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1 University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12,
11000 Belgrade, Serbia; vukan87@yahoo.com

2 University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11000 Belgrade, Serbia;
mbabic@tmf.bg.ac.rs (M.M.B.R.); jjovasevic@tmf.bg.ac.rs (J.S.V.)

3 Advanced Materials Department, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
marija.vukomanovic@ijs.si

4 Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093 Zurich, Switzerland;
marinarubert@gmail.com (M.R.); s.hofmann@tue.nl (S.H.); ram@ethz.ch (R.M.)

5 Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of
Technology, 5600 Eindhoven, The Netherlands

* Correspondence: simonida@tmf.bg.ac.rs; Tel.: +381-11-3303-630

Abstract: New composite 3D scaffolds were developed as a combination of synthetic polymer, poly(2-
hydroxyethyl methacrylate) (PHEMA), and a natural polymer, gelatin, with a ceramic component,
nanohydroxyapatite (ID nHAp) dopped with metal ions. The combination of a synthetic polymer,
to be able to tune the structure and the physicochemical and mechanical properties, and a natural
polymer, to ensure the specific biological functions of the scaffold, with inorganic filler was applied.
The goal was to make a new material with superior properties for applications in the biomedical
field which mimics as closely as possible the native bone extracellular matrix (ECM). Biodegrad-
able PHEMA hydrogel was obtained by crosslinking HEMA by poly(β-amino esters) (PBAE). The
scaffold’s physicochemical and mechanical properties, in vitro degradation, and biological activity
were assessed so to study the effects of the incorporation of nHAp in the (PHEMA/PBAE/gelatin)
hydrogel, as well as the effect of the different pore-forming methods. Cryogels had higher elasticity,
swelling, porosity, and percent of mass loss during degradation than the samples obtained by poro-
genation. The composite scaffolds had a higher mechanical strength, 10.14 MPa for the porogenated
samples and 5.87 MPa for the cryogels, but a slightly lower degree of swelling, percent of mass loss,
and porosity than the hybrid ones. All the scaffolds were nontoxic and had a high cell adhesion rate,
which was 15–20% higher in the composite samples. Cell metabolic activity after 2 and 7 days of
culture was higher in the composites, although not statistically different. After 28 days, cell metabolic
activity was similar in all scaffolds and the TCP control. No effect of integrating nHAp into the
scaffolds on osteogenic cell differentiation could be observed. Synergetic effects occurred which
influenced the mechanical behavior, structure, physicochemical properties, and interactions with
biological species.

Keywords: 2-hydroxyethyl methacrylate/PBAE/gelatin/dopped hydroxyapatite; hydrogel scaffolding
biomaterial; biodegradable scaffolds; biocompatibility; tissue regeneration engineering

1. Introduction

Great progress in the field of tissue engineering (TE) was accomplished in the past few
decades due to the multidisciplinary research involving cell biology, biomaterials design
and processing, imaging, surface characterization, and functionalization for improved cell–
material interactions [1]. Hydrogel three-dimensional scaffolds play a key role in TE and
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regenerative medicine as biocompatible, biodegradable, and noncytotoxic, nonimmuno-
genic materials which can provide mechanical, physical, and chemical support for cell
adhesion, proliferation, and differentiation in vitro and in vivo, leading to the regeneration
of the affected tissue [2]. Polymeric hydrogels provide porous, highly hydrophilic 3D
structures. Their high water content ensures a soft texture similar to native tissue, which
can mimic some of the physical and chemical properties of the natural ECM [3]. Such
hydrogels are beneficial for cell survival and support the growth of the new tissue and,
additionally, they can reduce the inflammatory response of the body [4,5]. Hydrogels also
possess the capacity to encapsulate cells and bioactive molecules and to degrade once
their task of forming new tissue is accomplished and are thus distinguished as superior
biomaterials for 3D scaffolding biomaterials [6].

Various polymers, including natural, synthetic, and natural/synthetic hybrids, have
been used to make hydrogel 3D scaffolds for use in tissue engineering via chemical or
physical crosslinking. The basic limitation of synthetic hydrogels is a lack of cell-specific
bioactivities and, for most of them, the ability to degrade. Natural polymers are biocom-
patible, biodegradable, and have better biological activity but poor mechanical properties,
potential immunogenic reactions, and batch-to-batch variability significantly limit their
use in TE [7]. One of the possibilities to overcome the limitations of synthetic and nat-
ural hydrogels is to make hybrid structures, as a combination of natural and synthetic
polymers, securing the tunable physical properties, and natural polymer, providing the
specific biological functions [8,9]. Many naturally occurring biopolymers, such as collagen,
gelatin, fibrinogen, hyaluronic acid, chitosan, and heparin, have been used to make hybrid
hydrogels with synthetic polymers, such as poly(ethylene glycol) (PEG), poly(N-isopropyl
acrylamide) (PNIPAm), and poly(vinyl alcohol) (PVA) [10]. PHEMA was very rarely used
in such hybrid polymeric materials due to its nonbiodegradability. Another improve-
ment of the mechanical and biological characteristics of hydrogel scaffolds for use in bone
tissue engineering can be accomplished by introducing biopolymer/bioceramic nanocom-
posites [11]. Hydroxyapatite (Ca10(PO4)6(OH)2, HAp) constitutes the largest portion of
inorganic components in human bones. It is a typical bioceramic clinically used as a bone
substitute and which is also used in bone tissue engineering [12] to improve bone cement
mechanical properties. Hydroxyapatite can increase the concentration of local Ca2+, which
can activate the proliferation of osteoblasts and promote the growth and differentiation
of mesenchymal stem cells (MSC) [13]. Hydroxyapatite mineralization of PHEMA has
been studied by several authors [14,15]. In the case of tissue regeneration, the surface of
the nHAp particles sorbs proteins serving as inductors of cell origin. Recently, ion-doped
nHAp (ID nHAp) has shown attractive properties in load-bearing bone tissue enhanced
osteoconductivity compared with hydroxyapatite [16].

