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Abstract: The cage and ladder structured phosphorus-containing polyhedral oligomeric silsesquiox-
anes (DOPO-POSS) have been synthesized through the hydrolytic condensation of 9,10-dihydro-9-
oxa-10-phosphenanthrene-10-oxide (DOPO)-vinyl triethoxysilane (VTES). The unique ladder and
cage–ladder structured components in DOPO-POSS endowed it with good solubility in vinyl epoxy
resin (VE), and it was used with tetrabutyl titanate (TBT) to construct a phosphorus-silicon-titanium
synergy system for the flame retardation of VE. Thermal stabilities, mechanical properties, and
flame retardancy of the resultant VE composites were investigated by thermal gravimetric analysis
(TGA), dynamic mechanical analysis (DMA), three-point bending tests, limiting oxygen index (LOI)
measurement, and cone calorimetry. The experimental results showed that with the addition of only
4 wt% DOPO-POSS and 0.5 wt% TBT, the limiting oxygen index value (LOI) increased from 19.5 of
pure VE to 24.2. With the addition of DOPO-POSS and TBT, the peak heat release rate (PHRR), total
heat release (THR), smoke production rate (SPR), and total smoke production (TSP) were decreased
significantly compared to VE-0. In addition, the VE composites showed improved thermal stabilities
and mechanical properties comparable to that of the VE-0. The investigations on pyrolysis volatiles
of cured VE further revealed that DOPO-POSS and TBT exerted flame retardant effects in gas phase.
The results of char residue of the VE composites by SEM and XPS showed that TBT and DOPO-POSS
can accelerate the char formation during the combustion, forming an interior char layer with the
honeycomb cavity structure and dense exterior char layer, making the char strong with the formation
of Si-O-Ti and Ti-O-P structures.

Keywords: vinyl epoxy resin; flame retardant; thermal stability; mechanical properties

1. Introduction

Vinyl ester resin (VE) are generally prepared by the reaction of unsaturated carboxylic
acid and epoxy resin. The unique chemical structures endow them with the outstanding
characteristics of epoxy resins and the advantages of unsaturated polyester resins [1,2].
Due to its excellent adhesion, mechanical properties, chemical corrosion resistance and
easy processability, VE has been widely used in various applications, such as composites,
anticorrosion pipelines, adhesives, automotive, etc [3,4]. However, VE is easy to burn,
which greatly limits its application in aviation, shipping, and other special fields [5–7].
Therefore, the preparation of efficient flame-retardant vinyl epoxy resin has become a hot
topic of academic research [8–10].
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In the past decades, halogenated compounds have been widely used to develop vinyl
epoxy resins with excellent flame retardancy. However, with the increasing awareness on
environmental protection, the use of halogenated flame retardants in many applications
is limited due to the release of corrosive or toxic gases during combustion. Phosphorous
flame retardants have attracted more and more attention due to their advantages of high
efficiency, smokelessness, low toxicity, and environmental friendliness. In particular, DOPO
and its derivatives are widely used to improve the flame retardancy of epoxy resins due
to their high thermal stability and flame-retardant efficiency [11–18]. For example, with
the addition of 15 wt% 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)
derivative (PN-DOPO) into glass fiber-reinforced polyamide 6T, a V-0 rating, and LOI
value of 28.9% was achieved [14].

Silicone flame retardant is a kind of non-toxic, green flame retardant, which produces
ceramic phase similar to SiO2 during the combustion to improve flame retardancy [19].
Polyhedral oligomeric silsesquioxanes (POSS) are a new type of hybrid silicon flame retar-
dant, which exert astonishing effect on some fire properties of different polymers [20–23].
For example, Svetlichnyi et al. [20] reported that by covalent bonding of nanosized octa-
hedral silsesquioxanes particles containing reactive glycidyl group to polyamidoimides
containing a carboxy group in the pendant chain, new polymeric nanocomposites were
prepared, TGA data showed that 5 wt% weight loss temperature of the nanocomposites
increased sharply both in an inert medium and air. It has been reported that by adding
both POSS and DOPO into epoxy resins, the flame retardant efficiency was increased
significantly due to the synergistic effect between phosphorus and silicon [24–26]. With
the addition of 20 wt% POSS-bisDOPO, LOI value of the epoxy composites could reach
up to 34.5% [26]. Marciniec et al. [27] synthesized two phosphorus-containing cage-like
silsesquioxane derivatives (4P4GS and 8PS) and used them as reactive or additive flame
retardants for epoxy resin. Yang et al. [28–35] synthesized different kinds of cage phospho-
rus containing polyhedral oligomeric silsesquioxanes through hydrolytic condensation
and addition reaction, such as DOPO-POSS, DPP-POSS, and DPOP-POSS. The represen-
tative flame retardant DOPO-POSS exhibited high-efficient flame retardancy in epoxy,
polycarbonate and polycarbonate/acrylonitrile-butadiene-styrene resins, and the flame
retardant mechanisms of DOPO-POSS in epoxy resins has been systematically investigated.
However, POSS often has poor compatibility with polymer matrix, which impairs the
mechanical property of the composites [36,37]. Fina [36] reported that the cage/ladder
structure instead of cage structure polyhedral silsesquioxanes could reduce the interaction
strength between the cages of silsesquioxanes, thus the cage/ladder structure polyhedral
silsesquioxanes could have better dispersion in polymer matrix.

