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Abstract: Friction stir welding (FSW) and friction stir spot welding (FSSW) techniques are becoming
widely popular joining techniques because of their increasing potential applications in automotive,
aerospace, and other structural industries. These techniques have not only successfully joined similar
and dissimilar metal and polymer parts but have also successfully developed polymer-metallic
hybrid joints. This study classifies the literature available on the FSW and FSSW of thermoplastic
polymers and polymer composites on the basis of joining materials (similar or dissimilar), joint
configurations, tooling conditions, medium conditions, and study types. It provides a state-of-
the-art and detailed review of the experimental studies available on the FSW and FSSW between
similar thermoplastics. The mechanical properties of FSW (butt- and lap-joint configurations) and
FSSW weld joints depend on various factors. These factors include the welding process parameters
(tool rotational speed, tool traverse speed, tool tilt angle, etc.), base material, tool geometry (pin
and shoulder size, pin profile, etc.) and tool material, and medium conditions (submerged, non-
submerged, heat-assisted tooling, cooling-assisted tooling). Because of the dependence on many
factors, it is difficult to optimize the welding conditions to obtain a high-quality weld joint with
superior mechanical properties. The general guidelines are established by reviewing the available
literature. These guidelines, if followed, will help to achieve high-quality weld joints with least
defects and superior mechanical properties. Apart from parametric-based studies, the statistical-
based studies (e.g., analysis of variance (ANOVA)-based studies) are covered, which helps with the
determination of the influential parameters that affect the FSW and FSSW weld joint strength. Also,
the optimal ranges of the most influential process parameters for different thermoplastic materials
are established. The current work on the development of general guidelines and determination of
influential parameters and their operating ranges from published literature can help with designing
smart future experimental studies for obtaining the global optimum welding conditions. The gaps in
the available literature and recommendations for future studies are also discussed.

Keywords: friction stir welding; friction stir spot welding; polymers; polymer composites; re-
view; thermoplastics
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1. Introduction

Thermoplastics and their composites are becoming popular due to their high stiffness
and strength-to-weight ratio. They have many industrial applications, like in automotive
industries [1], to reduce the overall weight of the automobiles, in order to reduce their
carbon footprint. These materials provide good insulating properties and are highly
chemical resistant, and by the virtue of these qualities they are gaining popularity in piping
and tank construction industries. There are many types of thermoplastic polymers available,
and polyethylene is the most used one [2]. The widespread use of thermoplastics and their
composites for industrial applications would require the fabrication of large thermoplastic-
based components, which is not a feasible option. The extensive use of the thermoplastic
structure demands its investigation for several types of joints: butt-, lap-, t-joint, etc.
Several techniques are being explored for joining components made of thermoplastics and
their composites, to create engineering structures [3]. These techniques include, but are
not limited to, fusion welding, friction welding, vibration welding, adhesive joining, etc.
However, among all these techniques, friction stir welding has a huge potential because of
its low-cost equipment, low energy usage, better weld-strength joints, and in automation
of the process for mass manufacturing [4].

Friction stir welding (FSW), a comparatively new joining technique, was patented
by The Welding Institute (TWI) in 1991 [5]. In this technique, the components are joined
with the help of the frictional heat formed amongst a rapidly rotating tool and the joining
workpieces, as shown in Figure 1. Although first developed for Al-based alloys [6], the
technique has been successfully used to join other metals (Cu [7], Ti [8]) and alloys (Mg
alloys [9], steel alloys [10]). Recently, its application has been extended to thermoplastic
polymers and thermoplastic-based polymer composites [11]. The friction stir welding
technique for polymers was patented in 2004 by Nelson et al. [12]. The friction stir spot
welding (FSSW), a variant of the FSW technique, was developed in 2001 to replace the
existing spot-welding technologies like resistance spot welding used for joining aluminum
sheets in automotive industries [13]. This techniques has been successfully applied to
different metallic materials (Al [14], Al alloys [15], Mg alloys [16,17], steels alloys [18,19])
and to thermoplastic materials (polypropylene [20], polycarbonate [21]).

Figure 1. A schematic of the fundamental working process of the friction stir welding (FSW).

Several review articles, overview articles, and book chapters have been written on
the FSW of thermoplastic polymers and polymer composites, and their research high-
lights are summarized in Table 1. Several thermoplastic materials (PETG [22], ABS [23],
PE [24–26], PA6 [27], PC [28], PP [29,30]) and their composites [31–33] have been studied.
The feasibility of the FSW and FSSW techniques for thermoplastic materials have been
assessed in comparison to other joining methods by several earlier studies. Strand [34] has
made an early comparison of the capability of FSW of polymers with other established
polymer joining techniques. The few simple processing steps, no part preparation, less
processing time, no consumable materials, and low-cost machine and tools, capability of
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both continuous and discrete welding, and high repeatability of producing joints with
high efficiencies make FSW a very able competitor of the already established techniques.
Oliveira et al. [35] have studied the preliminary feasibility of FSSW for thermoplastics.
Using PMMA (polymethyl-methacrylate) sheets, and they have shown that the FSSW
technique is comparable (in strength and total joining time) to other processing techniques
like microwave welding, thermal bonding, and ultrasonic welding.

Table 1. Research highlights of review articles and book chapters from the literature.

Reference. Year Article Type Research Highlights

Pawar and
Shete [36] 2013 Review

An early short review on FSW of Al and PE sheets, mostly using Taguchi and
response surface methods-based investigations for optimization of welding

process parameters.

Gao et al. [37] 2017 Review
A general review on friction stir welding and processing (weld tool, parameter

optimization) of thermoplastic materials, and dissimilar FSW to form
thermoplastic-metallic hybrid welds.

Eslami et al. [38] 2017 Review A review on the different types of conventional and specialized welding tools
for FSW and FSSW of thermoplastic materials.

Huang et al. [39] 2018 Review

A general review on FSW (parameters, tooling and medium conditions,
thermo-mechanical behavior, defects) and processing (tooling and medium

conditions) for thermoplastic materials, and dissimilar FSW to form
thermoplastic-metallic hybrid welds.

Kumar et al. [40] 2018 Review

A general review (material compatibility, tool design, process parameters,
material and heat distribution models, numerical modeling) related to the

weldability and process capability of FSW of similar and
dissimilar thermoplastics.