A typical composite material in the human body is bone, representing a combination
of organic components, collagen, and inorganic hydroxyapatite, with specific properties
essential for bone functions. Materials used today in bone tissue engineering and regen-
eration tend to be as similar as possible to those found in nature. Therefore, synthetic
and natural polymers are often combined with inorganic materials to obtain biocompat-
ible and biodegradable composite materials. Tunable structure, physicochemical and
mechanical properties, and biological activity are desirable in such composites to enable
the closest resemblance to the human bone. In large fractures that would not heal by
themselves, composite polymeric biomaterials are needed in combination with bone as
synthetic bone-graft substitutes.

In our previous work, gelatin and 2-hydroxyethyl methacrylate (HEMA) crosslinked
with poly(β-amino ester) (PBAE) macromers were used for the first time to prepare
biodegradable hybrid 3D scaffolds for TE applications, as an interpenetrating polymer
network (IPN) structure of a natural and synthetic polymer [17]. Since PHEMA has excel-
lent biocompatibility, cytocompatibility, and tunable mechanical properties, as well as a
minimal immunological response, it was used in this work. PHEMA biodegradability was
provided by crosslinking HEMA with degradable PBAE crosslinkers. The study indicated
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that HEMA/gelatin/PBAE scaffolds represent a new class of polymeric biomaterials with
favorable functional properties, swelling, and mechanical characteristics, along with slow
degradation rates, which can be tuned by changing the PBAE crosslinker composition or
molecular weight, for the potential application as scaffolding biomaterials in tissue regen-
eration. The novelty in the present work, concerning the above mentioned one, was that
biodegradable PHEMA and gelatin hydrogels were combined with a ceramic component,
nanohydroxyapatite (ID nHAp) dopped with metal ions, to provide better mechanical
support and eventually upgrade the biological activity of the new material. This composite
hydrogel was prepared to create a new bone-like material for small bone defect repair using
the tissue engineering approach. A simple synthetic method was applied to avoid complex
synthetic procedures involved in bioconjugation [10]. Besides, the influence of two different
pore forming methods on new porous material performances was investigated.

Composite HEMA/gelatin/PBAE 3D scaffolds with incorporated ion-doped nHAp
and hybrid HEMA/gelatin/PBAE (without ion-doped nHAp) 3D scaffolds were fabricated
in this study using two different pore-forming methods, cryogelation and porogenation.
The scaffold structure, morphology, porosity, swelling ability, water contact angle, me-
chanical properties, and in vitro degradation were studied for the dependence on their
composition and the pore-forming method. Biological tests were carried out to study
the effect of the obtained materials on human mesenchymal stem cells cultured under
osteogenic supplements.

2. Materials and Methods
2.1. Materials

HEMA, piperazine (PIPz, 99%), di(ethylene glycol)diacrylate and gelatin (type A,
porcine), potassium persulfate (PPS, anhydrous), N,N,N′,N′-tetraethylethylene diamine
(TEMED), N-Ethyl-N′-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC), sodium
hydrogen carbonate (NaHCO3), and polyethylene glycol sorbitan monolaurate (TWEEN 20)
used in the cryogel and hydrogel synthesis were purchased from Sigma-Aldrich (St. Louis,
MI, USA). All cryogel and hydrogel syntheses were performed in deionized water. Aque-
ous buffer solutions were prepared using potassium hydrogen phosphates (KH2PO4 and
K2HPO4, Sigma-Aldrich) and deionized water. Materials used for the hydroxyapatite syn-
thesis and doping were calcium nitrate pentahydrate (Ca(NO3)2 × 5H2O) (Sigma-Aldrich),
magnesium nitrate hexahydrate (Mg(NO3)2 × 6H2O), strontium nitrate (Sr(NO3)2), gal-
lium nitrate hydrate (Ga(NO3)3 × H2O), zinc nitrate hexahydrate (Zn(NO3)2 × 6H2O), and
ammonium dihydrogen phosphate (NH4H2PO4) were obtained from Sigma-Aldrich, and
urea ((NH2)2CO) was purchased from Alfa Aesar (Haverhill, MA, USA), and all were of an-
alytical grade. All experiments were performed using lab-produced, ultra-distilled water.

2.2. Synthesis of Multidoped Hydroxyapatite

Sonochemical homogeneous precipitation method with thermally degraded urea was
utilized to obtain the multidoped apatite [18]. HaP-precursor was created by mixing Ca-
and dopants (Zn-, Sr-, Ga-, and Mg) precursors in an equivalent molar ratio (1:1:1:1). HaP
precursor (2 wt%) was added to the mixture and preheated to 80 ◦C, followed by the
addition of urea (12 wt%). Intensive sonification (with pulsation-to-relaxation periods
on/off = 02:01 s, power p = 600 W, frequency f = 20 kHz, and amplitude A = 80%) was
performed for 3 h, during which the slow thermal decomposition of urea resulted in
precipitation. After sonification, the precipitate was aged in the supernatant for 15 h (at
room temperature) followed by centrifugal separation (10 min at 6000 rpm) and drying
under ambient conditions. Ultrasonic processor for high volume applications (VCX 750,
Sonics & Materials, Inc., Newtown, CT, USA) was used for the synthesis.

