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Abstract: Although several sample preparation methods for analyzing microplastics (MPs) in envi-
ronmental matrices have been implemented in recent years, important uncertainties and criticalities
in the approaches adopted still persist. Preliminary purification of samples, based on oxidative
digestion, is an important phase to isolate microplastics from the environmental matrix; it should
guarantee both efficacy and minimal damage to the particles. In this context, our study aims to
evaluate Fenton’s reaction digestion pre-treatment used to isolate and extract microplastics from
environmental matrices. We evaluated the particle recovery efficiency and the impact of the oxidation
method on the integrity of the MPs subjected to digestion considering different particles’ polymeric
composition, size, and morphology. For this purpose, two laboratory experiments were set up: the
first one to evaluate the efficacy of various digestion protocols in the MPs extraction from a complex
matrix, and the second one to assess the possible harm of different treatments, differing in temper-
atures and volume reagents used, on virgin and aged MPs. Morphological, physicochemical, and
dimensional changes were verified by Scanning Electron Microscope (SEM) and Fourier Transformed
Infrared (FTIR) spectroscopy. The findings of the first experiment showed the greatest difference in
recovery rates especially for polyvinyl chloride and polyethylene terephthalate particles, indicating
the role of temperature and the kind of polymer as the major factors influencing MPs extraction. In the
second experiment, the SEM analysis revealed morphological and particle size alterations of various
entities, in particular for the particles treated at 75 ◦C and with major evident alterations of aged MPs
to virgin ones. In conclusion, this study highlights how several factors, including temperature and
polymer, influence the integrity of the particles altering the quality of the final data.

Keywords: microplastics; oxidative digestion; Fenton’s reagent; virgin; aged; weathering; SEM; FTIR

1. Introduction

Microplastics (MPs) are “synthetic solid particle or polymeric matrix, with regular or
irregular shape from 1 µm to 5 mm size, of either primary or secondary manufacturing
origin” [1]. Their presence has been reported in all environmental matrices, becoming an
emerging problem worldwide [2–4]. Due to their small size, high volume surface ratio,
and their ability to adsorb or release pollutants [5], MPs’ threats mainly concern their
effects on organisms and human health [6–9]. Therefore, MPs monitoring is important to
understand their presence in the environment. Microplastic studies require several method-
ological approaches to isolate, identify and quantify particles spread in environmental
matrices [10–12].

However, when environmental matrices are rich in organic matter, a chemical diges-
tion treatment is necessary to remove it and release particles. Organic residues have a
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density similar to that of polymers, and they may float together MPs during the density
separation phase, hindering extraction and quantitative analysis of particles [13]. Organic
digestion treatments may be based on oxidizing agents, acids, basics, or enzymes [10,14–16].
However, not all procedures remove organic matter without damaging polymers [17–19].

Applying strong acids, such as nitric acid (HNO3), produced efficient digestion of
biota but they are toxic, corrosive, and cause polymers degradation such as polystyrene,
polyamide, and polyethylene [10,20,21]. Alternatively, studies have used alkaline solutions
and enzymes for biota digestion, but these require much time, may damage some polymers,
and are very expensive [22–24].

Oxidizing agents are increasingly used for water, soil, and sediment because the type of
organic matter is more difficult to digest (leaves, woody debris, algae, etc.) [13,25,26]. How-
ever, at high concentrations and temperatures, agents such as hydrogen peroxide (H2O2)
could destroy polyamide particles, reduce their size and alter the colour of polypropylene
particles [27]. Digestion protocols should have minimal impact on the morphology, colour,
and weight of MPs [25,28].

Several studies analyzed the effects of digestion treatments on MPs, testing different
reaction times, temperatures, and regent volumes [19,27,29–33]. However, most method-
ological studies tested treatments on virgin MP rather than aged, neglecting their effect on
fragile and damaged particles, more representative of reality [28–30]. Despite the recent
development of biodegradable plastics, less impactful on the environment [34], many biotic
and abiotic factors act on plastics and MPs, leading to changes in polymer properties
through different degradation mechanisms [35–39]. Light and temperature, for example, in-
volve free radical formation, chain scission, and subsequent reduction of molecular weight.
This, together with mechanical and biotic stress, makes the polymers fragile and more
susceptible to fragmentation. The formation of superficial cracks becomes, then, a site of
other degradation reactions, leading to the disintegration of material [35,40].