In addition, it has been reported that the introduction of metals into polymer matrix
can also improve flame retardancy of the composites. Zhang et al. [38] found that flame
retardant efficiency of shape-stabilized phase change material (FSPCMs) can be improved
by the addition of iron. Chen et al. [39] revealed that Fe2O3 could increase smoke sup-
pression efficiency and thermal degradation temperature of silicone rubber composites.
Zeng et al. [40] reported that the tetrabutyl titanate (TBT) could be used as co-additive with
POSS-bisDOPO to construct a phosphorous-silicon-titanium synergy system in the flame
retardancy of epoxy composites, the titanium could be activated under the heat and play
a role of catalyst which can accelerate the formation of char. Gao et al. [41] investigated
the synergistic flame retardance of APP, PEPA and MoO3 on the flame retardancy of vinyl
ester resins, apparent synergistic effect among APP, PEPA and MoO3 could be proven by
the results of LOI and UL-94 tests, the LOI and UL-94 result of the vinyl ester resin with
10 wt% APP, 10 wt% PEPA, and 5 wt% MoO3 were 31.0 and V-0. And the interaction of the
three additives through chemical reaction can heighten the thermal stability and strength
of the char. Zhang et al. [42] reported that CaCO3 and APP showed effective synergistic
action on decreasing the HRR and smoke release rate of vinyl ester resin. With the addition
of 5 wt% CaCO3 and 20 wt% APP, the LOI value and UL-94 result of the VE composites
were 28.6 and V-0, which is attributed to the formation of continuous and dense char layer.



Polymers 2021, 13, 1363 3 of 22

In this work, we have synthesized ladder and cage structured phosphorus-containing
polyhedral oligomeric silsesquioxanes and named them DOPO-POSS, then DOPO-POSS
were used as co-additive with TBT to construct multi-component synergistic flame retardant
system containing phosphorus, silicon and titanium. The cage and ladder structures of
DOPO-POSS are conductive to their dispersion in vinyl epoxy resin, and titanium can
catalyze the formation of char. The effects of DOPO-POSS and TBT on the thermal stabilities,
mechanical properties, and flame retardancy of the VE composites were investigated. The
flame-retardant mechanism of the prepared VE composites was also revealed.

2. Experimental
2.1. Materials

9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and tetrabutyl titanate
(TBT) were purchased from Aladdin Co., Ltd. (Shanghai, China). Triethoxyvinylsilane
(VTES) and 2,2′-azobis (2-methylpropionitrile) (AIBN, 99.5%) was purchased from Ron
chemical reagent network. MFE-711 epoxy vinyl ester resin (VE), methyl ethyl ketone
peroxide (LPT-IN), cobalt isooctanoate (P002) were provided by Hua Chang polymer Co.,
Ltd., East China University of science and technology. Concentrated hydrochloric acid
(36.5%, HCl), N, N-dimethylformamide (DMF) and deionized water were obtained from
Beijing Chemical Reagent Factory. All chemicals were used as received.

2.2. Synthesis of DOPO-VTES and DOPO-POSS

As shown in Scheme 1, Firstly, DOPO-VTES was synthesized through the addition re-
action between P-H groups of DOPO and C=C groups of VTES [32], then DOPO-POSS was
synthesized from the hydrolytic condensation reaction of DOPO-VTES. The concentration
of monomer, nature of the solvent and content of catalyst can all affect the structure of prod-
ucts [43–46]. By choosing DMF as solvent and adjusting the concentration of monomer, we
expect to obtain DOPO-POSS with cage, ladder, and cage–ladder structured components.
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Scheme 1. Synthesis route of DOPO-VTES and DOPO-POSS.

2.2.1. Synthesis of DOPO-VTES

To a 250 mL three-necked flask equipped with a mechanical stirrer, a reflux condenser,
a thermometer and a nitrogen inlet, DOPO (32.4 g, 0.15 mol), VTES (28.5 g, 0.15 mol) and
AIBN (1.476 g, 0.009 mol) were added and stirred gently until temperature was increased
to 80 ◦C. Then, the reaction mixture was stirred at 80 ◦C for 6 h to get a light-yellow viscous
liquid (DOPO-VTES) (56.86 g, yield: 93.4%). FTIR (KBr, cm−1): 3065 cm−1 (Ar-H); 2975,
2926, 2892 cm−1 (C-H); 1478 cm−1 (P-Ph); 1207 cm−1 (P=O); 1079 cm−1 (Si-O); 910 and
752 cm−1 (P-O-Ph). 1H-NMR (DMSO-d6, ppm): 0.50–0.75 (2H, -Si-CH2), 0.85–1.26 (9H,
CH3), 1.96–2.11 (2H, -P-CH2), 3.58–3.88 (6H, -O-CH2), 7.19–8.51 (8H, Ar-H).
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2.2.2. Synthesis of DOPO-POSS