PBAE synthesis was described in detail elsewhere [17]. The product was isolated pure
and did not require any additional purification.
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2.2.1. PHEMA/Gelatin Hydrogels Synthesis

PHEMA/gelatin hydrogels syntheses by cryogelation or porogenation are presented
(Figure 1).

Figure 1. Hydrogel scaffolds synthetic route by cryogelation and porogenation.

2.2.2. Hydrogel Synthesis by Cryogelation

Cryogels with and without nHAp were synthesized using free-radical polymerization
of HEMA at temperatures of −78 ◦C. Gelatin (307 mg), previously dissolved in deionized
water (1 mL) by stirring at 40 ◦C, was added to a solution of HEMA (1.32 g, 10 mmol) and
PBAE crosslinker p (0.13 g, 15% w/w with regard to the monomer) in deionized water
(5 mL) that was stirring at r.t. This was followed by the addition of initiator (PPS, 150 mg)
and activator (TEMED, 2 drops) to the reaction mixture, which was then transferred into
a petri dish (5 cm wide, 0.6 cm height) and placed into a deep freezer (−78 ◦C) for 24 h.
The formed cryogels were allowed to thaw at r.t. and submerged in a solution of EDC (1%
solution in a mixture of acetone/deionized water (8/2)) at 4 ◦C overnight. Cryogel samples
were washed with deionized water for 7 days to remove impurities. Water was changed
daily. Swollen cryogels were frozen and freeze-dried. The cryogels were designated as in
Table 1. Crosslinking of HEMA with PBAE and gelatin with EDC are presented in Figure 2.
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Table 1. The composition and designation of the hydrogel samples.

Sample Component 1 Component 2 Cross-Linker
for pHEMA

Cross-Linker
for Gelatin

Initiator/Initiation
Catalyst

Pore Formation Method
(Foaming

Agent/Stabilizer)

nHAp
Doped

C HEMA Gelatin PBEA EDC APS/TEMED Cryogelation -
CH HEMA Gelatin PBEA EDC APS/TEMED Cryogelation yes

P HEMA Gelatin PBEA EDC APS/TEMED Porogenation
(NaHCO3/TWEEN) -

PH HEMA Gelatin PBEA EDC APS/TEMED Porogenation
(NaHCO3/TWEEN) yes

2.2.3. Hydrogel Synthesis by Porogenation

The same reaction mixture was polymerized in a glass vial, by heating the reaction
mixture to 63 ◦C in a water bath, with continuous stirring for 5 min, with the addition of
foaming agent NaHCO3 (54 mg) and TWEEN (4 mg) as a foam stabilizer. All synthesis
details are presented in Table 1. After the polymerization was complete, the samples were
cut into discs (7 mm diameter) that were washed with deionized water for 7 days to remove
impurities. Water was changed daily. Swollen hydrogels were frozen and freeze-dried.

2.2.4. Hydroxyapatite (HAp) Incorporation in Scaffolds

Mg, Sr, Zn, and Ga ion-doped HAp (synthesized as previously described by Kutjak
et al.) [18] was incorporated during the polymerization process by adding 10% of the total
hydrogel disk weight to the polymerization mixture. To achieve a homogenous distribution
of HAp particles, continuous vigorous stirring was applied. Hydrogel scaffolds loaded with
nHAp were marked as CH and PH, where CH stands for samples obtained by cryogelation
and P for those obtained by porogenation. The samples without nHAp are designated as C
and P.

2.3. Scaffold Characterization
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR)

Hydrogel composition was analyzed using FTIR spectra, recorded on a Thermo-
Scientific Nicolet 6700 FT-IR diamond crystal spectrometer (Waltham, MA, USA), using the
attenuated total reflectance (ATR) sampling technique. FTIR spectra were recorded over
the wavelength range of 700–4000 cm−1.

2.3.2. Scanning Electron Microscopy (SEM)

Morphological analysis of the scaffolds was performed with SEM (Jeol JSM-7600 F,
Tokyo, Japan). Samples, that were previously freeze-dried (using Martin Christ-Alpha
1–2 LDplus, Osterode am Harz, Germany), were cut into slices, fixed on a holder using
carbon tape, sputtered with gold (using BAL-TEC SCD 005, Wetter (Ruhr), Germany), and
lyophilized in a vacuum chamber (VC 50 SalvisLab Vacucenter, Rotkreuz, Switzerland).

2.3.3. Porosity Measurements

Solvent replacement procedure was used to calculate the hydrogel porosity, with
glycerol (ρ = 1.2038 g/cm3) as a wetting medium. Dry hydrogel samples were immersed in
glycerol for 24 h and weighed after removing excess glycerol from the sample:

Porosity o f hydrogel sample =

(
mg −mi

)
ρV

× 100 (1)

where mi is the starting weight of the dried hydrogel sample, mg is the weight of the
hydrogel sample soaked with the wetting medium, ρ is the density of glycerol, and V is the
volume of the hydrogel sample.
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2.3.4. Mechanical Characterization

A universal testing machine (Galdabini Quasar 50, Cardano Al Campo, Italy) was
used to calculate the mechanical characteristics of the scaffolds by the application of a
uniaxial compression with 100 N load cell at ambient conditions. The Young’s modulus (E)
was quantified from the linear part of the stress/strain curve, with the average value of
three measurements used for the final value.