In this context, the present study aims to assess the goodness of the most popular
protocol of oxidative digestion used as a preparative step, to purify samples isolating and
extracting MPs from complex environmental matrices. The method has been evaluated in
terms of efficiency of extraction and recovery of MPs from the environmental matrix and,
the impact and aggressiveness of the chemical digestion on the integrity of particles.

Moreover, we tested different experimental digestion conditions on virgin and aged
MPs of various morphology, polymer, and size to assess if a different reaction to the
chemical digestion and, an eventual alteration of items, occur based on MPs properties.
We hypnotize that the rapid oxidation and the stringent exothermic reaction could destroy
some polymer particles, especially the most aged ones. These particles are already fragile
due to weathering caused by the time of permanence in the environment. The final
objective is to advise a less impactful digestion protocol for the extraction of MPs from
environmental matrices.

2. Materials and Methods
2.1. Experimental Design

Two different laboratory experiments were set up to assess the efficiency of the most
used digestion protocol [14] and its impact on MPs integrity. For this purpose, the oxidative
treatment, based on the Fenton reaction (Fe2+ + H2O2→Fe3+ + OH + OH−) [25], was
tested using different temperature ranges and reagent volumes. Moreover, to reproduce
the difficulties linked to the MPs extraction from complex environmental samples, virgin
and aged MPs standards of different sizes and compositions were added to unpolluted
soil samples. The integrity of particles and the level of alteration before and after the
different treatments were evaluated through Scanning Electron Microscopy (SEM), Fourier
Transformed Infrared (FTIR) spectroscopy.

In Table 1 the experimental set-up of the two trials is shown.
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Table 1. Indication of the experimental conditions followed for each trial.

Experiment One

AIM
Evaluate the efficiency of extraction of the most commonly used

chemical digestion protocol (based on Wet Peroxide Oxidation [14])
on the recovery of virgin MPs standards from a complex matrix

Particle selection Virgin MPs

Matrix selected Soil

Starting digestion
condition

Reagents volume: 20 mL of 30% H2O2 solution add to 20 mL of
0.05 M iron sulphate heptahydrate (FeSO4·7H2O) every 30′ until

complete sample digestion.
The temperature of reaction: 75 ◦C.

Density separation NaI (1.8 g cm3)

Qualitative analysis Stereomicroscope

Experiment Two

AIM Evaluate the impact of the most commonly used chemical digestion
protocol on the integrity of virgin and aged MPs standards

Particle selection Virgin and aged MPs

Matrix selected Soil

Starting digestion
condition

Reagents volume: 20 mL of 30% H2O2 solution add to 20 mL of
0.05 M iron sulphate heptahydrate (FeSO4·7H2O) every 30′ until

complete sample digestion.
The temperature of reaction: 75 ◦C.

Density separation NaI (1.8 g cm3)

Qualitative analysis FTIR—SEM

2.2. Microplastic Standards Selection

Virgin MPs of different shapes and polymers were selected by common plastic items
(Table 2). Particle colour was chosen to facilitate detection and counting during the ex-
traction phase. They were cut and smoothed in the laboratory, and particles were passed
through sieves with mesh sizes from 5 mm to 1 mm, from 1 mm to 500 µm, and from 500 µm
to 100 µm, obtaining MPs of three size ranges. Even, 5 mm size PE, and PP pre-production
pellets were added to evaluate the impact of the most commonly used chemical digestion
protocol [14] on the integrity of MPs standards (Figure 1).

Table 2. Polymer, density, source, colour, and shape of MPs selected as standards for the experiments.
(*): image reworked from source [10].

Polymers Density
(g cm 3) (*) Source Colour Shape

Polystyrene (PS) 0.01–1.06 Food box White Fragment
Polypropylene (PP) 0.85–0.92 Disposable glass Red Fragment
Polyethylene (PE) 0.89–0.98 Mulching films Black Fragment
Polyamide (PA) 1.12–1.15 Textile Black Fibre

Polyvinyl chloride (PVC) 1.38–1.41 Building material Black Fragment
Polyethylene terephthalate (PET) 1.38–1.41 Plastics bottle Green Fragment

2.3. Experiment One: Evaluating the Efficiency of MPs Digestion Treatment through
Recovery Tests
Digestion Treatment Conditions

Virgin MPs, 30 particles for each polymer (PE, PP, PET, PVC, PS), underwent six
oxidative digestion treatments at three different temperatures (75 ◦C, 50 ◦C, and 30 ◦C),
and reagent volumes (100 or 60 mL of H2O2 + 20 mL of FeSO4·7H2O) (Table 3). The ferrous
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ion (Fe2+) of the iron sulphate heptahydrate initiates and catalyses the reaction leading to
the generation of hydroxyl and hydroperoxyl radicals, powerful oxidants that degrade
organic compounds [41].

