number

NP NRP NC NA

0 200× 150 202× 0 30,000 0 1875 1875
0.3 200× 100 202× 50 30,000 100 1875 1875
0.6 100× 200 102× 100 30,000 200 1875 1875
1.6 40× 50 42× 250 30,000 500 1875 1875
3.2 20× 1000 22× 500 30,000 1000 1875 1875
6.3 10× 2000 12× 1000 30,000 2000 1875 1875
11.8 5× 4000 7× 2000 30,000 4000 1875 1875

The initial configurations of solutes in polymers before the cross-linking process
were randomly placed into a cubic cell with the initial density of 0.9 σ−3 according to the
composition listed in Table 2. Each system was first energy minimized through the steepest
descent minimization algorithm, followed by an isothermal-isobaric (NPT) simulation at
the temperature T = 1.0 ε/kB and the pressure P = 0 ε/σ3 for 25,000 τ where τ denotes the
LJ reduced unit of time. The system was then cross-linked under the same NPT condition
for a minimal 50,000 τ until the linking yield reached above 95%. The system was then
equilibrated for 25,000 τ at various temperatures ranging from 0.3 to 0.975 with intervals of
0.025 ε/kB. The last 20,000 τ simulation was used for data analyses.

All simulations were carried out using the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) software with an integration time step of 0.005 τ [34]. Tem-
perature and pressure were controlled using the Nosé-Hoover thermostat and barostat
with the damping parameters of 0.5 τ and 5 τ, respectively [35–37]. System configurations
were saved every 25 τ for further analyses. Simulations were visualized with the visual
molecular dynamics (VMD) software [38]. All the analyses described in the subsequent
sections were performed using in-house analysis scripts.

2.2. Free Volume Theory for Diffusion

A common interpretation of the VTF equation is based on the free volume theory first
proposed by Cohen and Turnbull [17,18]:

D = DF e−γV∗/Vf . (10)
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Here, V∗ denotes the critical cavity for solute diffusion, Vf is the mean cavity size, and γ
is a correction factor between 0.5 and 1 accounting for cavity overlaps. Moreover, the
pre-exponential factor DF is related to solute velocity, molecular diameters, and a geometric
correction. Mean volume Vf is assumed to expand linearly with temperature:

Vf = αVm(T− T′0), (11)

where α is the thermal expansion coefficient, Vm is the mean molecular volume, and T′0 de-
notes the extrapolated temperature at which the solute free volume presumably disappears.
Comparing Equation (3) with the combination of Equations (10) and (11) and assuming
T′0 = T0, we can obtain the expression of the following:

Ea/R = γV∗/αVm, (12)

which directly correlates the free volume with the pseudo-activation energy of VFT diffusion.
Free volume theory has been first proposed to interpret the behavior of polymer

glass transition. In analogy to the interpretation of polymer free volume by White and
Lipson [39], we defined the free volume of solute Vf ree in the polymer hosts as follows:

Vf ree = V −Vhc = Vf ree:vib + Vf ree:exs, (13)

where V is the total volume occupied by a solute evaluated using the Voronoi analysis
here [40]. Note that V is temperature-dependent, where the thermal expansion coefficients
above and below Tg are different, as illustrated in Figure 2. Vhc denotes the vibration-free,
hard-core volume of solute and is independent of temperature. Here, we evaluated Vhc by
extrapolating the V-T curve linearly to T = 0. The solute free volume thus can be calculated
as the difference between V and Vhc which represents the maximum free volume [39]. Note
that, compared to Vhc, the local vibration of molecules can lead to a slightly larger effective
volume as in glassy state, namely Vg [41–43]. Additionally, molecules are nearly frozen and
only vibrate locally below Tg. Hence, we assumed V of solute to be equal to Vg below Tg.
This allowed the estimation of Vg at any temperature through the linear extrapolation of
the V-T curve below Tg. As shown in Equation (13), the maximum solute free volume Vf ree
can be further divided into the vibrational free volume Vf ree:vib and the excess free volume
Vf ree:exs, where Vf ree:vib was evaluated by the difference between Vg and Vhc, and Vf ree:exs
was defined as the difference between V and Vg [39]. Figure 2 demonstrates the definitions
of different free volumes and summarizes the relations among them.