2.3.5. Swelling Study

The gravimetric method was used to calculate the equilibrium degree of swelling
(qe) for all hydrogel samples. Dried hydrogel discs were submerged in phosphate buffer
solution (pH 7.4 at 37 ◦C), imitating physiological conditions. Discs were taken out of
the buffer solution at specific times, dried by removing excess water, and weighted. The
equilibrium degree of swelling was determined using the formula:

qe =
ms −mi

mi
(2)

where mi is the initial weight of the dry gel and ms is the weight of the swollen sample,
measured at selected time intervals, at the time of measuring. The equilibrium degree of
swelling was plotted as a function of time.

2.3.6. Water Contact Angle Measurement

The static water contact angle was measured using the sessile drop method by placing
a drop (approximately 1 µL) of MilliQ water on the surface of the hydrogel. The measure-
ments were performed using a Contact angle meter Theta Lite-Biolin Scientific (Phoenix,
AZ, USA) (with measuring range 0–180 deg. and accuracy +/−0.1 deg., +/−0.01 mN/m)
equipped with the camera with 640 × 480 resolution and a maximum measuring speed of
60 fps. All measurements were repeated at least four times for each hydrogel.

2.3.7. In Vitro Degradation Study

In vitro hydrolytic degradation studies were carried out by immersing the hydrogel
samples in a solution of phosphate buffer (pH 7.4 at 37 ◦C). Samples were removed from
the buffer solution, dried at 40 ◦C until constant weight, and weighed every 2 weeks.
Degradation was calculated as the remaining hydrogel mass percentage as a function of
time, using the formula:

Percent o f remaining cryogel weight =
mt

mi
× 100 (3)

where mi is the initial weight of the dry hydrogel and mt is the weight of the dried hydrogel
sample at the time of measuring.

2.4. Biological Activity Studies
2.4.1. Cell Expansion

Human mesenchymal stem cells were isolated from human bone marrow stromal
aspirate (Lonza) as previously described [19]. The cells were used at passage three and
cultured under standard cell culture conditions (37 ◦C, 5% CO2) in an expansion medium
consisting of Dulbecco’s modified Eagle medium (DMEM, 41,966,029 Gibco, Thermo Fisher
Scientific, Waltham, MA, USA), 10% fetal bovine serum (FBS, 15,240,062 Gibco, Thermo
Fischer Scientific), 1% nonessential amino acids (NEAA, 111,140,035 Gibco, Thermo Fischer
Scientific), 1 ng/mL basic fibroblastic growth factor (bFGF, PHG0369 Gibco, Thermo Fischer
Scientific), and 1% antibiotic–antimycotic (Anti–Anti, 15,240,062 Gibco, Thermo Fisher
Scientific). After 7 days, cells were trypsinized and 1 × 106 cells were seeded on each
scaffold by pipetting. After incubation for 90 min, 5 mL osteogenic media (DMEM, 10%
FBS, 1% P/S/F, 50 µg/mL L-ascorbic acid (SIGMA), 100 nM dexamethasone (SIGMA),
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10 mM beta-glycerolphosphate (SIGMA) was added. Constructs were cultured at 37 ◦C
and 5% CO2 for up to 28 days, and culture media was changed every 2–3 days.

2.4.2. DNA Quantification

The Quant-iTTM PicoGreen® dsDNA reagent kit (Invitrogen, Waltham, MA, USA)
was used for DNA quantification. This allows for assessing the number of cells capable to
adhere to the different scaffold types in comparison to adhering to tissue culture plastic
(TCP). After 16 h of cell seeding, the scaffolds were carefully washed twice in phosphate
buffer saline (PBS, Medicago, Quebec City, QC, Canada) to wash away nonadherent cells.
The remaining cells were lysed in 0.2% (v/v) Triton X-100 and 5 mM MgCl2 solution
using two steel beads and a Mini BeadbeaterTM (Biospec, Bartlesville, OK, USA) three
times at 25,000 rpm for 10 s each time. Samples were placed on ice between cycles for
cooling. Acellular scaffolds were used as negative controls. After 48 h incubation at
room temperature and centrifugation, the Quant-iTTM PicoGreen® dsDNA reagent kit
(Invitrogen) was used according to the manufacturer’s instructions. Fluorescence was read
at an excitation wavelength of 480 nm and an emission wavelength of 520 nm with a plate
reader (Tecan, Männedorf, Switzerland). The amount of DNA per sample was calculated
according to the values of a DNA standard curve. DNA content of cells adhering to the
scaffolds is presented relative to the DNA extracted from the same amount of cells seeded
on TCP, which was set to 100%.