Figure 1. (a) Virgin MPs products by cutting common plastic items. (b) Pre-production pellets added
in experiment two. Images produced by Carl Zeiss Tessovar Microscope.

Table 3. Summary of the different oxidative digestion conditions used in experiment one. “-”
Treatment made in the absence of the matrix on particle sizes from 500 to 100 µm.

Treatment Reagent
Volumes

Temperature
(◦C) Polymers Size Soil

Matrix (g)

1
100 mL H2O2

+ 20 mL FeSO4·7H2O 75 ◦C
PE, PP, PET,

PVC, PS

5–1 mm
1 mm–500 µm 50

500–100 µm -

2
60 mL H2O2

+ 20 mL FeSO4·7H2O 75 ◦C
PE, PP, PET,

PVC, PS

5–1 mm
1 mm–500 µm 50

500–100 µm -

3
100 mL H2O2

+ 20 mL FeSO4·7H2O 50 ◦C
PE, PP, PET,

PVC, PS

5 mm–1 mm
1 mm–500 µm 50

500–100 µm -

4
60 mL H2O2

+ 20 mL FeSO4·7H2O 50 ◦C
PE, PP, PET,

PVC, PS

5–1 mm
1 mm–500 µm 50

500–100 µm -

5
100 mL H2O2

+ 20 mL FeSO4·7H2O 30 ◦C
PE, PP, PET,

PVC; PS

5–1 mm
1 mm–500 µm 50

500–100 µm -

6
60 mL H2O2

+ 20 mL FeSO4·7H2O 30 ◦C
PE, PP, PET,

PVC, PS

5–1 mm
1 mm–500 µm 50

500–100 µm -
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Three size ranges of particles (5–1 mm; 1 mm–500 µm; 500–100 µm) were assessed
for recoveries. The biggest particles (5–1 mm; 1 mm–500 µm) were added to 50 g of soil
to simulate the extraction from a complex matrix while the smallest ones (500–100 µm)
were added just of digestion reagents to exclude the influence of matrix on the recovery of
particles and evaluate just the effect of the digestion protocol.

A solution of NaI (1.8 g cm3) was prepared by dissolving the salt in distilled water, to
extract MPs from the environmental matrix. After the digestion treatments, the solution was
added to the sample, it was shaken for about 10 s and decanted for 1 h. The supernatant was
filtrated by a vacuum filtration unit (Sartorius, Goettingen, Germany) using a nitrocellulose
filter (Whatman nitrocellulose membrane filters diam. 47 mm, pore size 0.45 µm) and
particles were observed under a stereomicroscope (Motic SMZ – 171, Hong Kong, China).

The polymer recovery rate was calculated as the number of extracted particles on the
number of added particles. The final value was expressed as a percentage.

2.4. Experiment Two: Evaluating the Impact of Digestion on Virgin vs. Aged MPs Integrity
2.4.1. Ageing of Microplastics

Some virgin microplastics were artificially weathered in a climate room equipped with
UVA lamps, calibrated at 340 nm, and programmed at a temperature of 22 ◦C, an irradiance
of 12 h, and humidity at 60%, for a total of 20 days. Afterwards, samples were subjected to
thermally ageing at 45 ◦C in an air-circulated oven, for another 20 days (Figure 2).

Figure 2. The morphological aspect of some polymers (PVC, PET, PP, PE, PS) before and after the
ageing process. These polymers, together with PA fibre and pellets (PP, PE), were exposed to UVA
(photo-oxidation) in the climatic chamber for 20 days and then at a temperature of 45 ◦C for a further
20 days in dry conditions.
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2.4.2. Digestion Treatment Conditions

Three oxidative digestion treatments, with different experimental conditions, were
tested on PVC, PE, PP, PS, PET fragment; PP and PE pellets, and PA fibre to evaluate the
impact on virgin vs. aged MPs by SEM analysis. For each polymer, were selected particles
of size from 5 mm to 500 µm and added to 13 g of soil, with the exception of PA to exclude
possible contamination from fibre present in the environmental matrix (Table 4). After
digestion, particles were separated by the matrix using a saturated NaI solution, and their
integrity was observed by SEM, before and after treatments. Virgin and aged fibre were
analyzed as tangles before treatments for the difficulty of obtaining single filaments and
handling especially those being aged and fragile.