DOPO-VTES (56.86 g, 0.14 mol), deionized water (30 mL), HCl (10 mL) and DMF
(150 mL) were added into a 250 mL three-necked flask equipped with a mechanical stirrer,
a thermometer and a nitrogen inlet, the mixture was stirred at 80 ◦C for 30 h, and then the
mixture was poured slowly into 500 mL deionized water to yield a white precipitate. The
white precipitate was washed three times and suction filtration. After being vacuum dried
at 150 ◦C for 6 h, a white solid (DOPO-POSS) was obtained (50.43 g, yield: 88.7%). FTIR
(KBr, cm−1): 3472 cm−1 (Si-OH); 3066 cm−1 (Ar-H); 2908 cm−1 (-P-CH2-CH2); 1478 cm−1

(P-Ph); 1230 cm−1 (P=O); 1116 and 1080 cm−1 (Si-O-Si); 912 and 752 cm−1 (P-O-Ph). 1H-
NMR (DMSO-d6, ppm): 0.50–0.95 (2H, -Si-CH2), 1.96–2.25 (2H, -P-CH2), 6.70–8.30 (8H,
Ar-H). 29Si-NMR (CDCl3-d6, ppm), -55 (Si-OH), -65 (Si atoms of completely condensation).

2.3. Preparation of the VE Composites

The formulations of the VE composites are listed in Table 1. Firstly, DOPO-POSS
was dispersed in MFE-711 resin by mechanical stirring at 70 ◦C for 30 min to get a clear
liquid. After the mixture was cooled to room temperature, the curing agent (LPT-IN) and
accelerator (P002) were added and stirred at room temperature for 10 min. After degassing
under reduced pressure, the mixture was poured into the steel mold and cured at 120 ◦C
for 2 h in a convection oven. After curing, all samples were cooled to room temperature.
The schematic diagram of process as shown in Scheme 2.

Table 1. Formulations of the VE composites.

Samples MFE-711 (g) LPT-IN (g) P002(g) DOPO-
POSS(g) TBT(g)

VE-0 100 1 0.08 - -
VE-1 100 1 0.08 2 -
VE-2 100 1 0.08 4 -
VE-3 100 1 0.08 5 -

VE-2-1 100 1 0.08 4 0.25
VE-2-2 100 1 0.08 4 0.50
VE-2-3 100 1 0.08 4 0.75
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The samples containing TBT were prepared by the same method, except that different
amounts of TBT were added with the addition of 4 wt% DOPO-POSS. In addition, a group
of pure VE was prepared as control group.
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2.4. Characterization

FTIR spectra were recorded in the range of 4000~400 cm−1 on Bruker tensor 27 FTIR
instruments (Bruker, Germany). 1H-NMR and 29Si-NMR spectra were obtained with
Bruker AVANCE 400 MHZ NMR instrument (Bruker, Germany) using CDCl3 as the solvent
and tetramethylsilane (TMS) as the internal standard. Wide-angle X-ray diffraction (XRD)
measurements (Bruker, Germany) were performed at room temperature on EMPYREAN
X-ray diffractometer at 40 kv and 40 mA with CuKα radiation (λ = 0.1541 nm), scanning
range 4~40◦. MALDI-TOF test on Bruker ultraflextreme MALDI-TOF/TOF.

The limiting oxygen index (LOI) values were evaluated on a JF-3 Oxygen index in-
strument according to GB/T 2406.2-2009. The size of the samples was 100 × 10 × 3 mm3,
fifteen samples were taken from each group. Cone calorimetry measurements were per-
formed on a FTT cone calorimetry according to the ISO 5660 standard under an external
heat flux of 35 KWm−2. The size of the VE thermosets was 100 × 100 × 10 mm3 and three
specimens were tested for every sample.

Thermo gravimetric analysis (TGA) was determined on a STA449F5 thermal analyzer
(NETZSCH, Germany) under N2 and air atmosphere at 10 ◦C/min from 25 to 800 ◦C.
Dynamic mechanical analysis (DMA) was measured on TA Q800 with the following
conditions: frequency 1 Hz, heating rate 3 ◦C/min, temperature range of 30~150 ◦C. Three-
point bending test was investigated on an AGS-X electronic testing machine. The size of
the VE thermosets was 80 × 10 × 4 mm3.

Scanning electron microscope (SEM) was recorded with a Hitachi S-4800(Hitachi,
Japan) at an acceleration voltage of 10 KV. Prior to SEM measurements, the surfaces were
coated with thin layers of gold of about 100 Å. Raman spectroscopy was determined
on LABRAM HR Evolution to further investigate the residual char samples after cone
calorimetry test. X-ray photoelectron spectroscopy (XPS) measurement was performed
using an ESCALAB250XI instrument (Thermo Fisher Scientific, America). The obtained
data were calibrated by C 1s standard peak and analyzed by PEAK XPS software.

TGA was coupled with FTIR (Bruker tensor 27), and the measurements were carried
out in air atmosphere at 10 ◦C/min from 40 to 600 ◦C

Pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) analysis was carried
out with Exactive GC Orbitrap GC-MS (Thermo Fisher Scientific, America). High tempera-
ture cracker: CDS PYROPROBE 6200; Gas chromatograph TRACE 1310; Mass spectrometer
equipment ISQ 7000. The temperature of GC/MS interface was 300 ◦C and the pyrolysis
temperature was 900 ◦C.