Based on the free volume theory of diffusion, the transport of solute occurs only in the
space exclusive to the polymer chains. Therefore, the total free volume available for solute
motion, as demonstrated in Figure 2b, should account for both the volume of solute and
the excess free volume of polymers. Here, we estimated the total volume available for each
solute molecule VD and the volume available for diffusion VD

f ree as:

VD =
Vf ree:exs,polymer × (NP + NRP) + V × NC

NC
, and (14)

VD
f ree = VD −Vhc, (15)

where VD
f ree excludes the hard-cord volume of each solute from VD. Using Equation (11)

and assuming VD
f ree = Vf , the αVm value was then estimated from the slope of the VD

f ree-T

plot. The correlation between Ea/R and VD
f ree was then validated using Equation (12).
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Figure 2. (a) A representative solute volume thermogram (V-T plot), labeled with different solute
volume definitions. (b) Illustrations of different definitions of free volumes, where the volumes for
solutes and polymers are marked with red-ish and blue-ish colors, respectively.

3. Results and Discussions
3.1. Solute Diffusion in Cross-Linked Polymers

As discussed earlier, the solute diffusion modes are different below and above Tg. We
first determined Tg from the molecular volume V-temperature T plots. Figure 3a,b display
the representative V-T plots for the softest (kθ = 0.0) and the most rigid (kθ = 6.0) polymers,
respectively. Since we were interested in the solute diffusion, specifically the type C solute
as discussed in Methods, we evaluated V using the Voronoi volume of solute C. The solute
Tg determined by the intersection between the linear fitted lines at high and low T regions
were also labeled in Figure 3a,b.

For the softest chain (kθ = 0) systems, at T below Tg, V is less affected by Link%,
except for Link% = 11.8 where V increases. This suggested that the free volume of solute is
less affected by cross-linking in soft polymers in glassy state. Yet, with a high cross-linking
density, the linker length L is shorter to provide a more rigid and less compressible polymer
framework, leading to increased solute volume. When above Tg, V is reduced if polymers
start cross-linking but is less affected by further varying Link%. In the rubbery phase above
Tg, the motion of solute is associated with polymer mobility. If cross-linked, the polymer
segments are restrained with less effective occupied volumes, leading to a reduced V of
solute. In contrast, in rigid polymer systems, V decreases as Link% increases both below
and above Tg. The molecular packing within rigid polymers is less dense both below and
above Tg. Thus, introducing cross-linking restraints can enforce smaller chain separations
at all temperatures, resulting in reduced V of solute.

Tg values with various Link% for polymers of different rigidities are presented in
Figure 3c. Clearly, Tg increases with increasing Link%. This is because the chain segmental
motions are restrained by cross-linking and more thermal energy is required to transition
into the rubbery state in which the chain motions are coupled with the solute transport. Con-
ventionally, Tg of cross-linked polymers is related to the linker length as Tg = Tg0 + A/L,
where Tg0 is the Tg of uncrosslinked system and A is the empirical constant. Note, however,
the Tg evaluated in this work was based on V of solute and not for pure polymer melts.
Therefore, as illustrated in Figure 3d, the obtained Tgs were proportional to 1/Ln with
n < 1:

Tg =
c1

Lp + c2. (16)
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Here, c2 represents the solute Tg of uncrosslinked systems. Power p is affected by polymer
rigidity: p ≈ 0.09 for stiff polymers (kθ = 4.0, 6.0) and p ≈ 0.2∼0.3 for soft polymers
(kθ ≤ 2.0). This suggests that cross-linking may affect differently on solute transport within
polymers with various rigidities.
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Figure 3. Representative solute volume thermograms (V versus T) for (a) the soft polymer (kθ = 0)
and (b) the stiff polymer (kθ = 6.0) with Link% of 0, 0.6, 3.2, and 13.8%, where the insets in (a)
emphasize the regions both above and below Tg. The glass transition temperature Tg determined via
intersecting the linear fitted lines at high and low temperature regions for each system is marked
by the triangle on the x-axis. Tg plotted against (c) Link% and (d) inverse of linker length 1/L for
all tested polymer rigidities. Values of the power coefficient p in Equation (16) obtained from fitting
Tg-1/L curves are also provided.

We evaluated the diffusivity of solute C in the polymer matrices with different Link%
at various temperatures ranging from 0.3 to 0.975. Figure 4a,b show the representative
Arrhenius plots for the softest and the most rigid polymers with three different Link%,
respectively. Below Tg, the solute diffusion follows the Arrhenius behaviors with the linear
lnD to 1/T relation for all systems. Above Tg, in contrast, solute in all tested systems
diffuse in the VTF mode with non-linear lnD-1/T curves. This suggests that polymer
segmental motions play an important role in solute diffusion despite polymer rigidity or
cross-linking density.