Haghshenas and
Khodabakhshi [41] 2019 Review A review on the FSW of aluminum-polymeric hybrid welds.

Mishra et al. [42] 2019 Book Chapter A book chapter on polymers and joining of polymers using FSW and
other techniques.

Singh et al. [43] 2020 Book Chapter A book chapter on the FSW of three-dimensional (3D)-printed thermoplastics.

Zafar et al. [44] 2017 Overview An overview on FSW of polymers.

Iftikhar et al. [45] 2020 Overview An overview on FSW of HDPE.

Apart from FSW and FSSW, new variants of these techniques have also been developed
for joining thermoplastic materials. The friction stir processing (FSP) technique is used
for welding and processing of thermoplastics by reinforcing the weld zone (processing
zone) with particulates to develop composite weld joints [46,47], which helps to improve
mechanical properties [48,49]. The friction spot welding (FSpW) technique has also been
successfully used to join thermoplastic sheets [50]. Unlike FSSW, the FSpW technique does
not generate the keyhole at the weld joint, and improves the joint strength by reducing the
notch stress concentration effects [51,52]. Friction spot joining (FSpJ), a new variant of the
FSpW, has the potential to develop thermoplastic-metallic hybrid welds [52].

According to the best of the authors’ knowledge, there is no detailed review article
available in the published literature on the determination and optimization of the welding
conditions for maximizing joint strength of FSW and FSSW of similar thermoplastic mate-
rials. The present study covers the literature on the experimental investigations of FSW
and FSSW of similar thermoplastic sheets and pipes. A detailed comparison of the process
parameters, tooling conditions, and medium conditions from the available studies has been
presented for optimizing the welding conditions. As a result, general guidelines are devel-
oped, most significant parameters are determined, and narrow optimal operating ranges
of the significant process parameters are established, which will help with developing
superior quality and strength thermoplastic weld joints using FSW and FSSW techniques.
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2. Classification of the Available Literature

The literature available on the FSW and FSSW of thermoplastic materials is vast and
can be divided into several classes, as shown in Figure 2. The available studies can be
categorized into the process optimization studies, phenomenological studies (mater flow,
morphology, process simulation), and tool design studies. Most of the studies available are
focused on welding of sheet materials, however, some studies have also been dedicated
to pipes [53,54]. Both butt-joint and lap-joint configurations have been studied. Most of
the studies are based on the welding of the thermoplastics processed using conventional
techniques [55], however, some of them have also investigated three-dimensional (3D)-
printed thermoplastics [56].

Figure 2. Classification of available literature.

Many studies have analyzed the effects of process parameters, tooling (material and
geometry), and medium conditions on the weld strength and quality. However, few of
the studies have investigated the CFD (Computational Fluid Dynamics) modeling [57]
and flow analysis [58] of the molten polymer flow behavior and weld morphology analy-
sis [59], while several other studies have worked on the design and development of new
tool technologies [60,61]. They include consumable tool technology for FSW [62,63] and
FSSW [64]. Some of these studies have developed new measurement devices like the
two-force extended octagonal ring dynamometer [65] and multi-axis force measurement
dynamometer [66]. A few of these studies have designed the specialized platforms like
robotic platforms [67] for effective FSW and FSSW of thermoplastic materials.

Many studies have investigated the welding of similar thermoplastic materials. How-
ever, there are several studies available which have investigated the FSW and FSSW
techniques, and other variants of these techniques, for joining dissimilar materials. Some
studies have investigated the welding between dissimilar thermoplastic materials. They
include FSW of PE-PP [68], ABS-PC (non-submerged) [69], ABS-PC (submerged) [70],
and HMWPE-PP [71,72]. Other similar studies include FSW of recycled HDPE-10Fe and
LDPE-10Fe [73], FSW of HDPE through reinforcement of PP strips [74], and FSSW of
PMMA-ABS [75]. Few of the studies have reinforced the weld joint between dissimilar
thermoplastic materials with different particulates to improve mechanical properties [76].
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They include FSW of PP-ABS sheets with copper nanopowder [77], and HDPE-ABS sheets
with multiwalled carbon nanotubes [78,79]. Also, there are studies available on the de-
velopment of thermoplastic-metallic hybrid welds. They include thermoplastic-metallic
hybrid welds like PMMA-Cu [80], PP-Mg [81], PMMA-AA5058 Al alloy [82], PP-AA5052
Al alloy [83], and PET-A5052 Al alloy [84]. Other related studies include thermoplastic
composite-metallic hybrid welds like CF-PPS/AA6181 Al alloy [85,86], CF-PPS/AA2024
Al alloy [87,88], and CF-PPS and GF-PPS/AZ31 Mg alloys [89]. There is a huge possibility
of FSW on recycled composites [90,91].

This study will focus only on the review of the process optimization of the FSW and
FSSW between similar thermoplastic polymers and polymer composites. The effect of
different process parameters, tooling, and medium conditions on the weld joint mechanical
properties will be covered in detail.

3. FSW Parametric Studies

Many studies are available on continuous and spot-welding forms of FSW. Both butt
and lap configurations have been studied for continuous FSW. The FSSW is like resistance
spot welding, which is a very widely used welding technique in the automotive industry
and has many other promising applications. Most of the studies have optimized the
welding conditions for maximizing the weld strength, as the structural components often
fail at the weld joint.

3.1. Butt-Joint Configuration

The quality and strength of the butt-joint configuration weldments are assessed using
joint tensile strength. Because of the large number of studies available on the butt-joint
FSW, it is further categorized into three parts. First, we will investigate the studies which
only consider the FSW process parameters. Then, we will study the combined effects of
process parameters and tool geometry (pin profile and size). Finally, we will study the
effects of external heat assistance along with process parameters and tooling conditions on
the weld joint strength.

There are several studies available that have performed the butt-joint FSW of ther-
moplastic polymer and polymer composite sheets using a plain cylindrical pin profile
tool. These studies help to only examine the parametric effects on the weld strength. Sev-
eral thermoplastic sheets have been investigated, and their operating ranges and optimal
values of the process parameters are summarized in Table 2. Apart from the single-side
(single pass) butt-joint FSW studies, there are few studies available that have investigated
the effects of double-side (double pass) butt-joint FSW on joint strength of thermoplastic
polymers using the plain cylindrical pin profile tool. Arici and coworkers [92,93] have
studied MDPE sheets. They have reported that the double-side FSW eliminates root defect,
which has an important role in the initiation of joint failure [92]. Saeedy and Givi [94] have
studied HDPE sheets. They have shown that the percent elongation, tensile strength, and
impact strength are higher for double-side FSW compared to the single-side FSW. These
studies suggest that it is beneficial to weld on both sides as it eliminates root defect and
improves weld joint mechanical properties.