3. Results and Discussion
3.1. Characterization of DOPO-VTES and DOPO-POSS

Supplementary Figure S1 shows the FTIR spectra of DOPO, VTES and DOPO-VTES.
As shown in Supplementary Figure S1c, the characteristic absorption peak at 3066 cm−1

is assigned to C-H stretching vibration of the aromatic ring. The absorption bands at
2975 cm−1, 2926 cm−1 and 2892 cm−1 from the C-H stretching vibration of the alkyl
group are also detected. The absorption bands at 1478 cm−1, 1207 cm−1 and 910 cm−1 are
attributed to P-Ph, P=O, P-O-C groups. In addition, the absorption bands at 2437 cm−1 cor-
responding to the P-H characteristic peak disappeared, indicating the successful addition
reaction between the P-H groups of DOPO and C=C groups of VTES.

The 1H-NMR of DOPO, VTES, and DOPO-VTES are shown in Supplementary Figure S2.
It can be seen that the characteristic peak at 8.90 ppm assigned to the protons in P-H
of DOPO (Supplementary Figure S2a) and the signals at 5.80–5.95 and 6.07–6.14 ppm
assigned to the protons of -CH=CH2 of VETS (Supplementary Figure S2b) disappeared
in DOPO-VTES (Figure S2c), confirming the successful addition reaction between DOPO
and VTES.

Figure S3 shows the FTIR spectra of DOPO-VTES and DOPO-POSS. In Supplementary
Figure S3a, the absorption of -O-CH2-CH3 group of DOPO-VTES appearing at around
2975, 2926, and 2892 cm−1 greatly decreased in Supplementary Figure S3b, indicating the
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successful hydrolysis condensation of the ethoxy group. The absorption bands at 3472 cm−1

were attributed to Si-OH stretching vibration, and the peak at 2908 cm−1 was attributed
to the -P-CH2-CH2 group. In addition, the peaks at 1000–1200 cm−1 were assigned to Si-
O-Si absorptions, in particular, the 1116 cm−1 band was assigned to the symmetrical cage
structure, while the 1080 cm−1 band was assigned to the random structure [47], indicating
that the ladder and cage structured DOPO-POSS has been successfully synthesized.

Supplementary Figure S4 shows the 1H-NMR spectra of DOPO-POSS. It can be seen
that the signals at 0.86–1.26 and 3.58–3.88 ppm assigned to the -CH3 and -O-CH2 of DOPO-
VTES in Supplementary Figure S4a disappeared in Supplementary Figure S4b, revealing
the complete hydrolysis condensation of DOPO-POSS. Moreover, the signals at 0.5–0.95
and 1.96–2.25 ppm were assigned to the protons of Si-CH2- and P-CH2-, respectively.

The 29Si-NMR spectra of DOPO-POSS are showed in Supplementary Figure S5. The
signals at –65 ppm were ascribed to Si atoms of complete condensation [48], and the signals
at –55 ppm were assigned to the Si-OH in DOPO-POSS.

Figure S6 shows the XRD profile of DOPO-POSS. It can be seen that DOPO-POSS
exhibits three peaks at 2θ = 5.46 o, 13.18 o and 20.68 o corresponding to repeat distances of
approximately 16.1 Å, 6.71 Å, and 4.29 Å, indicating the amorphous nature of the polymer.
The narrow peak at 2θ = 5.46 o corresponds to the intermolecular distance and the wide
peaks at 2θ = 13.18 o and 2θ = 20.68 o corresponds to the intramolecular distance. Compared
with the reported polyphenylsiloxane (PPSQ) which has the chain-to-chain distance of
12.5 Å and the intramolecular distance of 4.6 Å [15,49], DOPO-POSS has two kinds of
intramolecular distances (6.71 Å and 4.29 Å), which may be attributed to the cage and
ladder structure of DOPO-POSS.

The MALDI-TOF mass spectrum of DOPO-POSS is shown in Supplementary Figure S7.
In the spectrum, peaks in the m/z range 2000–3000 were detected, and the assignments
of the major components are shown in Table 2. It can be seen from Table 2 that the
differences in m/z between the two adjacent ladder structure peaks were 304 (RSiO2H)
and 286 (RSiO), and two adjacent cage and cage–ladder structure were 304 (RSiO2H),
respectively. The chemical structures of the representative cage and ladder structured
components are illustrated in Figure 1. It can be seen that DOPO-POSS are composed of
cage, ladder and cage–ladder structured components, and most of the components are
ladder structure [50], which is consistent with the results of FTIR and XRD. The ladder and
cage–ladder structures are beneficial to reduce the crystallinity of POSS, which improves
the compatibility between DOPO-POSS and vinyl epoxy resin [36]. The presence of Si-OH
groups also increases the affinity of synthesized DOPO-POSS to polar VE resin.

Table 2. MALDI-TOF data of DOPO-POSS.

m/z
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Figure 1. The representative cage and ladder structured components of DOPO-POSS.

3.2. Morphologies and Mechanical Properties of the VE Composites

Figure 2 shows the SEM micrographs of the fractured surfaces of the VE composites.
It can be seen that at low loadings (≤4 wt%), no obvious particles or agglomeration are
observed from the fractured surfaces of both VE-0, VE-1, and VE-2, indicating that the
DOPO-POSS can be well dispersed in the VE matrix. At high loadings (5 wt%), aggregates
of micrometer size could be observed on the fractured surface of VE-3, which is attributed
to the separation of DOPO-POSS from VE matrix. The good solubility of DOPO-POSS in
VE matrix was due to the presence of the ladder and cage–ladder structure components.