2.4.3. Lactate Dehydrogenase (LDH) Activity

The release of LDH by cells, a stable cytoplasmic enzyme found in nearly all living cells,
was used as an indicator of scaffold cytotoxicity. LDH activity was determined in the cell
culture media after 48 h and 28 days of cell culture. The activity of the cytosolic enzyme was
determined according to the manufacturer’s kit instructions (Roche Diagnostics, Rotkreuz,
Switzerland). Results were presented relative to the LDH activity in the medium of cells
cultured on TCP (0% cell death, low control) and of cells cultured on TCP and treated
with 1% Triton X-100 (100% cell death, high control). To overcome intergroup scaffold
background interference, absorbance obtained from each scaffold type without cells was
previously subtracted from each corresponding group. Values are presented as mean ± SD.

2.4.4. AlamarBlue Assay

AlamarBlue® assay (Molecular Probes) was used as an indicator of cell metabolic
activity. It was measured after 2, 7, and 28 days of cell culture on cell culture supernatant.
Well plates containing the scaffolds were first washed once with PBS at 37 ◦C. The Alamar-
Blue assay was performed following the manufacturer’s instructions. Briefly, AlamarBlue
solution was diluted 1:10 in control media and 700 µL of solution were added per well.
Plates were then incubated for 1.16 h at 37 ◦C. For each sample, 100 µL of the sample was
loaded into a 96-well black microtiter plate and fluorescence (excitation wavelength 535 nm,
emission wavelength 595 nm) was measured with a plate reader (TECAN).

2.4.5. RNA Isolation and Real-Time PCR Analysis

Trizol reagent (Invitrogen) was utilized to isolate total RNA following the manufac-
turer’s protocol. Each hydrogel sample was broken down with steel balls and a Minibead
Beater (Biospec) at 25,000 rpm for 10 s per cycle (6 cycles). Hydrogel samples were kept
on ice in between cycles. Total RNA (100 ng) was reverse transcribed to cDNA at 42 ◦C
for 60 min with a High-Capacity RNA-to-cDNA kit (Applied Biosystems, Waltham, MA,
USA) following the manufacturer’s protocol. The RNA was quantified using the Qubit 3.0
Fluorometer (Thermo Fisher Scientific) and the Qubit RNA HS Assay kit (Invitrogen).

Real-time PCR (Biorad CFX96) was achieved with TaqMan probe detection (Applied
Biosystems). Real-time PCR was performed for glyceraldehyde-3-phosphate dehydro-
genase (GAPDH, Hs02758991_g1), ACTB, Hs01060665_g1), collagen type I (COL1A2-I,
Hs01028956_m1), alkaline phosphatase (ALPL, Hs01029144_m1), and osteocalcin (BGLAP,
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Hs01587814_g1). Each assay also contained a negative control without a cDNA template.
qBase+ software was used for data analysis. Values were normalized to housekeeping
genes (GAPDH and ACTB). Results are presented as fold change compared to sample P.

2.4.6. Statistics

Data are presented as mean values± SD. For cell experiments, a Kolmogorov–Smirnov
test was performed to test normality. Differences between groups were assessed by one-way
ANOVA with Bonferroni correction or Kruskal–Wallis test depending on their distribution.
SPSS program for Windows (Chicago, IL, USA) version 17.0 was used. Results were
considered statistically significant at p values < 0.05.

3. Results and Discussion

Nanocomposite hydrogels are organic–inorganic composite materials that have gained
great interest in biomedical applications as artificial biomaterials for scaffolds. Their specific
properties are achieved by the synergetic effect between organic hydrogels and inorganic
nanoparticulate systems [20]. Nano-sized fillers are able to affect the physicochemical
characteristics of the polymeric matrix, particularly the surface wettability and the me-
chanical properties, which are very important for further biological response [21,22]. On
other hand, the polymeric matrix has the potential to control the release of nanofiller
and their therapeutic effects [23]. Their advantages are found to be highly applicative in
different spheres of biomedicine, including tissue engineering, diagnostic, and designing
therapeutics [21,24]. In this work, new nanocomposite hydrogels were synthesized using
a HEMA/gelatin/PBAE hydrogel combined with nHAp dopped with different ions (ID
nHAp). Porous three-dimensional IPN hydrogels were obtained by cryogelation or poro-
genation. To assess the impact of doped nHAp on the scaffold properties in each set, one
sample was made with ID nHAp and the other without it. The cryogels samples were
marked as CH and C, and the samples obtained using porogen as PH and P, where H
stands for nHAp.

3.1. Structural Characteristics of Scaffolds

The chemical structure characteristics of all samples (C, CH, P, and PH) based on
HEMA, gelatin, and PBAE, with and without doped nHAp, were examined using Fourier
transform infrared (FTIR) spectroscopy to examine polymer–particle interaction. Figure 3
shows the FTIR spectra of nHAp and the cryogels with and without nHAp (Figure 3), as
well as the doped nHAp spectrum. The nHAp spectrum shows a peak at 960 cm−1 for the
asymmetric stretching vibration of PO4

3−, and strong bands at 1230 and 1026 cm−1 for
P–O [25]. The bands present at 607 cm−1, 563 cm−1, and 609 cm−1 are due to the bending
mode of P–O bonds in the phosphate group [25]. Observable bands in the C cryogel spectra
are 3360 cm−1 for O–H and N–H stretching, 2944 cm−1 for C–H stretching of alkyl groups,
1720 cm−1 for C=O stretching of ester carbonyl group, 1640 cm−1 for C=O stretching of
the amide group (amide I), and 1549 cm−1 for N–H bending. A change of the intensity
of the peaks at 3360, 1720, and 1230 cm−1 confirmed the presence of nHAp incorporated
in the scaffolds.
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Figure 3. FTIR spectra of HAp and C and CH cryogels.