Table 4. Summary of different oxidative digestion conditions used in experiment two. “-” Treatment
made in the absence of the matrix on particle sizes from 5 to 1 mm.

Treatment Reagent
Volumes

Temperature
(◦C) Polymers Size Soil

Matrix (g)

a
100 mL H2O2

+ 20 mL
FeSO4·7H2O

75 ◦C PE, PP, PET,
PVC, PS

5–1 mm
1 mm–500 µm 13

PA 5–1 mm -

b
60 mL H2O2

+ 20 mL
FeSO4·7H2O

50 ◦C PE, PP, PET,
PVC, PS

5–1 mm
1 mm–500 µm 13

PA 5–1 mm -

c
60 mL H2O2

+ 20 mL
FeSO4·7H2O

30 ◦C PE, PP, PET,
PVC, PS

5–1 mm
1 mm–500 µm 13

PA 5–1 mm -

2.5. Fourier Transform Infrared Spectroscopy (FTIR) Acquisition

Aged particles were analyzed, before and after weathering by Fourier Transform
Infrared spectroscopy using a Thermo Scientific NICOLET Summit FTIR Spectrometer
(Waltham, MA, USA) equipped with an Everest ATR with a diamond Crystal plate and a
DTGS KBr detector. The FTIR spectra were recorded in the region of 4000–400 cm− 1 with
32 scans at a resolution of 4 cm− 1.

2.6. Scanning Electron Microscopy (SEM) Acquisition

Scanning Electron Microscopy (HITACHI TM 3000 Tabletop, Tokyo, Japan) was used
to observe morphology polymers before and after oxidative digestion treatments. Particles
were fixed on carbon adhesive and coated with a thin layer of gold and palladium for 2 min
and 10 mA to avoid charging during electron microscopy. Larger particles, such as pellets,
were measured operating at 5 kV, while for other particles it was operated at 15 kV. The
size of some particles was measured before and after treatments by SEM image software
(Hitachi TM 3000, ver. 02-03-02, Tokyo, Japan).

2.7. Quality Control

A cotton coat was worn during the laboratory procedures, preventing any contamina-
tion from synthetic clothing. All glass instruments were washed three times with Milli-Q
water and covered with aluminium foil. The NaI solution was filtered through a nitrocellu-
lose filter before its use. All analytical steps were performed in a laminar flow cabinet to
avoid laboratory airborne contamination.
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3. Results
3.1. Results of Experiment One: Evaluating the Efficiency of MPs Digestion Treatment through
Recovery Tests

As an overall result, the experimental tests performed in different temperature and
peroxide volume conditions showed a recovery efficiency of about 100% for most of the
MP materials used (Figure 3). The major criticalities in the extraction efficiency emerged
above all for PVC and PET items.

Figure 3. Recovery rates of PVC, PS, PE, PP, and PET, of three-dimensional sizes, after six different
treatments varying for H2O2 volumes and temperatures. Values are expressed as a percentage mean
value of two replicates ± the standard deviation.

The extraction of 1–5 mm PVC particles testing the treatment n. 1 (75 ◦C, 100 mL H2O2)
showed the highest rate of recovery above the 100% (170 ± 1.4%) followed by treatment
n. 2 (75 ◦C, 60 mL) with a recovery rate of 157 ± 3.5%, treatment n. 4 (50 ◦C, 60 mL)
with 150 ± 10%, treatment n. 3 (50 ◦C, 100 mL) 137 ± 4%, treatment n. 5 (30 ◦C, 100 mL)
123 ± 4% and treatment n. 6 (30 ◦C, 60 mL) 122 ± 2%.

This enhancement of observed particles with respect to the initial number of added
items is due to the aggressiveness of the digestion treatment on PVC, which led to its
fragmentation in smaller particles observed and identified both in suspension and in the
soil matrix used (Figure 4).
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Figure 4. Particulars of PVC fractures (yellow boxes on the left) due to the abrupt oxidation reaction
at 75 ◦C that led to the fragmentation of PVC in tiny particles trapped in the soil matrix (red circles
on the right).