Figure 3 shows the σ-ε curves of the VE composites tested by three-point bending and
the results are shown in Table 3. It can be seen that flexural strength of VE composites first
increased and then decreased with the increase of DOPO-POSS in VE matrix. Generally
speaking, the fracture strain of materials depends on both stiffness and toughness [35].
The improved fracture strain of VE composites with the addition DOPO-POSS may be
attributed to the increased content of rigid benzene ring structure and cage structure of
DOPO-POSS which greatly inhibit the movement of polymer molecular chain in thermoset
networks [51–53]. For the control sample (VE-0), the flexural strength and modulus of VE-0
were 76.54 MPa and 2.39 GPa. As for VE-2 and VE-2-2, flexural strength of the composites
increased to 77.46 and 79.17 MPa. However, as for VE-3, flexural strength decreased to
71.77 MPa because of the separation of DOPO-POSS from VE matrix, which is consistent
with the results of SEM.
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Table 3. Three-point bending data of the VE composites.

Samples Flexural Modulus
(GPa)

Flexural Strength
(MPa) Fracture Strain (%)

VE-0 2.39 76.54 6.02
VE-1 2.46 81.56 6.55
VE-2 2.32 77.46 6.94
VE-3 2.21 71.77 7.42

VE-2-2 2.52 79.17 8.08
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3.3. Thermal Stability

TGA and DTG curves of DOPO, DOPO-POSS and the VE composites under nitrogen
and air atmospheres are shown in Figure 4. And the relevant thermal decomposition data,
including T5% which is defined as the temperature at 5 wt% weight loss, Tmax which is
defined as the temperature at maximum weight loss rate, and the char residues at 800 °C
are summarized in Table 4.
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Figure 4. TGA and DTG curves of DOPO, DOPO-POSS and the VE composites in N2 (a,b) and air (c,d).

Table 4. TGA and DTG data of DOPO, DOPO-POSS and the VE composites.

Samples N2 Air

T5%
a

(◦C)
Tmax1

b

(◦C)
Residue
(800 ◦C)

T5%
a

(◦C)
Tmax1

b

(◦C)
Tmax2

b

(◦C)
Residue
(800 ◦C)

VE-0 321.2 416.1 7.07% 320.6 413.1 521.4 1.96%
VE-1 352.7 421.2 9.04% 322.6 414.1 545.2 1.35%
VE-2 352.9 422.7 9.35% 330.3 416.7 538.3 1.34%
VE-3 371.9 420.0 10.15% 320.6 414.7 547.1 2.84%

VE-2-2 353.3 418.6 14.38% 330.1 413.6 548.1 1.69%
DOPO 267.0 332.3 3.92% 234.7 271.7 425.4 3.07%

DOPO-POSS 384.0 479.4 41.1% 304.3 483.7 509.0 37.71%
a T5%: temperature at 5% weight loss; b Tmax: temperature at maximum weight loss rate.
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As shown in Figure 4a,b, under the nitrogen atmosphere, the T5% and Tmax of DOPO-
POSS and DOPO are 384.0 and 479.4, 267.0, and 332.3 ◦C, respectively, and their char
residues at 800 ◦C are 41.1% and 3.92%. Figure 4c,d show the results under the air at-
mosphere, the T5% and Tmax of DOPO-POSS and DOPO are 304.3 and 483.7, 234.7 and
271.7 ◦C, respectively, and their char residues at 800 ◦C are 37.71% and 3.07%. It can be
observed that a two-stage degradation process occurred in DOPO, the first degradation
process occurred at around 267 ◦C, which may be attributed to decomposition of the weak
P-O-C bonds [9,16,54]. The second degradation process occurred at around 340 ◦C, which
may be attributed to the degradation of aromatic ring [16,55]. Moreover, DOPO-POSS
exhibited high thermal stability because it has SiO2 cage core and rigid Si-O-Si structure
could change the thermal decomposition process through the formation of thermal stable
SiO2 ceramic phase [30,34,56].

The T5% and the char residues of VE-0 were around 321.2 °C and 7.07%. With the
addition of DOPO-POSS into VE matrix, the T5% and the char residues of VE composites
increased significantly. Compared to VE-2, with the addition of 0.5 wt% TBT, the char
residues of VE-2-2 increased from 9.35% to 14.38%. This may be due to titanium-containing
TBT having acted as a catalyst to promote the formation of char at high temperature [18].

As shown in Figure 4c,d, under the air atmosphere, it can be observed that a three-stage
degradation process occurred in all samples, the first and second decomposition process
occurred at around 360 ◦C, and reached Tmax at about 410 ◦C, which may be attributed to
the degradation of aromatic ring and alkyl chain [16]. The third decomposition process
appeared at around 520 ◦C, mainly due to the further thermal oxidative degradation of the
unstable char layer formed by aromatic ring and alkyl chain.