Figure 4c,d summarize the calculated solute diffusion coefficients D at T = 0.4 < Tg
and T = 0.75 > Tg, respectively, for all tested polymer systems. Below Tg, D decreases with
increasing Link% for soft polymeric systems, i.e., kθ = 0.0, 0.2. Yet, such a trend starts to
inverse as the chain rigidity increases. For polymers with kθ = 6.0, D increases as Link%
increases at T < Tg. In contrast, the calculated D values above Tg appear to decrease with
increasing Link% for all tested polymer rigidity. Note, however, D for polymers with
moderate rigidities (kθ = 1.0, 2.0) are slightly higher than other systems with the moderate
cross-linking density (Link% = 0.3∼3.2). This suggested that it is possible to modulate both
polymer rigidity and Link% and maximize the solute diffusion within polymer matrix.
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Figure 4. Representative Arrhenius plots ( lnD versus 1/T) for (a) the soft polymer (kθ = 0) and (b)
the stiff polymer (kθ = 6.0) with Link% of 0, 3.2, and 11.8%, where the glass transition temperature
Tg for each system is marked by the triangle on the x-axis. Natural logarithm of the solute diffusion
coefficient D measured at (c) T = 0.4 and (d) T = 0.75 versus Link% for all polymeric systems with
various rigidities.

3.2. Beyond Compensation Effect in the VTF Model

In most polymer electrolyte systems, it is known that polymers in rubbery state
have higher ion conductivity. Therefore, here, we focused on studying the effects of
polymer rigidity and cross-linking on solute diffusion above Tg. We fitted the Arrhe-
nius plots for all tested systems above their corresponding Tg with the VTF equation
(Equation (3)) . The three parameters, i.e., D0, Ea, and T0, were determined by linear fitting
the lnD0- 1/(T−T0) curve with the maximum coefficient of determination R2. Figure 5 plots
the resulting ln(D0) versus Ea from all tested systems. The results show a clear compen-
sation relation following Equation (2), with the coefficient m = 1.069 and n = 1.324. This
result indicates that the polymer rigidity and cross-linked network have minimal effects
on D0-Ea compensation. Combining our result with the study by Diederichsen et al. on
the compensation relations for various polymer electrolyte systems [19], other factors such
as the ion-polymer affinity and microstructures within polymer blends should be more
dominant factors on the D0-Ea compensation effect.
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Figure 5. Natural logarithm of the VTF pre-exponential factor D0 versus the pseudo-activation energy
Ea for all tested polymer systems in rubbery states.

Experimentally, the Vogel temperature T0 in the VTF equation is typically taken
as follows:

T0 = Tg − ∆T =
c1

Lp + c2 − ∆T, (17)

where ∆T is an empirical value of 50 K [15]. Figure 6a plots the Tg with the corresponding
T0 for all systems tested in this work. Indeed, we found a distinct Tg = T0 + ∆T relation
where ∆T is less affected by polymer cross-linking. Therefore, the empirical ∆T constant of
50 K should be valid for most polymer systems. However, ∆T increases for highly rigid
polymer systems, i.e., kθ = 4.0, 6.0. This suggests that high polymer stiffness can have a
more dominant effect on T0 in the VTF equation. Combined with the empirical relation of
Equation (16) from Figure 3c,d, we further related T0 with the cross-linking density 1/L as
the second equality of Equation (17).

According to the V thermograms in Figure 3, solute volume V is affected by Link%.
Since the solute free volume is related to 1/Ea based on the free volume theory (Equation (12)),
there may be a correlation between T0 and Ea. Indeed, as illustrated in Figure 6b, we
identified a second linear correlation in VTF parameters other than Equation (2) between
T0 and 1/Ea:

T0 =
m′

Ea
+ n′ =

m′

Ea
+

c3

Lp′ + c4. (18)