Likewise, the smallest PVC fragments (1 mm–500 µm; 500–100 µm) showed the same
behaviour with all recoveries above 100%, confirming a fragmentation of this polymer. In
each size range, the treatment n.6 (30 ◦C, 60 mL) resulted in having a lower impact on
particles with recoveries close to 100% (116 ± 2%).

Many other small and tiny PVC particles lower than 100 µm were also observed
especially in treatments 1 and 2, probably generated from the fragmentation of bigger
particles. As shown in Figure 4 the surface of bigger PVC particles appears greatly modified
with holes and cracks.

Differently from the PVC behaviour, all the treatments tested in the different ranges
of temperature and reagents volume (treatments n. 1, 2, 3, 4, 5, and 6) demonstrated a
good recovery efficiency for PS, PE and PP polymers in all the three size ranges evaluated
(5–1 mm, 1 mm–500 µm and 500–100 m). Indeed, the recoveries obtained were 101 ± 1%,
100.3 ± 0.5%, 99.3 ± 0.9%, for PS, PE, and PP, respectively, showing good resistance to the
oxidation reaction and an equally satisfying recovery efficiency from the matrix.

Otherwise, the recoveries of 5–1 mm and 1 mm–500 µm PET fragments showed the
lowest recovery rates among all polymers, ranging from 24 and 93% of recovered particles.
However, this particle loss is mostly attributable to an effect of the soil matrix used which
made difficult the recovery of MPs trapping them in the bottom. Indeed, the tests on
the smallest size range of PET MPs (500–100 µm), set up without the soil matrix, showed
recovery rates equal to 100% for all the six treatments evaluated.

3.2. Results of Experiment Two: Evaluating the Impact of Digestion Treatment on Virgin and Aged
MPs through Qualitative Evaluations
3.2.1. Ageing of Microplastics: FTIR Acquisition

The FTIR acquisitions of MP standards of different polymer compositions made before
(black lines, Figure 5) and after the ageing of particles (red lines, Figure 5), show that new
absorption peaks were formed consecutively to weathering suggesting strong differences
with the pristine materials probably due to their degradation (red lines, Figure 5). In the
spectra of each artificially weathered particle, is evident the presence of broad peaks in the
region from 3100 to 3700 cm−1 (OH stretching).

The ageing process produces new bands at 3423 cm−1 in the IR spectra of PET, PA,
and PP (pellets and fragments) (Figure 5a).

In the spectra of aged PET particles, forty days after the artificial weathering, a new
peak at 1614 cm−1, non-existent in the same particles before the ageing process, appears.
(Figure 5c).

Regarding the PE particles, compared to the unaltered pristine MPs acquired by FTIR
at the time zero before ageing, the weathered fragment spectra show the presence of new
intense peaks at 3414 and 1577 cm−1 and others less intense at 873 and 777 cm−1. Similarly,
the aged PE pellet spectra show new weathering bands at 3458 and 1618 cm−1.
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Figure 5. Comparison between the IR spectra of different polymers before (black lines, t0) and after
40 days of ageing (red lines, t40). New peaks formed after ageing are indicated in the spectra of each
polymer. Absorption areas related to ageing from 3100 to 3700 cm−1 (hydroxyl groups) are evident
in all polymers. (a) PA fiber; (b) PE fragment (c) PET fragment; (d) PP fragment; (e) PS fragment;
(f) PVC fragment; (g) PE pellet; (h) PP pellet.
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Otherwise, the following peaks appear in the IR spectrum of PP fragments and pellets
after ageing: 3404, 3440 cm−1, and 1643 cm−1 (OH bending) (Figure 5d–h). Moreover, the PP
pellets show a new band at 1102 cm−1. The IR spectra of PS show changes corresponding to
the formation of new bands at 3369 cm−1, 1653 cm−1, and 1116 cm−1 (Figure 5e). Regarding
the analysis of the IR spectrum of weathered PVC, a broad peak of moderate intensity can
be detected in the region 3000–3500 cm−1 and new peaks, with respect to virgin materials,
are evident at 1617 cm−1, 1582 cm−1, 1193 cm−1, and 1148 cm−1 (Figure 5f).

3.2.2. Scanning Electron Microscopy (SEM) Acquisition

Scanning Electron Microscopy acquisition shows the physical effects of three different
oxidative treatments on the integrity of both virgin and aged particles.