Polymers 2021, 13, 1208 6 of 31

Table 2. Butt-joint friction stir welding of thermoplastic polymers and polymer composites using the cylindrical pin profile tool.

Reference Year Material Passes Range Conclusions/Optimum Conditions

Saeedy and Givi [95] 2010 MDPE Single RS = 1400–2000 rpm, TA = 1–2◦, TS = 15 mm/min RS = 1600 rpm, TA = 1◦, TS = 15 mm/min for maximum tensile strength and
% elongation

Saeedy and Givi [96] 2011 MDPE Single RS = 1000–1800 rpm, TS = 12–20 mm/min, TA = 1–2◦ RS = 1400 rpm, TS = 12 mm/min, TA = 1◦ for highest tensile strength

Saeedy and Givi [97] 2011 HDPE Single RS = 1000–1600 rpm, TA = 1–3◦, TS = 15 mm/min Tensile strength is maximum at RS = 1400 rpm, while it decreases with increasing
TA. Increasing RS or TA decreases % elongation

Bozkurt [1] 2012 HDPE Single RS = 1500–3000 rpm, TS = 45–115 mm/min, TA = 1–3◦ RS = 3000 rpm, TS = 115 mm/min, TA = 3◦ for maximum tensile strength

Abdel-Gwad et al. [98] 2015 HDPE Single RS = 580–1800 rpm, TS = 14–48 mm/min, TA = 1◦ RS = 930 rpm, TS = 25 mm/min, TA = 1◦ for maximum tensile strength, impact
strength, and fatigue life

Husain et al. [99] 2015 PA66 Single RS = 780–2000 rpm, TS = 27–62 mm/min RS = 1570 rpm, TS = 42 for maximum tensile and impact strengths

Bilici et al. [100] 2017 HDPE Single PD = 4–6 mm, SD = 20–30 mm, RS = 600–1500 rpm,
TS = 30–60 mm/min, TA = 1◦, SA = 6◦

RS = 900 rpm, TS = 45 mm/min, PD = 5 mm, SD = 25 mm, TA = 1◦, SA = 6◦ for
maximum tensile strength

Raouache et al. [101] 2018 HDPE Single RS = 500–2000 rpm, TS = 20–63 mm/min RS = 710 rpm and TS = 20 mm/min, and RS = 1000 rpm and TS = 40 mm/min for
maximum tensile strength

Sheikh-Ahmad
et al. [102,103] 2018, 2019

HDPE-carbon
black (2.3

wt.%)
Single RS = 800–1200 rpm, TS = 20–40 mm/min,

PlD = 4.1–4.2 mm
Plunge depth significantly affects tensile strength, strength increases significantly

by increasing plunge depth

Kumar et al. [104] 2019 Glass-filled
PA6 (30 wt.%) Single RS = 400–600 rpm, TS = 0.2–0.4 mm/s, TA = 0–2◦,

StD = 0.2 mm
RS = 600 rpm, TS = 0.2 mm/s, TA = 2◦ for maximum tensile strength and

% elongation

Mishra et al. [42] 2019 HDPE Single RS = 500–800 rpm, TS = 10–30 mm/min, TA = 1◦,
PlD = 0.1 mm

RS = 800 rpm, TS = 10 mm/min, TA = 1◦, PlD = 0.1 mm for maximum
tensile strength

Singh et al. [43] 2020 ABS (3D
Printed) Single RS = 900–1100 rpm, TS = 5–9 mm/min,

PlD = 1.5–2.5 mm RS = 1100 rpm, TS = 9 mm/min, PlD = 2 mm for maximum tensile strength

Arici and Sinmaz [92] 2005 MDPE Double RS = 600–1000 rpm, TS = 12.5–60 mm/min, TA = 0–1◦
RS = 1000 rpm, TS = 12.5 mm/min, TA = 1◦ for maximum tensile strength
(RS = 1000 rpm, TS = 25 mm/min, TA = 1◦ for overall tensile and bending

properties)

Arici and Selale [93] 2007 MDPE Double TA = 0–5◦, TS = 12.5–40 mm/min, RS = 1000 mm/min TA = 1◦, TS = 12.5 mm/min, RS = 1000 mm/min for maximum tensile strength

Saeedy and Givi [94] 2010 HDPE Double RS = 1200–1600 rpm, TS = 12 mm/min, TA = 1◦ RS = 1400 rpm, TS = 12 mm/min, TA = 1◦ for maximum tensile strength and
% elongation

PD = Pin Diameter, PlD = Plunge Depth, RS = Rotational Speed, SA = Shoulder Angle, SD = Shoulder Diameter, StD = Standoff Distance, TA = Tilt Angle, TS = Traverse Speed. HDPE = High-Density Polyethylene,
MDPE = Medium-Density Polyethylene, PA = Polyamide (Nylon).
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Many studies have also investigated the effects of pin profiles, along with processing
parameters, on the joint mechanical properties of FSW of thermoplastic materials. The
geometric profile of the tool pin is changed from plain cylindrical profile to further im-
prove its overall mixing ability of the molten polymer material. Several thermoplastic
sheets have been investigated using threaded cylindrical pin tools, which include HDPE
(non-stationary [105,106] and stationary [107] shoulder tool), polyamide-6 [108], and poly-
carbonate [109]. Panneerselvam and Lenin [110] have studied the FSW of nylon-6 sheets
using a left-handed threaded pin tool. They have shown that anticlockwise rotation pro-
vides better tensile strength, Shore-D hardness, Izod strength, and Charpy strength than the
clockwise rotation of tool. They have suggested that a better joint with superior properties
and less defects is achieved when the thread flute and pin rotation are not in the same
directions, so, for a right-hand threaded pin with clockwise rotation or a left-hand threaded
pin with anticlockwise rotation. Inaniwa et al. [111] have studied HDPE, polyamide-6, and
polyvinyl chloride. They have shown that the joint strength of the materials increases with
decreasing revolution pitch (revolution pitch = traverse speed/rotational speed), and that
the suitable value of the revolution pitch increases with low melt viscosity materials. The
suitable revolution pitch values are in the order PVC < HDPE < PA6, and the maximum
joint strength efficiency was achieved for HDPE (70%), followed by PVC (45%) and PA6
(35%). Few of the studies have used other pin profile tools like frustum pin [112], tapered
cylindrical pin [113], threaded conical pin [114], and milling tool with grooves [115].