Supplementary Figure S8 shows the curves of the storage modulus and tan δ of the
pure VE and the VE composites. The glass transition temperature (Tg) of the samples is
determined from the peak temperature of tan δ curves. The storage modulus at 40 (E′ 40)
and 150 ◦C (E′ 150), tan δ and Tg are summarized in Supplementary Table S1. In general,
Tg is determined by the cross-linking density of the resin, the rigidity of the chain structure
and the segmental motion freedom, etc. As can be seen from Supplementary Table S1, the
E′ 150 of all the VE composites are lower than that of VE-0, indicating that the crosslinking
density of the VE composites are reduced [57]. On the one hand, the large volume of
rigid benzene ring structure and cage structure of DOPO-POSS can greatly inhibit the
movement of polymer molecular chain, which increased Tg; on the other hand, the addition
of bulky DOPO-POSS decreased the cross-linking density of VE resins, which decreased
Tg. Compared to VE-0, the glass transition temperature of VE-2 and VE-2-2 were slightly
increased due to the good dispersion of DOPO-POSS in VE matrix. In addition, the glass
transition temperature of VE-3 decreased compared to VE-0, which was attributed to the
separation of DOPO-POSS from VE matrix at high loadings, which is consistent with the
results of SEM.

3.4. Flame Retardant Properties of the VE Composites

LOI test was used to evaluate the flame retardancy of the VE composites, and the
detailed data are shown in Table 5. With the increase of DOPO-POSS, the LOI values
of the composites increased from 19.5 to 22.1. It is interesting that with the introduction
of DOPO-POSS and TBT, the LOI values of VE composites were improved significantly.
When 4 wt% DOPO-POSS and 0.5 wt% TBT were incorporated into VE, the LOI value
reached 24.2, which was improved by 24.1% compared with that of the pure VE. The
results revealed that TBT played a key role in increasing the LOI value of the vinyl epoxy
resin [38–40], and phosphorus, silicon, and titanium showed a good synergistic effect in
the flame retardancy of VE composites.
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Table 5. LOI results of the VE composites.

Samples MFE-711 DOPO-POSS
(wt%) TBT (wt%) LOI

VE-0 100 - - 19.5
VE-1 100 2 - 21.1
VE-2 100 4 - 22.1
VE-3 100 5 - 21.3

VE-2-1 100 4 0.25 22.7
VE-2-2 100 4 0.50 24.2
VE-2-3 100 4 0.75 22.9

The combustion behavior of the polymer was further investigated by cone calorimetry.
Figures 5 and 6 show the total heat release (THR), the heat release rate (HRR) curves of
the VE composites, and the key combustion parameters are summarized in Table 6. As
shown in Figure 5a, after cone calorimetry test, the amount of residual char of the VE
composites increased gradually in the order of VE-0, VE-2 and VE-2-2. From Figure 5b,c, it
can be seen that pure VE burns quickly after ignition and the peak heat release rate (PHRR)
and total heat release (THR) were 616.7 Kwm−2 and 395.8 MJm−2, while those of VE-2
were 299.9 Kwm−2 and 267.1 MJm−2, which were reduced by 51.4% and 32.5% compared
with those of the pure VE. As for VE-2-2, the PHRR decreased to 264.5 Kwm−2 while
THR increased slightly to 289.2 MJm−2. As can be seen from Figure 6, smoke production
rate (SPR), total smoke production (TSP), average of CO2 Yield (av-CO2Y), average of CO
Yield (av-COY) of VE-2 and VE-2-2 are all lower than those of VE-0. The peak of SPR, TSP,
av-CO2Y and av-COY of pure VE were 0.127 m2s−1, 85.15 m2, 2.15 kgkg−1 and 0.06 kgkg−1,
while those of the VE-2-2 decreased significantly to 0.104 m2s−1, 73.45 m2, 0.69 kgkg−1 and
0.002 kgkg−1 by 18.1%, 13.7%, 67.9%, and 96.7%, respectively. This illustrated that DOPO-
POSS and TBT have a good synergistic effect, could efficiently facilitate the generation of
compact residual char layer that prevented further degtadation of the matrix into organic
volatiles or gases and inhibited the burning effectively [52].
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Table 6. Cone calorimetry data of the VE composites.

Samples PHRR
(Kwm−2)

THR
(MJm−2)

SPR
(m2s−1)

TSP
(m2)

av-CO2Y
(kgkg−1)

av-COY
(kgkg−1)

VE-0 616.7 395.8 0.127 85.15 2.15 0.06
VE-2 299.9 267.1 0.103 82.05 0.28 0.01

VE-2-2 264.5 289.2 0.104 73.45 0.69 0.002

3.5. Flame-Retardant Mechanism
3.5.1. Condensed Phase Analysis

Figure 7 shows the photographs of the VE composites after heated at 450 °C for 30 min
in the muffle furnace under the air atmosphere. It can be seen that the char residue of the
pure VE have been completely destroyed to thin and fragile fragments. With the addition
of 4 wt% DOPO-POSS, the char residues of VE-2 and VE-2-2 retained intact [58].

Polymers 2021, 13, x FOR PEER REVIEW 13 of 23 
 

 

Table 6. Cone calorimetry data of the VE composites. 