Virgin MPs appear compact and solid, with a three-dimensional structure and smooth
surfaces. The treatment at 30 ◦C (treatment c) generates a dimensional reduction of PET
MPs associated with margins corrosion (Figure 6a). An expansion of the PVC (Figure 6b),
showing its surface damaged by small holes, is also visible together with the PP and PS
particles abrasion (Figure S1).

Figure 6. Alterations caused by treatment at 30 ◦C on virgin PET and PVC: (a) size reduction and
corrosion of virgin PET margins, (from 853 to 708 µm); (b) PVC dimensional expansion from 627 µm
to 722 µm.

The treatment at 50 ◦C (treatment b) affects PVC and PS particles by forming holes,
material loss, and corrosion (Figure 7). Even in this case, a slight reduction in the size of
PET and PP fragments is visible (Figure S2).
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Figure 7. Effects of treatment at 50 ◦C on virgin PS and PVC: (a) formation of a hole on the surface of
the PS; (b) PVC particle surface with small holes.

However, the greatest surface changes occur after treatment at 75 ◦C (treatment a)
(Figure S3). On the one hand, PVC particles manifest wide holes (Figure 8) and a lost
material of PS fragment. On the other hand, PP and PET fragments show corroded margins
(Figure 9). In each treatment, virgin PE and PP pellets (Figure 10) and PE fragments
highlight high resistance to oxidative digestion (Figure S4).

Figure 8. Effects of oxidative digestion treatment at 75 ◦C on the virgin PVC: (a) morphological
acquisition of the entire PVC particle after treatment; (b) detail of large holes inside the PVC particle.

Compared to virgin standards, aged MPs appear, before the digestion treatments,
flattened, brittle, with undefined shapes with some cracks on their surface.

As well as for virgin MPs, the milder and intermediate treatments do not produce
strong changes in aged particles. In all treatments, a fraying of the fibre from the initial
tangle is evident.

The treatment at 30 ◦C generates new cracks in PVC and PS fragments, and accentuates
those already present, due to weathering, in PE and PET (Figure S5).

The treatment at 50 ◦C produces curling of PE fragments, a fraying of the fibre, and
many cracks in PET ones. Even in this case, PVC particles show a surface full of small holes
(Figure 11).
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Figure 9. Corrosive treatment effects on PET and PP particles: comparison of size measurements,
before and after treatment, emphasizes the corrosion of virgin PET (a) and PP (b).
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Figure 10. Morphological aspects of pellets before and after different treatments. Virgin PE and PP
pellets highlight high resistance to oxidative digestion.
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Figure 11. Focus on the effects of treatment at 50 ◦C on aged particles: (a) detail of PE curling;
(b) more cracks in the PET; (c) small holes on the PVC surface; (d) fraying of PA fibre.

The digestion treatment at 75 ◦C, applied on aged MPs, causes a radical alteration of
most particles (Figure S6) with evident changes such as the loss of material of PVC, PS,
and PP particles, cracks expansion of PET, PE corrosion, and a fraying of PA (Figure 12).
Aged pellets show several abrasions on their surface, especially after the most aggressive
treatment at 75 ◦C (Figure 13).

Figure 12. Cont.
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Figure 12. Focus on the effects of treatment at 75 ◦C on aged particles: (a) small holes on the PVC
surface and loss of the polymer material; (b) corrosion and loss of PP polymer material; (c) formation of
large cracks in PET; (d) corrosion and loss of PE polymer material; (e) breaking and fraying of the fibre.

Figure 13. Cont.
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Figure 13. Morphological aspects of aged pellets before and after different treatments: abraded areas
are highlighted as the temperature increases.

4. Discussion

Chemical digestion treatment is a crucial step of MPs analysis, especially when envi-
ronmental samples are rich in organic matter; indeed, removing the natural debris promotes
the subsequent extraction of MPs from the matrix. However, the choice of the protocol
must consider its digestion effectiveness and, at the same time, the integrity of polymers,
so as not to compromise the identification and quantification of particles.

In this regard in the present study, attention has been paid to the impact that one of
the most common digestion protocols, based on Fenton’s reaction, could have on MPs in
terms of recoveries and integrity of particles.

In experiment number one, we hypothesized that the recovery of virgin MPs may be
subjected to the type of sample in which the particles are dispersed. Although the density
of the NaI solution, adopted for MPs extraction, is higher than high-density polymer
standards (e.g., PVC and PET), it was not always possible to fully recover all particles.