Some of the studies have compared the joint strength obtained through cylindrical
pin tools with other pin profile tools. Kaddour et al. [116] have studied HDPE sheets, and
have shown that the cylindrical pin tool provides maximum tensile strength compared to
the conical pin tool. Hoseinlaghab et al. [2] have also studied HDPE sheets, suggesting that
the cylindrical pin achieved maximum creep-resistant welds (even more compared to the
parent material) compared to the conical pin. Sadeghian and Givi [117] have studied ABS
sheets, showing that the maximum tensile strength is achieved using the conical rather
than the cylindrical pin tool. The two studies on HDPE suggest that the cylindrical pin is
better than conical, while the study on ABS sheets suggests that the conical pin provides
better results. Although, the reason behind the differing results could be the difference in
properties of the base materials, like melt viscosity. However, the cylindrical pin has larger
contact surface area with the molten polymer material than the conical pin, due to which it
has improved mixing ability. This might be the reason behind the better performance of a
cylindrical pin in comparison to a conical pin. Sahu et al. [118] have studied polypropylene
sheets, and have shown that the square pin tool provides the maximum tensile strength
compared to the cylindrical pin tool. This again might be because of its better mixing
ability as the square edges are able to push more molten material than the plain cylindrical
shape. Similarly, Pirizadeh et al. [119] have studied ABS sheets using a two-shoulder
rotation-prevented tool (also called self-reacting tool; upper and bottom shoulders with
a gap of about one-sheet thickness), with cylindrical and convex pin profiles. They have
suggested that the new tool design eliminates root defects, and that the convex pin profile
provides maximum tensile strength.

Few studies have investigated a larger set of varying pin profiles to study the ef-
fects of pin shape on joint strength in further detail. Payganeh et al. [120] have studied
polypropylene-glass fiber (30 wt.%) sheets using triangular, threaded triangular, tapered
with groove, and cylindrical with groove pin profile tools, suggesting that the tapered pin
with groove profile provides the maximum tensile strength. Kordestani et al. [121] have
studied polypropylene-carbon fiber (30 wt.%) and polypropylene-glass fiber (30 wt.%)
sheets using square, threaded-tapered, threaded-tapered with a chamfer, and four-flute
threaded pin profile tools, reporting that the maximum joint tensile and Izod impact
strengths are provided by threaded-tapered pin with a chamfer. The above discussion
narrows the best pin profiles for achieving maximum joint strength to square pin, convex
pin, tapered pin with groove, and threaded-tapered pin with a chamfer. These four pin
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profiles need to be further studied together in detail to provide the best pin profile to
achieve maximum weld joint strength.

Some of the studies have used special shoulder design tools, like double-step shoul-
der [122] and two-shoulder [123] tools, with threaded cylindrical pins. Romero et al. [124]
have used a stationary shoulder tool (threaded cylindrical pin) and a conventional tool
(threaded conical pin) for HDPE sheets. It has been reported that better quality welds
with a lower number of visual defects are obtained using the stationary shoulder tool than
with the conventional tool under similar operating conditions. Zafar et al. [125,126] have
studied polyamide-6 sheets using a double shoulder tool with threaded pins. They have
designed the double shoulder tool to control the molten nylon-6 flow as it has low viscosity.
Through visual inspection and microscopic analysis of the weld zone, they have suggested
that 300 rpm (low speed) rotational speed provides a defect-free weld joint.

The operating ranges and optimal values of the process parameters of all the above
studies are summarized in Table 3.

Table 3. Butt-joint FSW of thermoplastic polymer and polymer composite sheets with varying pin profiles.

Reference Year Material Tool Type Range Optimum Conditions

Kiss and
Czigány [115] 2007 PP

Two milling tools with
8 grooves at slopes of

15◦ and 45◦
RS = 450–1800 rpm,

TS = 20–63 mm/min

RS = 1800 rpm, TS = 20 mm/min,
and 45◦ groove slope tool for

maximum tensile strength. Weld
seam shows lower ductility as

compared to base material

Rezgui et al. [105] 2010 HDPE Threaded
cylindrical pin

RS = 900–1700 rpm,
TS = 16–44 mm/min,

HT = 9–20 s, PS = M10–M14

RS = 910 rpm, TS = 29 mm/min,
HT = 9 s, PS = M12 for maximum

flow stress; RS = 1700 rpm,
TS = 44 mm/min, HT = 15 s,

PS = M12 for maximum yield stress

Payganeh
et al. [120] 2011 PP-GF30

Pin = triangular,
threaded triangular,
tapered with groove,

cylindrical with groove

RS = 500 rpm,
TS = 12 mm/min, TA = 1◦

Tapered pin with groove provides
maximum tensile strength

Rezgui et al. [106] 2011 HDPE Threaded pin
RS = 653–1700 rpm,

TS = 16–44 mm/min,
TPS = 377–528 mm2

Effect of RS is insignificant for
longitudinal flow stress.

TS = 24 mm/min, TPS = 401 mm2

for maximum longitudinal
flow stress

Inaniwa et al. [111] 2013 HDPE, PA6,
PVC

Right-hand threaded
pin with

anticlockwise rotation

RS = 800–1240 rpm,
TS = 15–45 mm/min for

HDPE; RS = 380–500 rpm,
TS = 40–50 mm/min for PA6;

RS = 1600–1800 rpm,
TS = 10–30 mm/min for PVC;

PlD = 4.7 mm

Optimal conditions for maximum
joint strength of HDPE

(RS = 1240 rpm, TS = 15 mm/min),
PA6 (RS = 440 rpm,

TS = 40 mm/min), PVC
(RS = 1800 rpm, TS = 10 mm/min)

Panneerselvam and
Lenin [110] 2014 PA6 Left-handed

threaded pin
RS = 1000 rpm,

TS = 10 mm/min

Anticlockwise rotation provides
better tensile strength, Shore–D

hardness, Izod strength, and
Charpy strength than clockwise

rotation of tool

Pirizadeh
et al. [119] 2014 ABS

Two-shoulder
rotation-prevented tool
(self-reacting tool); Pin

= simple and
convex form

RS = 400–800 rpm, TS = 20–60
mm/min

RS = 400 rpm, TS = 40 mm/min,
Pin = convex for maximum

tensile strength

Shazly et al. [109] 2014 PC Threaded pin RS = 1000–1850 rpm, TS =
20–40 mm/min, TA = 1–3◦

RS = 1220 rpm, TS = 40 mm/min,
TA = 1◦ for maximum

tensile strength
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Table 3. Cont.