3.2. Scaffold Morphology

The morphology of the scaffolds plays an important role in bone tissue regeneration.
Highly porous scaffolds with interconnected pores are needed to obtain a homogeneous
cell distribution throughout the scaffold, as well as the efficient diffusion of nutrients,
oxygen, and waste materials, especially in the absence of a functional vascular system.
Therefore, it is essential for cell survival, growth, and vascularization. Adequate porosity
and interconnectivity are also required to facilitate cell migration within the scaffold, such
that cell growth is enabled in the right direction. The pore sizes are also very important.
Large pores, around 100 µm or more, are needed to direct the tissue formation and function
in the scaffolds due to the higher amount of functional units necessary for the regeneration
of various tissues, including bone [26].

Morphological characteristics of the scaffolds were studied using SEM. SEM micro-
graphs of the cross-section (Figure 4) for the cryogels (C, CH) show highly porous structures
with interconnected, irregular elongated pores, where small pores are surrounded by poly-
meric thick walls of macropores. Pores with a diameter of about 100 µm and larger were
detected, which confirms that this material microstructure is suitable for TE purposes.
Samples obtained using porogen (P, PH) also have a highly porous structure with large,
but less interconnected pores. The pore shape for P and PH is different from that for the C
and CH samples, as they predominantly have a round shape, probably due to the presence
of a foam stabilizer during pore formation. The cryogels also have higher porosity (table)
than the samples obtained by porogenation. As can be seen, the SEM micrographs for
CH have more irregular pores than the C scaffold. This is probably because the nHAp
particles in the polymer solution perturbed the solvent crystallization to some extent. The
micrographs for the PH samples also differ from those for the P samples, showing more
irregular pores with a greater contribution of large pores. There is no evidence of the phase
separation or agglomeration of the nHAp particles, meaning that the scaffold components
are compatible and that the nanoparticles are distributed homogeneously in the material.
The SEM images of the surface are different. There is also a highly porous structure with
interconnected pores, but higher porosity is obtained for the P and PH samples due to the
different pore-forming processes, and probably also due to the solvent effects in the C and
CH samples during the cryogelation process.



Polymers 2022, 14, 18 10 of 17

Figure 4. Representative SEM micrographs of the surface and a cross-section for each group (A) C,
(B) CH, (C) P, and (D) PH (scale bar: 100 µm).

3.3. Scaffold Porosity

The porosity of scaffolds was determined by the solvent replacement method using
glycerol as a wetting medium. As could be expected, the addition of ID nHAp in both
types of samples led to slightly lower porosity, as can be seen from Table 2. For the cryogels,
the porosity was determined to be 83.92% for C and 78.96% for CH, while for the samples
obtained using porogen, the porosity decreased from 71.17% for the P sample to 65.66% for
the PH sample.

Table 2. Equilibrium degree of swelling, Young’s modulus, porosity, percentage of degradation, and
elongation at break percentage for each group.

Sample Equilibrium
Degree of Swelling

Young’s Modulus
(MPa)

Porosity
(%)

Percentage of Mass
Loss (after 16 Weeks)

Elongation at
Break (%)

C 5.12 ± 0.05 4.25 ± 0.22 83.92 23.17 ± 0.85 26.96 ± 1.12
CH 4.87 ± 0.04 5.87 ± 0.24 78.96 21.93 ± 1.12 24.37 ± 1.18
P 1.93 ± 0.03 8.63 ± 0.28 71.17 9.24 ± 0.67 20.45 ± 1.36

PH 1.74 ± 0.03 10.14 ± 0.31 65.66 7.55 ± 0.69 17.58 ± 1.41

3.4. Scaffold Swelling Properties

In vitro swelling studies were performed in a pH 7.4 buffer at 37 ◦C to mimic the
physiological conditions. The results obtained for the scaffold swelling are presented in
Figure 5 as the degree of swelling (q) values versus time. The fast-swelling behavior [27],
typical for highly hydrophilic and porous hydrogel materials, can be observed for all
samples from a very steep slope of the swelling curves at the beginning of the swelling
process. In general, the scaffolds obtained by cryogelation (CH and C) swell considerably
more than those obtained by porogenation (PH and P). The equilibrium degree of swelling
(qe) values for cryogels were 5.12 ± 0.05, and about 5% lower values of 4.87 ± 0.04 were
obtained for composite cryogels. Lower qe values were obtained for the samples in which
porogen was used, with 1.93 ± 0.03 for the samples without nHAp and 1.74 ± 0.03 (about
10% lower) for the composite samples. It is obvious that the addition of inorganic Hap
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slightly lowers the degree of swelling depending on the pore forming method, which agrees
well with the porosity results.

Figure 5. In vitro swelling profiles of the designed scaffolds.

3.5. Hydrophilicity of Scaffolds

Surface wettability is a significant characteristic of a material used in biomedical
applications [28]. Wettability is the tendency of a liquid to spread on a solid substrate
and is generally measured by measuring the contact angle, i.e., the angle between the
substrate surface and the tangential line drawn at the triple point of the three phases (solid,
liquid, and gas). The origin of the macroscopic water wetting/nonwetting phenomenon at
polymer surfaces should ultimately be explainable in terms of the interaction between the
atoms of the water molecule and the surface of the polymer. The wettability depends on
porosity, surface roughness, and chemical composition.