Most low-density polymers were recovered almost always at 100%, instead the PET
of dimensions from 5 mm to 500 microns, and the PVC of dimensions between 1 mm and
500 microns, were recovered with low efficiency because they remained inside the matrix.
A similar result was also observed in a previous study [42], where small PVC fragments
were trapped in the sediment after the density separation, but the protocol used does not
correspond to this study. Nevertheless, the recoveries of these two polymers were also
demonstrated to be low in other studies [43,44]. This behaviour may depend on the effect
of the oxidation of the polymer surface, which leads to increased hydrophilicity, reducing
the number of possible air bubbles and the buoyancy of the material [43,45]. Previous
studies have already reported a relationship between size and recovery rate highlighting
that separation of particles with diameters lower than one mm is more difficult than large
MPs [27,46,47]. Electrostatic interactions between MPs and other particles depend on the
morphology, composition, size, and surface charge of MPs [48]. Therefore, the presence of
the matrix can interfere with the MPs extraction phase from the soil and our study suggests
this with the recovery of 100% of PET, in the absence of soil.

Our results also highlight the presence of more PVC particles in the suspension and
in the soil than initially added. It is appended both in the presence of the matrix and in
the absence, after all treatments, especially at 75 ◦C using 100 mL of H2O2, suggesting
the influence of temperature in polymer fragmentation. Indeed, an increase in the tem-
perature of the digestion treatment caused the loss of some types of MPs also in previous
studies [27,28]. The temperature is an important factor in the extraction procedure as it can
affect the characteristics of a polymer based on its glass transition temperature (Tg), which
is the critical temperature at which a material changes its features from “glassy material” to
“rubbery material” [49].

In experiment number two, we obtained a visual demonstration of how Fenton’s
reagent impacts MPs. In this case, both virgin and aged particles were analyzed with the
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addition of PE and PP pellets, and PA fibres. Various previous studies tested digestion
protocols on polymers but pellets are the most used type followed by fragments and
fibres [27–29,50,51].

The greater number of small PVC particles counted could be explained by observing
the formation of large pores with a slight expansion of the size of the PVC polymer. These
pores, favoured by an increase in temperature, may generate a release of tiny fragments
of PVC such as those found in the soil. The presence of larger cavities has been reported
in [52] for some polymers after the Fenton oxidation process.

SEM analysis also shows a size reduction and margin corrosion of PET and PP, after
treatment. Even in [53] particles of PE and PP show a size reduction of about 10%, after
long treatment with H2O2 but in our case, virgin PE showed high resistance to treatment
along with pellets. The corrosion of PET margins and the formation of roughness may have
favoured the creation of active sites on the polymer increasing the adhesion of soil particles
on the MPs surface. In addition, a particle size reduction could affect those results that
include the evaluation of MPs size ranges because particles of a lower size range may not
be detected because they are strongly aggravated by the treatment.

As for the virgin PS, particles were damaged at 50 ◦C and 75 ◦C as reported by [27]. We
have not observed any major changes in this polymer despite the known damage caused
by a temperature from 70 ◦C to 100 ◦C on the PA [29,54]. However, our data cannot be fully
compared with these studies because we show a morphological alteration of the particles
and not an assessment of weight.

The results observed so far suggest that the oxidative treatment generates an impact
on virgin particles caused by high temperatures. However, environmental MPs are particles
already altered and damaged due to biotic and abiotic degradation [35,55,56].

Indeed, the FTIR acquisitions highlighted the formation of new peaks in the polymer
spectra consecutively to the ageing of virgin polymers in artificial conditions. As previously
observed by other authors [57–59], the regions reflecting ageing-related changes (hydroxyl
groups, peaks from 3100 to 3700 cm−1, carbon double bonds, 1600 and 1680 cm−1 and
carbonyl groups, 1690 and 1810 cm−1) appeared greatly modified compared to the pristine
materials in each type of MPs.

Several previous works conducted under simulated environmental conditions and on
field-collected samples showed that photo and thermal oxidation together with humidity
could alter the physicochemical structure of MPs leading to the introduction of oxygen
into the polymer chain with the formation of carbonyl (CO) and hydroxyl (OH) functional
groups [60–63].