Reference Year Material Tool Type Range Optimum Conditions

Hoseinlaghab
et al. [2] 2015 HDPE Pin = cylindrical,

conical

SD = 10–20 mm, SL = 20 mm,
PD = 5–8 mm, PL = 5–7 mm,

RS = 900–1400 rpm,
TS = 12.5–31.5 mm/min,

TA = 0–2◦

Cylindrical pin achieved maximum
creep-resistant welds even more

compared to parent material
(SD = 20 mm, SL = 20 mm,

PD = 6 mm, PL = 7 mm) with
RS = 1120 rpm, TS = 31.5 mm/min,

TA = 0◦

Sadeghian and
Givi [117] 2015 ABS Pin = cylindrical

and conical

RS = 900–1800 rpm,
TS = 6–25 mm/min,

TA = 0–2◦, SD = 10–20 mm,
PD = 5–8 mm

Pin = conical, TA = 2◦,
RS = 900 rpm, DR = 20/6,

TS = 25 mm/min for maximum
tensile strength

Zafar et al.
[125,126]

2015,
2016 PA6 Double shoulder tool

with threaded pin
RS = 300–1000 rpm,

TS = 25 mm/min, DT = 15 s

Double shoulder tool is designed to
control molten Nylon–6 flow as it

has low viscosity. Visual inspection
and microscopic analysis of weld
zone suggests that 300 rpm (low

speeds) rotational speed provides
defect-free weld joint

Zafar et al. [108] 2016 PA6 Threaded pin
RS = 300–1000 rpm,

TA = 0–3◦, DT = 15 s,
TS = 25 mm/min

RS = 300 rpm, TA = 0◦, DT = 15 s,
TS = 25 mm/min for maximum

tensile strength

Kordestani
et al. [121] 2017 PP-CF30,

PP-GF30

Pin = square,
threaded-tapered,

threaded-tapered with
a chamfer, four-flute

threaded

RS = 2000 rpm,
TS = 8 mm/min, TA = 5◦

Maximum joint tensile and Izod
impact strengths are provided by

threaded-tapered pin with
a chamfer

Adibeig et al. [122] 2018 PMMA Double-step shoulder
tool with threaded pin

RS = 250–500 rpm,
TS = 16–20 mm/min,
PlD = 3–3.5 mm/min

RS = 250 rpm, TS = 16 mm/min,
PlD = 3.5 mm for maximum

tensile strength

Derazkola and
Simchi [112] 2018 PMMA Frustum pin

RS = 1250–1600 rpm,
TS = 25–50 mm/min, PlD =

0.2–0.4, TA = 0–4◦

RS = 1600 rpm, TS = 25 mm/min,
TA = 2◦, PlD = 0.2 mm for
maximum tensile strength