Here, n′ denotes the Vogel temperature for systems with an infinite activation energy of
diffusion when the mean solute volume disappears, according to Equation (12). Further
analyses showed that slope m′ remained constant for all systems yet the intercept n′ was

dependent on Link%. Moreover, n’ is proportional to 1/L
p′

, as illustrated in Figure 6c. Thus,
other than the conventional compensation between D0 and Ea, Equation (18) provides a
second correlation between Ea and T0 in the VTF equation.
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Figure 6. (a) The glass transition temperature Tg versus the Vogel temperature T0 for all tested
polymer solutions. Fitting the curves with the relation Tg = T0 + ∆T, polymers with kθ = 0, 0.2, 1.0,
and 2.0 were fitted with one ∆T. Polymers with kθ = 4.0 and 6.0 were fitted separately to obtain two
∆T values, where the systems with the highest Link% (hollowed symbols) showed much deviations
and were excluded from fitting. (b) T0 versus 1/Ea for all tested systems. The linear function
(Equation (18)) was fitted to systems with the same Link%. (c) The coefficient n′ in Equation (18)
versus the inverse linker length 1/L. The data were then fitted with the function c3

Lp′ + c4 as in

Equation (18).

3.3. Solute Diffusion and Free Volume

To further analyze the free volume theory for diffusion, we used the thermal expansion
of VD

f ree to evaluate the value of αVm, i.e., the product of the thermal expansion coefficient
and the mean molecular volume. As illustrated in Figure 7a, we estimated αVm via fitting
VD

f ree thermograms in the temperature range of 0.725 to 0.925. According to Equation (12),
αVm should be inversely proportional to the pseudo activation energy of diffusion 1/Ea.
However, as shown in Figure 7b, the resulting αVm values are not well correlated with 1/Ea.
Note that Ea is also affected by γ, the correction factor for the free cavity overlaps. The poor
correlation between αVm and 1/Ea thus suggests that γ can also be temperature-dependent,
which will be investigated in our future studies.

According to the study by White and Lipson [39], the glass transition temperature Tg
of a polymer melt is related to the free volume of the polymer segment at Tg. They found
a near-linear correlation between the free volume ratio Vf ree% = (Vf ree/V)× 100% and
Tg. Such a linear relationship represents the “minimum free volume percentage”, which
is the free volume threshold, for polymers in a melt state. In analogy to the free volume
theory for solute diffusion, the “free volume threshold” can be interpreted as the transition
between the Arrhenius and the VTF type diffusive behaviors. Here, we calculated the total
volume and free volume for solute diffusion using Equations (14) and (15), respectively,
and evaluated the free volume ratio VD

f ree% = (VD
f ree/VD)× 100%. As shown in Figure 7c,

VD
f ree% is linearly related to Tg as follows:

VD
f ree% = m′′Tg + n′′, (19)
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where the slope m′′ and the intercept n′′ are both dependent on polymer rigidity. This
suggests that the boundary between two different solute transport mechanisms can be
modulated by polymer stiffness. Note that the rigidity dependency is different from the
Link% dependency in Figure 6, which may be due to the poor correlation between αVm
and 1/Ea discussed above. Assuming VD

f ree = Vf ∝ 1/Ea, the above linear correlation thus
provides a rationale for the linear relation in Equation (18).
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Figure 7. (a) Representative VD
f ree thermograms for the soft (kθ = 0) and the stiff (kθ = 6.0) polymers

with Link% of 0, 3.2, and 11.8 in the T range of 0.725 to 0.925. (b) αVm versus 1/Ea for all tested
polymer systems. The purple dashed line denotes the linear fit for the polymer systems of kθ = 6.0;
while the black dashed line is the linear fit for all other polymer systems. (c) VD

f ree% versus Tg for all
tested polymer systems. Data were fitted to a linear function based on the polymer rigidity. Data of
kθ = 0 and 0.2 systems were joined and fitted together.

3.4. Optimization of Solute Diffusion in Cross-Linked Polymers

The crossed relations among D0, T0, and Ea allow us to re-formulate the VTF equation
for optimizing the solute diffusivity. Table 3 summarizes the correlations among the VTF
parameters and dependencies of the corresponding coefficients on polymer rigidity, where
the values for all parameters are listed in Tables S1 and S2 of Supplementary Material.
Combining the correlation between T0 and 1/L in Equation (17) and the one between T0
and Ea in Equation (18), we derived the relation between Ea and the cross-linking density
1/L as follows:

Ea =
m′

c1/Lp − c3/Lp′
+ c2 − c4−∆T

. (20)

Figure 8a illustrates the Ea-1/L correlations for various kθ values using the empirical
coefficients obtained in this work. The predicted Ea shows more distinct variations with
respect to 1/L changes for rigid polymers. Additionally, as cross-linking density increases
in soft polymers, Ea first slightly decreases and then gradually increases. For rigid polymer
systems, Ea first drastically decreases and then slightly increases. These results demonstrate
how polymer rigidity alters the activation energy of diffusion.
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Table 3. The correlations among the VTF parameters where the coefficients depending on polymer
rigidity are also listed.