As a matter of fact, in the spectra of our degraded MPs, exposed to UVA followed by
a period of incubation at 45 ◦C in dry conditions, new broad hydroxyl peaks (centred at
3300–3400 cm− 1), appeared in the aged particles and were the most readily identified. The
forced weathering, resulted, in the concomitant occurrence of oxidation reactions, chain
degradation, and the formation of surface cracks and fractures. This alteration could allow
an easier and deeper infiltration of water and oxygen from the atmosphere into the sample
leading, in time, to an increased effect of ageing [64]. However, our weathered samples
have been dried immediately before FTIR acquisition, therefore, the OH bands origin could
be minimally related to the presence of adsorbed humidity from the atmosphere and more
likely to the polymeric alcohols, used as a lubricant in plastic, or other by-products easily
released during the degradation process [5].

Moreover, the entire region between 1550 and 1810 cm−1 usually referred to as the “car-
bonyl groups” is indicative of oxidized carbon in the plastic hydrocarbon chain. The pres-
ence of carbonyls, in almost all our weathered polymers, even if less distinctive compared to
hydroxyl groups, suggests that oxygen has bonded with the hydrocarbon chain [60,65,66].

Indeed, the use of a “carbonyl index” (CI) is frequently used to measure the light-
induced photo-oxidation, since it increases with increasing exposure time of plastic into the
environment or progressive ageing of MPs [57,59,67].
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Moreover, in our experiments, new peaks are present almost all in the fingerprint
region (1500–500 cm−1).

However, the spectral changes during these processes are not yet fully understood
and it is complex to monitor and predict these changes.

The increased peaks around 1760 and 1690 in PVC, PP, and PE fragment spectra,
indicates the presence of carbonyl groups formed by photo-oxidation in the climate cham-
ber [57,67].

Therefore, the assessment of methodological protocols for MPs studies should con-
sider the intrinsic physicochemical difference between virgin and aged starting materials
preferring the use of weathered particles to simulate the real environmental conditions. To
our knowledge, only one study used aged particles for protocol testing [18].

Compared to virgin particles, PA fibres and PE fragments, already damaged by the
ageing process, showed signs of breakage and fraying. The impact of the treatment temper-
ature was strongly evident on the aged particles because it caused the loss of polymeric
material and a strong alteration of all particles. Even aged pellets showed a rough surface
already after the milder treatments until to show the most evident abrasions after the
digestion at 75 ◦C.

5. Conclusions

This study evaluated the impact of the most common oxidative digestion protocol
used to extract MPs from environmental samples. We have provided a visual demonstra-
tion of particle alterations by SEM analysis and we find that this technique can help in the
evaluation of protocols. Wet peroxide oxidation is an effective organic digestion method
for different environmental matrices but our results showed morphological changes in
polymers not observed in other studies. Both virgin and aged MPs were damaged, es-
pecially after treatment at 75 ◦C. Several factors must be considered in the assessment of
experimental conditions. Furthermore, methods recommending temperatures below 50 ◦C
should be preferred at the expense of longer digestion times. We also suggest evaluating
the type of matrix, particle size, and shape and exploring a broad type of polymer in
methodological analysis, to ensure a comprehensive assessment of the impact on MPs.
Moreover, the weathering of particles in simulated environmental conditions, showed
great alterations of FTIR spectra influencing the correct polymer characterization of real
environmental samples and making difficult the interpretation of spectra. The degree of
degradation is probably connected to the time of exposure of particles to environmental
weather conditions.

Nonetheless, the evaluation of methodological approaches on aged MPs rather than
on pristine materials is essential to ensure a more realistic vision of obtained results and a
better quality of the final data.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym14101958/s1, Figure S1. Detail on the effects of treatment at
30 ◦C on polymers: (a) slight damage to the PS; (b) formation of small holes on the surface of the
PVC; (c) corrosion of PET margins; (d) abrasion and corrosion of PP margins. Figure S2. Slight size
alteration caused by treatment at 50 ◦C on virgin PP (a) and PET (b). Figure S3. Overview of virgin
polymer morphology before and after treatment at 75 ◦C: loss of polymer material in PS; formation
of large holes in the inside of PVC; corrosion of PP and PET margins, high resistance to PE and PA
treatment. Figure S4. Visual demonstration of the high resistance of virgin PE after treatment at 30 ◦C
(a), treatment at 50 ◦C (b), and 75 ◦C (c). Figure S5. Focus on damage caused by treatment at 30 ◦C
on aged MPs: formation of cracks and breaks on PVC (a); PS (b); PET (c); and PE (d). Figure S6.
Overview of aged polymer morphology before and after treatment at 75 ◦C: loss of material of PVC,
PS, and PP particles, cracks expansion of PET, PE corrosion, and a fraying of PA.
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