Moreno-Moreno
et al. [107] 2018 HDPE

Stationary shoulder
tool with threaded

cylindrical pin

RS = 846–1036 rpm, TS =
14–25 mm/min, TA = 0◦

RS = 1036 rpm, TS = 14 mm/min,
TA = 0◦ for maximum

tensile strength

Sahu et al. [118] 2018 PP Pin = square and
cylindrical

RS = 500–1000 rpm,
TS = 5–25 mm/min, TA = 1◦

Pin = square, RS = 750 rpm,
TS = 15 mm/min, TA = 1◦ for

maximum tensile strength

Kaddour
et al. [116] 2019 HDPE Pin = cylindrical,

conical
RS = 720–1750 rpm,

TS = 24–40 mm/min

Cylindrical pin, RS = 875 rpm,
TS = 24 mm/min for maximum

tensile strength

Nandhini
et al. [113] 2019 PA6,6 Tapered cylindrical pin

RS = 1100–1500 rpm,
TS = 10–20 mm/min,

TA = 0–2◦

RS = 1300 rpm, TS = 15 mm/min,
TA = 2◦ for maximum

tensile strength

Vakili-Tahami
et al. [123] 2019 PMMA Two-shoulder tool with

threaded pin
RS = 250–500 rpm, TS = 16–20

mm/min, PlD = 3–3.5 mm

RS = 250 rpm, TS = 16 mm/min,
PlD = 3.5 mm for maximum tensile

strength and creep strength

Meyer et al. [114] 2019 PA6-GF30
Stationary shoulder
tool with a threaded

conical pin

SD = 20–24 mm, TA = 1–2◦,
AF = 1500–2000 N,

TS = 10–40 mm/min,
RS = 2000 rpm

SD = 20 mm, RS = 2000 rpm,
TA = 2◦, AF = 2000 N,

TS = 25 mm/min for maximum
tensile strength

Mosavvar
et al. [127] 2019 HDPE pipes Threaded

cylindrical pin

RS = 1500–2500 rpm,
TS = 110–150 mm/min,

TO = 2.5–4.5 mm

RS = 2500 rpm, TS = 110 mm/min,
TO = 3.5 mm for maximum

yield strength

AF = Axial Force, DR = Diameters Ratio, DT = Dwell Time, HT = Hold Time, PD = Pin Diameter, PL = Pin Length, PlD = Plunge
Depth, PS = Pin Size, RP = Revolution Pitch, RS = Rotational Speed, SD = Shoulder Diameter, SL = Shoulder Length, TA = Tilt An-
gle, TS = Traverse Speed, TPS = Tool Plunged Surface, TO = Tool Offset. ABS = Acrylonitrile Butadiene Styrene, CF = Carbon Fiber,
GF = Glass Fiber, HDPE = High-Density Polyethylene, PA = Polyamide (Nylon), PC = Polycarbonate, PMMA = Polymethyl Methacrylate,
PP = Polypropylene, PVC = Polyvinyl Chloride.
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Several studies have investigated the external heat-assisted tooling effects on the
strength of the weld joint. Bagheri et al. [128] have studied ABS sheets using the fixed
heated shoe tool with threaded pin. Moochani et al. [129] have studied polypropylene
sheets using a heat-assisted stationary shoulder tool. Aydin [130] has studied pre-heated
UHMWPE sheets using the threaded pin tool, and has shown that the joint tensile strength
is improved with pre-heated sheets (89% efficiency) compared to non-preheated sheets
(72% efficiency). Banjare et al. [131] have studied for polypropylene sheets using a heat-
assisted tool with threaded cylindrical pin, and have suggested that the heat-assisted
tooling provides better joint mechanical properties (tensile strength, elongation) compared
to non-heated tooling conditions. Laieghi et al. [132] have studied Polyamide 6/Nitrile
butadiene rubber (20 wt.%)–halloysite nantotubes nanocomposite sheets using a heat-
assisted tool with stationary PTFE-coated shoulder and threaded pin. They have shown
that the heat-assisted tool provides better weld quality and reduces defects and improves
mechanical strength.

Some of the studies have suggested that the PTFE-coated tool shoulder further im-
proves the weld joint mechanical properties [133–135]. Azarsa and coworkers [11,136]
have studied HDPE sheets using a threaded pin tool with heat-assisted and PTFE-coated
stationary shoulder. The weld defects and residual stress concentration are reduced and the
surface quality and mechanical properties of the weld joint are improved by using the PTFE-
coated tool shoulder because of the reduction in sticking of the polymer melt [136,137].
Mostafapour and Asad [138] have studied nylon-6 sheets using a heat-assisted tool with
stationary PTFE-coated shoe, and have also suggested that PTFE coating improves the
surface quality of the weld joint. Christy et al. [133] have also concluded that use of PTFE
coatings improved the surface quality.

Some of the studies have considered other special tooling conditions. Mendes et al. [139]
have studied robotic FSW for ABS sheets using a heat-assisted tool with stationary shoulder
and conical threaded pin. Vijendra and Sharma [140] have studied HDPE sheets using
an induction heat-assisted tool with taper-threaded pin, and have suggested that the
heat-assisted welding melts and stirs the thermoplastic material easily. Nath et al. [141]
have studied polypropylene sheets using a self-heated tool with threaded cylindrical pin,
and have reported that the self-heated tool provides higher tensile strength and percent
elongation of weld joints than with conventional tooling.

One of the studies investigated the weld nugget cooling effects on the joint mechanical
properties. Nateghi and Hosseinzadeh [142] have investigated the effects of external
cooling of the weld nugget using carbon-dioxide gas for HDPE sheets with a threaded
pin tool. The joint mechanical properties improve (tensile strength increases, angular
distortion decreases) with increasing the cooling pressure, which happens due to a drop
in the thermal residual stresses. The operating ranges and optimal values of the process
parameters of all the above studies are summarized in Table 4.
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Table 4. Heat-assisted butt-joint friction stir welding of thermoplastic polymers and polymer composites.

Reference Year Material Tool Type Range Optimum Conditions

Aydin [130] 2010 UHMWPE Pre-heated sheets, threaded pin RS = 960–1960 rpm, TS = 10–20 mm/min,
StT = room temp–80 ◦C

RS = 960 rpm, TS = 20 mm/min, StT = 50 ◦C for
maximum tensile strength

Azarsa et al. [136] 2012 HDPE Heat-assisted PTFE-coated stationary shoulder tool
with threaded pin

RS = 1000–1600 rpm, ShT = 80–140 ◦C,
TS = 10–40 mm/min

Coating reduces sticking of polymer melt. Weld defects
and residual stress concentration are reduced, and joint

strength is improved

Mostafapour and
Azarsa [137] 2012 HDPE Heat-assisted PTFE-coated stationary shoulder tool

with threaded pin
RS = 1000–1600 rpm, TS = 10–40 mm/min,

TT = 80–140 ◦C
RS = 1600 rpm, TS = 25 mm/min, TT = 140 ◦C for

maximum tensile strength

Bagheri et al. [128] 2013 ABS Fixed heated shoe tool with threaded pin RS = 800–1600 rpm, TS = 20–80 mm/min,
TT = 50–100 ◦C

RS = 1600 rpm, TS = 20 mm/min, TT = 100 ◦C for
maximum tensile strength

Azarsa and
Mostafapour [11] 2014 HDPE Heat-assisted PTFE-coated stationary shoulder tool

with threaded pin
RS = 710–1400 rpm, TS = 25–100 mm/min,

TT = 70–150 ◦C
TS = 25 mm/min, RS = 1400 rpm, TT = 100 ◦C for

maximum flexural strength

Mendes et al. [139] 2014 ABS Robotic, heat-assisted tool with stationary shoulder,
conical threaded pin

RS = 1000–1500 rpm, TS = 50–200 mm/min,
AF = 1–2 kN, TT = 115 ◦C

RS = 1500 rpm, TS = 200 mm/min, AF = 2 kN for
maximum tensile strength; RS = 1500 rpm,

TS = 100 mm/min, AF = 1.5 kN for best strain

Vijendra and
Sharma [140] 2015 HDPE Induction-heat assisted tool with taper-threaded pin RS = 1000–3000 rpm, TT = Room Temp.—55,

TS = 50 mm/min
RS = 2000 rpm, TT = 45 ◦C, TS = 50 mm/min for

maximum tensile strength

Mostafapour and
Asad [138] 2016 PA6 Heat-assisted tool with stationary PTFE-coated shoe RS = 500–800 rpm, TS = 20–30 mm/min,

TT = 100–150 ◦C
RS = 730 rpm, TS = 20 mm/min, TT = 150 ◦C for

maximum tensile strength

Nateghi and
Hosseinzadeh [142] 2016 HDPE Cooling-assisted (weld nugget cooling with CO2

gas), threaded pin tool
RS = 100–2200 rpm, TS = 40–80 mm/min,

SD = 18–22 mm, CP = 0–2 bar

RS = 2200 rpm, TS = 40 mm/min, SD = 22 mm,
CP = 2 bar for maximum tensile strength;