The determination of the wettability is based on the measurement of the material
surface water contact angle. Contact angle measurements revealed that the scaffold surfaces
are highly hydrophilic (Figure 6). Immediately after touching the surface, the water drop
is completely wetting the surface and disappearing. This behavior was expected due to
the high content of hydrophilic groups in the PHEMA/gelatin/PBAE (with and without
ID HAp) scaffold surface, allowing for a high wettability which is very important for
successful cell adhesion, proliferation, and differentiation [29,30].



Polymers 2022, 14, 18 12 of 17

Figure 6. Hydrophilicity of C, CH, P, and PH hydrogel scaffolds.

3.6. In Vitro Degradation Behavior

One of the most essential parameters to evaluate the suitability of biomaterials for use
as scaffolds and implants is the biodegradability. Degradation will provide new space for
the tissue to grow in and induce regeneration, so it is of utmost importance to synchronize
the rate of degradation with the rate of growth of new tissue. Synthetic hydrogels offer
the advantage of tailorable degradation, varying with chemical composition and the ratio
of its component materials, among many other parameters. The physicochemical char-
acteristics of the gelatin/HEMA/PBAE hydrogel scaffolds could be fine-tuned using an
adequate gelatin/HEMA/PBAE ratio and the PBAE crosslinker structure, as determined
in our previous work [17]. For the scaffolds used herein, we selected the most suitable
gelatin/HEMA/PBAE ratio for the cryogel and the porogenated scaffold synthesis. These
two scaffold groups showed different degradation behavior over 16 weeks (Table 2).

The mass loss percent after 16 weeks for the cryogel samples was 23.17 ± 0.85% for
the samples without nHAp and 21.93 ± 1.12% for those containing nHAp. Scaffolds ob-
tained by porogenation had lower mass loss values for the same period, 9.24 ± 0.67% and
7.55 ± 0.69%, where higher values are for the scaffolds with nHAp. As can be seen, the
difference in the degradation rate is pronounced for the different pore forming methods.
Cryogelation leads to faster water absorption by the interconnected pores, which con-
tributes to a higher rate of hydrolytic degradation. Incorporating nHAp showed a slight
decrease in the degradation for both types of pore-forming methods. This result shows the
important impact of the method of pore formation on the final scaffold properties.

3.7. Scaffold Mechanical Properties

The elastic modulus of the scaffolds is a critical physical property because it is one
of the important factors which determines their use in biomedical applications. Ideally, it
should match the mechanical properties of the physiological tissue surroundings where the
scaffold is implanted, be strong enough to provide the structural support for cell attachment,
as well as succeeding tissue growth until the new tissue is formed. In that context, designing
scaffolds using a polymeric matrix with embedded inorganic nanoparticles is useful tool
for controlling the mechanical strength of soft gels [31].

For the scaffolds developed herein, the composite scaffolds had higher Young’s modu-
lus values of 10.14 MPa for the porogenated samples (PH) and 5.87 MPa for the cryogels
(CH) than the samples without the nHAp component, 8.63 MPa (P) and 4.25 MPa (C),
results which validate the better mechanical properties of the composite systems for both
types of scaffolds. The porogenation technique resulted in higher modulus values than in
the case of cryogels due to the lower porosity (Table 2). It can also be seen that the values for
Young’s modulus are following the results obtained for the porosity, the degree of swelling,
and the degradation rate (Table 2). The elongation at the break for the composite scaffold
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values were 24.37% for CH and 17.58% for PH, which is slightly lower than for the samples
without nHAp, namely 26.96% for C and 20.45% for P. It can be seen that the mechanical
properties of the HEMA/gelatin/PBAE polymer scaffolds were improved by the nHAp
addition. The method of pore formation also has a considerable influence on hydrogel
mechanical properties. Integrating nHAp manifested as an increase of strength and a slight
decrease in elongation at the break for both types of samples.

3.8. Scaffold Biological Properties

The PHEMA/gelatin hydrogels were assessed in vitro for their potential use as 3D
scaffolds for bone regeneration. Although different methodologies are being applied in TE,
cell implantation, as one of the most frequently used, was also applied here. Living cells
were seeded into a scaffold. Successful tissue regeneration is achieved when the scaffolds
finally degrade in an appropriate time scale, leaving behind only the healthy/regenerated
tissue [2,32,33]. Such scaffolds should be nontoxic and support cell adhesion, proliferation,
and osteogenic cell differentiation. To assess the biological properties of the developed
materials, the scaffolds were seeded with osteoblast progenitors human bone marrow-
derived stromal cells (hBMSCs). The performance of the scaffold materials was compared
to cells cultured on 2D TCP surfaces.

3.9. Cell Adhesion

A DNA assay was performed to assess the number of cells able to adhere to the differ-
ent scaffold types. The negatively charged (air or oxygen) and hydrophilic surface of TCP
can increase the nonspecific adsorption of cell media constituents and enable subsequent
coatings that can further promote cell adhesion. More specifically, we evaluated whether
the presence of HAp nanoparticles in the scaffold material (HG-based or PLLA Dox-based)
and/or the scaffold fabrication method (porogen, cryogel) influenced the amount of cells
able to adhere to the scaffolds. Both the cells adhering to the scaffold and those adhering to
the TCP were evaluated, the sum of which represents all adherent cells (100%). A high cell
adhesion rate of >60% was observed on all scaffold types studied (Figure 7). This could,
for example, be thanks to the hydrophilicity of the scaffolds, which could favor protein
absorption and mediate the cell–material interaction. Besides, gelatin, obtained by the
partial hydrolysis of native collagen, can ensure numerous functional groups appropriate
for strong interactions with a large variety of cells [34,35]. Variations on the topography
due to HAp doping might cause differences in the distribution of adhesion proteins [36],
increasing the cell adhesion in Hap-doped materials compared to its nondoped material, al-
though the results were not statistically different. No significant differences were observed
between the porogen and the cryogel, either doped or nondoped HAp.