Samples 
PHRR 

(Kwm−2) 

THR 

(MJm−2) 

SPR 

(m2s−1) 

TSP 

(m2) 

av-CO2Y 

(kgkg−1) 

av-COY 

(kgkg−1) 

VE-0 616.7 395.8 0.127 85.15 2.15 0.06 

VE-2 299.9 267.1 0.103 82.05 0.28 0.01 

VE-2-2 264.5 289.2 0.104 73.45 0.69 0.002 

3.5. Flame-Retardant Mechanism 

3.5.1. Condensed Phase Analysis 

Figure 7 shows the photographs of the VE composites after heated at 450 ℃ for 30 

min in the muffle furnace under the air atmosphere. It can be seen that the char residue of 

the pure VE have been completely destroyed to thin and fragile fragments. With the ad-

dition of 4 wt% DOPO-POSS, the char residues of VE-2 and VE-2-2 retained intact [58]. 

 

Figure 7. (a–c) Photographs of the VE composites before and (a’–c’) after heated at 450 °C in air. 

The morphology of char layers after cone calorimetry testing was further investigated 

by SEM. As shown in Figure 8a,a’, the exterior and interior char of VE-0 is porous, thin 

and brittle. In contrast, in the Figure 8b,b’,c,c’, after adding DOPO-POSS, the exterior re-

sidual char became dense and continuous, and the interior char layer had the characteris-

tic of honeycomb cavity structure, which could hamper the heat flow and mass transport 

[59]. 

Figure 7. (a–c) Photographs of the VE composites before and (a’–c’) after heated at 450 ◦C in air.



Polymers 2021, 13, 1363 13 of 22

The morphology of char layers after cone calorimetry testing was further investigated
by SEM. As shown in Figure 8a,a’, the exterior and interior char of VE-0 is porous, thin and
brittle. In contrast, in the Figure 8b,b’,c,c’, after adding DOPO-POSS, the exterior residual
char became dense and continuous, and the interior char layer had the characteristic of
honeycomb cavity structure, which could hamper the heat flow and mass transport [59].

Polymers 2021, 13, x FOR PEER REVIEW 14 of 23 
 

 

 

Figure 8. Scanning electron microscopy images of the exterior char layers of VE-0 (a), VE-2 (b) and VE-2-2 (c), and the 

interior char layers of VE-0 (a’), VE-2 (b’) and VE-2-2 (c’). 

Figure 9 shows the Raman spectrum of residual char after cone calorimetry. The char-

acteristic peaks of 1350 cm−1 (D band) and 1590 cm−1 (G band) are disordered and ordered 

char, respectively [60]. The compactness of the char layer can be measured by the ratio of 

ID/IG peak intensity. The ID/IG value decreases in the order of VE-0 (0.85) > VE-2 (0.76) > 

VE-2-2 (0.74), indicating that the incorporation of DOPO-POSS increased the compactness 

of the residual chars, which is in accordance with the results from SEM. With the addition 

of TBT, more compact char residue was formed in sample VE-2-2 [39,40], which could 

provide better physical barrier effect, improving the flame retardancy of the VE compo-

sites. 

1000 1200 1400 1600 1800 2000

In
te

n
si

ty
 (

a.
u

.)

Wavenumber (cm-1)

 VE-0

ID/IG=0.85

 

1000 1200 1400 1600 1800 2000

In
te

n
si

ty
 (

a.
u

.)

Wavenumber (cm-1)

  VE-2

ID/IG=0.76

 

Figure 8. Scanning electron microscopy images of the exterior char layers of VE-0 (a), VE-2 (b) and
VE-2-2 (c), and the interior char layers of VE-0 (a’), VE-2 (b’) and VE-2-2 (c’).

Figure 9 shows the Raman spectrum of residual char after cone calorimetry. The
characteristic peaks of 1350 cm−1 (D band) and 1590 cm−1 (G band) are disordered
and ordered char, respectively [60]. The compactness of the char layer can be mea-
sured by the ratio of ID/IG peak intensity. The ID/IG value decreases in the order of
VE-0 (0.85) > VE-2 (0.76) > VE-2-2 (0.74), indicating that the incorporation of DOPO-POSS
increased the compactness of the residual chars, which is in accordance with the results
from SEM. With the addition of TBT, more compact char residue was formed in sample
VE-2-2 [39,40], which could provide better physical barrier effect, improving the flame
retardancy of the VE composites.
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To further explore the flame retardant mechanism in condensed phase, the exterior
and interior residual chars of VE-2 and VE-2-2 are studied by EDX analysis (Figure 10). It
can be seen that for VE-2 and VE-2-2, the main elements in the char layers are carbon and
oxygen, and a small amount of P and Si. Compared with VE-2, new signals belonging to Ti
element appeared in VE-2-2, and the content of P and Si elements increased evidently. It
can be inferred that the addition of Ti element into the VE composites was beneficial to the
formation of dense and stable char layer, and different Ti containing compounds may be
formed during combustion [53,61,62], which was helpful to improve the fire resistance.
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layers of (b) VE-2 and (d) VE-2-2.