RS = 1000 rpm, TS = 80 mm/min, SD = 18 mm,
CP = 2 bar for minimum angular distortion

Banjare et al. [131] 2017 PP Heat-assisted tool with threaded cylindrical pin
RS = 360–840 rpm, TS = 20–30 mm/min,

TA = 2◦, TPT = 110 ◦C (for experiments with
heat-assisted FSW)

Heat-assisted tooling provides better joint mechanical
properties (tensile strength, elongation) compared to

non–heated tooling conditions

Moochani et al. [129] 2019 PP Heat-assisted stationary shoulder TT = 130–170 ◦C, RS = 360–950 rpm,
TS = 24–60 mm/min

RS = 950 rpm, TS = 40 mm/min, and TT = 150 ◦C for
high tensile strength and elongation

Nath et al. [141] 2019 PP Self-heated tool with right-hand threaded
cylindrical pin

TA = 1◦, RS = 1600 rpm CW,
TS = 0.1–0.3 mm/s, PlD = 0.1 mm,

TPT = 373.15 K

TS = 0.3 mm/s for maximum tensile strength and
% elongation

Laieghi et al. [132] 2020 PA6/NBR20—HNT Heat-assisted tool with stationary PTFE-coated
shoulder and threaded pin

RS = 900–1400 rpm, TS = 14 mm/min, HNT
content = 3–7 wt.%, PlD = 0.9 mm,

TT = 140 ◦C

RS = 900 rpm, TS = 14 mm/min, HNT content = 5%,
PlD = 0.9 mm, TT = 140 ◦C for highest mechanical

properties (tensile strength, hardness, impact strength)

AF = Axial Force, CP = Cooling Pressure, PlD = Plunge Depth, RS = Rotational Speed, SD = Shoulder Diameter, StT = Sheet Temperature, TA = Tilt Angle, TS = Traverse Speed, TPT = Tool Pre-heated
Temperature, TT = Tool Temperature. ABS = Acrylonitrile Butadiene Styrene, HDPE = High-Density Polyethylene, HNT = Halloysite Nantotubes, NBR = Nitrile Butadiene Rubber, PA6 = Polyamide-6 (Nylon-6),
PP = Polypropylene, UHMWPE = Ultra-High Molecular Weight Polyethylene.
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The above-detailed discussions suggest that the weld joint strength and quality of butt-
joint FSW of thermoplastics depends on process parameters, tooling conditions (geometry,
material, heating/cooling assistance), and medium conditions. Because of its dependence
on many factors, only a few of them are considered in a single study. The available studies
provide only the local optimum welding conditions, which is limited to the factors and
their ranges considered. To determine the global optimum welding conditions, a smart
and detailed experimentation plan needs to be devised [51]. The plan can be developed by
using only the most influential parameters, which are discussed later in this study. This
section will help with narrowing the operation range of these parameters. The use of
only most influential parameters within their narrow operation ranges and the statistical
techniques, like the Taguchi method, will help with the development of a detailed but smart
experimentation plan to achieve the objectives with a lower number of experimentations.
Ramanathan et al. [143] have also used the Taguchi optimization technique to narrow
down the main parameters and to reduce the set of experiments. Also, based on the above
discussions, some general guidelines can be developed which will help with achieving
high-quality butt-joints with superior mechanical properties and less defects through FSW
of thermoplastic materials. These guidelines will help in developing the experimentation
plans for future studies in the field. The guidelines are:

• The double-side FSW technique should be used as it reduces defects and improves
mechanical properties.

• The tool shoulder should be coated with PTFE as it reduces defects and improves
surface quality and mechanical properties.

• The thermoplastic sheets should be pre-heated as it improves joint tensile strength.
• The heat-assisted tooling should be used as it improves joint mechanical properties.
• The cooling-assisted (weld nugget cooling) FSW technique should be used as it im-

proves mechanical properties and reduces thermal residual stresses.
• The square pin, convex pin, tapered pin with groove, or threaded-tapered pin with

a chamfer should be used instead of the plain cylindrical pin because of their better
mixing ability of molten polymer material and for achieving better weld joint strengths.

• The stationary shoulder tool should be used as it provides better quality welds.
• For threaded pin profile, the tool should be designed such that thread flute and pin

rotation are not in the same directions, so for a right-hand threaded pin with clockwise
rotation or a left-hand threaded pin with anticlockwise rotation, to obtain better weld
joint with better properties and less defects.

The FSW depends on many process parameters. However, as will be discussed in the
later section, the rotational and traverse speeds are the most important parameters that
affect the joint tensile strength. The range and average optimal rotational and traverse
speeds for achieving maximum joint tensile strength from the Tables 2–4 are summarized
in Table 5 and plotted in Figure 3.

There are very few studies available on FSW of pipes, because unlike other types of
welding, there is complexity involved to move the high-speed rotating FSW tool along the
curved path. Muñoz [144] has studied PE pipes which are used for natural gas applications.
Vakili-Tahami et al. [123] have studied the creep behavior and have optimized the creep
lifetime of friction stir-welded PMMA pipes.
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Table 5. Range and average of the optimal rotational and traverse speeds for thermoplastic polymer and polymer composite
sheets.