Figure 7. Cell adhesion measured as the amount of DNA from cells adhering to tissue culture plastic
(TCP, grey) or the scaffold (black) 16 h after cell seeding. Data represent the mean ± SEM (n = 4).
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3.10. Influence of Scaffolds on Cell Viability

LDH activity measurements were performed to measure the cytotoxicity of the differ-
ent scaffold types as an indirect measure of cell viability after 2 and 28 days of cell culture.
All scaffold types can be considered safe (toxicity occurs in ≤50% of the cells) [37] for the
cells after both short (2 days) and longer-term (28 days) cell cultures (Figure 8). In addition,
no significant differences were observed in the cell toxicity among the groups, indicating
no toxicity of the scaffold materials for the cells, but ensuring cell viability.

Figure 8. Toxicity represented as LDH activity relative to cells treated with Triton X-100 (+ control,
representing 100% cell death) and cells cultivated in TCP (− control, 0% cell death) measured in the
culture media after 2 or 28 days of cell culture on either P, PH, C, or CH scaffolds.

3.11. Cell Metabolic Activity

AlamarBlue is a commonly used assay to determine metabolically active cells, giving
insight into cell viability, and cell proliferation [38,39]. After 2 and 7 days of cell culture,
all the scaffold types equally supported viability (Figure 9). The cell metabolic activity in
the CH was 30% and 25% higher after 2 and 7 days of culture, respectively, compared to
C, although not statistically different. Interestingly, after 28 days of culture, cell metabolic
activity showed the highest increase for the TCP reference group, although this difference
was not statistically significant. Overall, these data indicate that the cell metabolic activity
is similar to TCP on each of the scaffold materials used.

Figure 9. Determination of the cell metabolic activity after culturing cells for 2, 7, and 28 days in P,
PH, C, or CH scaffolds.

3.12. Upregulation of Osteogenesis-Related mRNA Levels

Osteogenesis-related genes collagen type 1 (Coll1A2, bone ECM protein), alkaline phos-
phatase (ALPL, an early marker of osteogenic differentiation), and osteocalcin (BGLAP, a
late marker of osteogenic differentiation) were evaluated after 28 days of culture (Figure 10).
For the porogenated scaffolds, contrary to what was expected, the integration of nHAp
seemed to reduce the expression of COLL1A2 and BGLAP and significantly downregulated
at 0.5 fold change the ALPL mRNA levels compared to the scaffolds without nHAp. For the
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cryogels, this trend was less pronounced. Overall, it seems as if osteogenic differentiation
is slower or less pronounced when nHAp was integrated into the gels.

Figure 10. Gene expression levels of COLL1A2 (A), ALPL (B), and BGLAP (C) after 28 days of culture
of hBMSCs on the different scaffold materials. Values were normalized to a housekeeping gene
(GAPDH and ACTB) and expressed as fold change relative to P, which was set to 1. Values represent
the mean ± SD (n = 3) # p < 0.05.

4. Conclusions

New composite HEMA/gelatin/PBAE 3D scaffolds with incorporated ID nHAp and
hybrid HEMA/gelatin/PBAE 3D scaffolds without ID nHAp were successfully fabricated
using cryogelation (CH, C) and porogenation (PH, P) pore forming methods. The physic-
ochemical characterization of the scaffolds revealed that the incorporation of nHAp led
to changes of the structure, morphology, porosity, swelling ability, water contact angle,
mechanical properties, and in vitro degradation, as well as in vitro biological properties in
CH and PH scaffolds, relative to C and P. The pore forming method affected the scaffold
characteristics to an even greater extent than the incorporation of nHAp. The composite
samples had considerable elasticity and a rather high mechanical strength, but slightly
lower degrees of swelling, percent of mass loss after 16 weeks, and porosity values. Further-
more, the scaffold fabrication method and the inclusion of nHAp influenced very little the
cell adhesion capacity and toxicity. A high cell adhesion rate of >60% was observed on all
the scaffold types studied, and the scaffold materials were proven to be biocompatible and
nontoxic. According to the cell metabolic activity after 2 and 7 days of cell culture, all scaf-
fold types equally supported viability. Cell metabolic activity after 2 and 7 days of culture
was 30% and 25% higher in the CH compared to C, although not statistically different. After
28 days of culture, cell metabolic activity showed the highest increase for the TCP reference
group, although this difference was not statistically significant. After 28 days of culture,
cell metabolic activity indicates that the cell metabolic activity is similar to TCP on each
of the scaffold materials used. Osteogenic differentiation was slower or less pronounced
when nHAp was integrated. The combination of hydrogels with inorganic nHAp in the
PHEMA/gelatin/PBAE scaffolds resulted in superior properties for applications in the
biomedical field, probably owing to synergetic effects, which lead to improvements in the
mechanical behavior and the interactions with biological species.
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