The exterior residual char VE-2 and VE-2-2 were studied by XPS to further investigate
the mechanism of char formation. Figure 11a illustrated the XPS spectra of VE-2 and VE-2-2,
and the Si2p, P2p, C1s and O1s spectra of VE-2 are shown in Supplementary Figure S9. As
shown in the Si2p spectrum of VE-2-2 (Figure 11b), the characteristic binding energy peaks
at 102.5 eV, 102.8 eV, 103.5 eV, and 104.4 eV were attributed to the Si-O-Ti, Si-C, Si-O/Si-O2,
and -P(=O)O-Si [63–66], respectively. In the P2p spectrum of VE-2-2 (Figure 11c), three
peaks at 133.3 eV, 133.9 eV, and 134.4 eV were attributed to Ti-O-P, P-O-C and -P(=O)O-Si
groups [53], respectively. In the Ti2p spectrum of VE-2-2 (Figure 11d), Ti-O-P (459.4 eV)
and Ti-O-Si (466.0 eV) [67–69] components can be clearly identified. In the C1s spectrum of
VE-2-2 (Figure 11e), there are four peaks at 284.1 eV, 284.7 eV, 286.1 eV, and 288.9 eV, which
are attributed to C-Si, C-C, C-O and C=O groups [53,70], respectively. In the O1s spectrum
of VE-2-2 (Figure 11f), there are four peaks at 530.9 eV, 531.8 eV, 532.6 eV, and 533.5 eV,
which are attributed to Ti-O, C=O, P-C-O and P-O-P groups [63,65], respectively. The above
results indicated that the addition of TBT was conducive to the formation of different
Ti containing compounds in the char, which is helpful to improve flame retardancy of
VE composites.

3.5.2. Pyrolysis Behaviors of the VE Composites

Figure 12 shows the 3D TG-FTIR and FTIR spectra of the gas phase at different
temperatures of pyrolysis of VE-0 and VE-2. As shown in Figure 12a,b, the pyrolysis
products of VE-0 and VE-2 are obviously different. The evolved gas components of VE-0
and VE-2 in air at 322, 421 and 560 ◦C are shown in Figure 12c,d. With the increase of
pyrolysis temperature, the number of absorption peaks first increased then decreased.
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From the evolved gas at 421 ◦C for VE-2, the bands of -OH and phenol (3900–3500 cm−1),
aromatic components (3030, 1503 cm−1), hydrocarbons (2940 cm−1), CO2 (2376 cm−1),
and ether components (1768, 1128 cm−1) were identified, which was similar to those
of pure VE [71–73]. In addition, new absorption peaks of P(O)-OH (831 cm−1), P=O
(1265 cm−1), PO2 (1175 cm−1), and PO-H (3652 cm−1) were assigned the phosphorus-
containing compounds [74], indicating that DOPO-POSS exerted flame retardant effect in
gas phase.
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pyrolysis.

To further explore the flame retardant mechanism of VE composites in gas phase, Py-
GC/MS was adopted at the pyrolysis temperature of 900 °C. Figures 13 and 14 showed the
total ion chromatogram (TIC) and the typical MS spectra of the DOPO-POSS, VE-0, VE-2,
and VE-2-2, and the possible structural assignments of the VE-2 are listed in Table 7. It can
be seen that the main pyrolysis products of VE-2 are (E)-2-methyl-3-phenylacrylaldehyde
(m/z = 146), (2-methylprop-1-en-1-yl) benzene (m/z = 132), (E)-prop-1-en-1-ylbenzene
(m/z = 118), styrene (m/z = 104), toluene (m/z = 92), benzene (m/z = 78), cyclopenta-
1,3-diene (m/z = 66), cyclobuta-1,3-diene (m/z = 52), and the m/z of fragments at 134,
119, 91, 77, 63 were ascribed to PO2· and HPO2·free radicals [75,76], which indicated that
phosphorus-containing fragments were released into the gas phase during pyrolysis.

To sum up, the mechanism of flame retardancy was as follows: the radical quenching
effect of phosphorus in the gas phase; the stable SiO2 ceramic phase formed by Si and
the synergistic effect between phosphorus and Ti accelerated the formation of residue
char, which had the characteristic of honeycomb cavity in the interior layers and compact
exterior layers, preventing the heat flow and transfer to improve the flame retardancy of
the composites.
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Table 7. Possible structural assignments of VE-2.
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4. Conclusions

In this work, a ladder and cage structured phosphorus-containing polyhedral oligomeric
silsesquioxanes (DOPO-POSS) was synthesized and characterized. The unique cage and
ladder structure of DOPO-POSS facilitated its good solubility in the VE composites. DOPO-
POSS and TBT was used as flame retardant additives to improve the flame retardancy
of cured vinyl epoxy resin. Under the nitrogen atmosphere, T5% increased from 321.2 to
353.3 ◦C and char residue increased from 7.07 to 14.38% compared to pure VE. With the
incorporation 4 wt% DOPO-POSS and 0.5 wt% TBT, the LOI value of the VE composites
increased from 19.5 to 24.2, and the PHRR, THR, SPR, and TSP were reduced by 57.1%,
26.9%, 18.1%, and 13.7%, respectively. In addition, the VE composites showed comparable
mechanical properties to that of the pure VE. The flame retardant mechanism was mainly
due to the radical quenching effect of phosphorus, the formation of stable SiO2 ceramic
phase, the catalytic char generation of Ti and the char forming of phosphorus. All the
results indicated that DOPO-POSS and TBT combination have great potential applications
in the future.
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