Correlation Polymer Rigidity Dependent Coefficients

ln(D0) = mEa + n (Equation (2)) −
T0 = c1/L

p
+ c2−∆T (Equation (17)) c1, c2, p, ∆T

T0 = m′/Ea + c3/L
p′
+ c4 (Equation (18)) −

Combining Equations (2) and (18), we reformulated the VTF equation of Equation (3)
as follows:

ln(D) = mEa + n− Ea

R(T− c1/Lp − c2+∆T)
. (21)

Further substituting Equation (20) into the above equation leads to the direct relation
between the diffusion coefficient D and cross-linking density 1/L. As shown in Figure 8b,
solute diffusivity monotonically decreases with increased cross-linking density for soft
polymers. In contrast, solute diffusivity exhibits a maximum value at moderate cross-
linking density for rigid polymer systems.

0.02 0.04 0.06 0.08 0.1

1 / L

1.5

2

2.5

3

3.5

E
a

k
θ
 = 0

k
θ
 = 2.0

k
θ
 = 4.0

k
θ
 = 6.0

0.001 0.01 0.1

1 / L

−6

−5

−4

−3

ln
D

(a)

(b)

Figure 8. The theoretical predictions of (a) Ea and (b) lnD as functions of 1/L for different kθ

according to Equation (20) and Equation (21), respectively. The points denote the data obtained from
MD simulations in this work.

According to VTF equation Equation (3), increasing Ea or T0 leads to reduced D.
From Equation (17), a higher cross-linking density corresponds to an increased T0. However,
from the Ea-1/L relations in Figure 8a, a rapid decrease in Ea while the cross-linking
starts in rigid polymer systems. This suggests that, for polymers with higher stiffness,
introducing a low degree of cross-linking can increase the solute diffusions in polymer
melts. The competing effects between Ea and T0 also lead to an optimal cross-linking
density for solute diffusion. In contrast, cross-linking soft polymers have a negligible
reduction on Ea at low 1/L and thus only reduce the solute mobility as Link% increases.
Note that Equations (20) and (21) only moderately fit with simulation results as shown
in Figure 8, where the errors can be due to the accumulation of numerical errors from
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parameter fitting and the complex dependency on cross-linking density for parameters in
the free volume theory of solute diffusion within polymers as discussed in Section 3.3.

4. Conclusions

In this study, we utilized a series of coarse-grained molecular dynamics to systemati-
cally examine the effects of cross-linking and polymer rigidity on solute diffusivity within
host polymers. The simulation results showed that the glass transition temperature of
solute Tg is related to the cross-link density 1/L as Equation (16), where the coefficients are
dependent on polymer stiffness. Kinetic analyses illustrated that when above >Tg, solute
diffusion follows typical VTF behavior as shown in Equation (3). Via fitting MD data with
the VTF equation, the resulting pseudo activation energy Ea and the pre-exponential factor
D0 exhibited a conventional compensation correlation of Equation (2). Consistent with
experimental results, the obtained Vogel temperature coefficient T0 was lower than Tg by a
constant ∆T. Yet, ∆T was found to be dependent on polymer rigidity. Furthermore, we iden-
tified an additional correlation among T0, Ea, and the cross-link density 1/L as described in
Equation (17). These results allowed us to derive an empirical relation between Ea and the
cross-link density (Equation (20)) and to re-formulate the VTF equation into the correla-
tion between the solute diffusivity and the polymer cross-linking density (Equation (21)).
With such newly derived correlation, we found that increasing the cross-link density in soft
polymers monotonically reduces solute diffusivity. In contrast, there exhibits an optimal
cross-link density maximizing the solute transport properties in rigid polymers. Future
work includes mapping the correlation among the practical polymer rigidity characters,
such as persistent length, and the aforementioned coefficients and studying the underlying
physics. The effects of polymer rigidity and cross-linking on the cavity overlap parameter γ
in the free volume theory of diffusion will also be further examined. The combined results
can provide valuable guidance for the optimization of polymeric materials for various
applications, including novel polymer electrolytes for energy devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
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