Reference Material Optimal Rotation
Speed Range

Optimal Traverse
Speed Range

Average Optimal
Rotational Speed

Average Optimal
Traverse Speed

[43] ABS (I) 1100 rpm 9 mm/min 1100 rpm 9 mm/min

[117,119] ABS (II) 400–900 rpm 25–40 mm/min 650 rpm 32.5 mm/min

[128,139] ABS (III) 1500–1600 rpm 20–200 mm/min 1550 rpm 110.0 mm/min

[104] Glass-filled PA6 (30
wt.%) (I) 600 rpm 0.2 mm/s 600 rpm 0.2 mm/s

[42,94,97,98,100,
101] HDPE (I) 710–1400 rpm 10–40 mm/min 1020 rpm 23.9 mm/min

[107,111,116] HDPE (II) 875–1240 rpm 14–24 mm/min 1050 rpm 17.7 mm/min

[137,140] HDPE (III) 1600–2000 rpm 25–50 mm/min 1800 rpm 37.5 mm/min

[92,93,95,96] MDPE (I) 1000–1600 rpm 12–15 mm/min 1250 rpm 13.0 mm/min

[108,111] PA6 (II) 300–440 rpm 25–40 mm/min 370 rpm 32.5 mm/min

[138] PA6 (III) 730 rpm 20 mm/min 730 rpm 20.0 mm/min

[99] PA66 (I) 1570 rpm 42 mm/min 1570 rpm 42.0 mm/min

[113] PA6,6 (II) 1300 rpm 15 mm/min 1300 rpm 15.0 mm/min

[114] PA6-GF30 (II) 2000 rpm 25 mm/min 2000 rpm 25.0 mm/min

[132] PA6/NBR20-HNT (III) 900 rpm 14 mm/min 900 rpm 14.0 mm/min

[109] PC (II) 1220 rpm 40 mm/min 1220 rpm 40.0 mm/min

[112,122,123] PMMA (II) 250–1600 rpm 16–25 mm/min 700 rpm 19.0 mm/min

[115,118] PP (II) 750–1800 rpm 15–20 mm/min 1275 rpm 17.5 mm/min

[129,141] PP (III) 950–1600 rpm 0.3–40 mm/min 1275 rpm 20.2 mm/min

[111] PVC (II) 1800 rpm 10 mm/min 1800 rpm 10.0 mm/min

[130] UHMWPE (III) 960 rpm 20 mm/min 960 rpm 20.0 mm/min

I denotes FSW (single- and double-side) using cylindrical pin profile, II denotes FSW with other than cylindrical pin profile, and III denotes
heat-assisted FSW.

Mosavvar et al. [127] have studied butt-joint FSW of HDPE pipes using a threaded
cylindrical pin. The rotational speed was varied in a 1500–2500 rpm range, traverse speed
in 110–150 mm/min range, and tool offset in 2.5–4.5 mm range. The maximum yield
strength is obtained at the optimum parameter values of 2500 rpm, 110 mm/min, and
3.5 mm. This study suggests that it is possible to transfer knowledge gained from the
vast studies available on sheets to the pipes, which has more potential applications. The
rotational and traverse speeds are important parameters for FSW of thermoplastic sheets,
so they are also investigated for pipes. Also, tilt angle is an important parameter for sheets,
and it is used as tool offset for pipes. Composite pipes have revolutionized the industry at
many fronts [145,146].
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Figure 3. Optimal rotational and traverse speeds for achieving maximum joint tensile strength for
FSW of thermoplastic sheets in butt-joint configuration. I denotes FSW (single- and double-side)
using cylindrical pin profile, II denotes FSW with other than cylindrical pin profile, and III denotes
heat-assisted FSW.

3.2. Lap-Joint Configuration

There are few studies available on FSW of thermoplastic polymer and polymer com-
posite sheets in lap-joint configuration, and they are summarized in Table 6. The joint
strength and quality for the lap-joint configuration is assessed using the tensile shear
strength. Few of these studies have been carried out under non-submerged conditions.
Ahmadi et al. [147] have studied polypropylene-carbon fiber (20%) composite sheets us-
ing varying tool pin profiles and have suggested that threaded cylindrical-conical pin
profile provides the maximum joint strength. In another study, Ahmadi et al. [148] have
investigated the same material using a grooved cylindrical-conical pin. Derazkola and
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Simchi [149] have studied PMMA sheets using several pin profiles, like cone, square, and
triangle frustums. They have shown that the cone frustum provides the maximum joint
strength. The above discussion narrows the best pin profiles for achieving maximum joint
strength to threaded cylindrical-conical pin and cone frustum pin. These two pin profiles
need to be further studied together in detail to provide the best pin profile to achieve the
highest lap-joint strength. Some of the studies have been carried out under submerged
conditions. Gao et al. [150] have studied HDPE sheets using threaded pin, and have re-
ported that the maximum joint strength is 12.3 MPa for the submerged case at optimal
operating conditions, while the joint strength under non-submerged case is 9.6 MPa under
similar conditions. Yan et al. [151] have also studied HDPE sheets but using a double-pin
tool. Few studies have also investigated the effects of polymeric-based tool shoulders.
Eslami et al. [152] have studied polypropylene-polyethylene weld using a Teflon stationary
shoulder tool. Also, Eslami et al. [153] have investigated various tool shoulder designs, and
have shown for the polystyrene-polypropylene weld that the polymeric-based stationary
tool shoulder provides the best weld quality.

Table 6. Lap-joint friction stir welding of thermoplastic polymers and polymer composites sheets.

Reference Year Material Tool Type Medium Range Optimum Conditions

Ahmadi et al.
[147] 2012 PP-CF20

Pin = threaded cylindrical,
threaded conical, simple

cylindrical-conical,
threaded

cylindrical-conical

Non-submerged RS = 1000 rpm,
TS = 16 mm/min, TA = 1◦

Threaded
cylindrical-conical pin

provides maximum joint
strength

Ahmadi et al.
[148] 2014 PP-CF20 Grooved

cylindrical-conical pin Non-submerged
RS = 800–1250 rpm,

TS = 16–25 mm/min,
TA = 0–2◦

RS = 1250 rpm,
TS = 25 mm/min, TA = 1◦

for maximum tensile
shear strength

Gao et al.
[150] 2014 HDPE Threaded pin Submerged

PlD = 0.4 mm, TA = 0◦,
RS = 1200–2400 rpm,
TS = 30–60 mm/min

RS = 1800 rpm,
TS = 45 mm/min,

PlD = 0.4 mm, TA = 0◦ for
maximum joint strength

Yan et al.
[151] 2017 HDPE Double-pin tool Submerged

RS = 700–1300 rpm,
TS = 20–40 mm/min,

PlD = 0–0.2 mm

TS = 20 mm/min,
RS = 1300 rpm,

PlD = 0.1 mm for
maximum joint strength

Derazkola
and Simchi

[149]
2018 PMMA Pin = cone, square, and

triangle frustums Non-submerged
RS = 810–1920 rpm,

TS = 25–50 mm/min,
TA = 2◦, PlD = 0.2 mm

Pin = cone frustum,
RS = 1600 rpm,

TS = 25 mm/min,
TA = 2◦, PlD = 0.2 mm for
maximum joint strength

PlD = Plunge Depth, RS = Rotational Speed, TA = Tilt Angle, TS = Traverse Speed. CF = Carbon Fiber, HDPE = High-Density Polyethylene,
PMMA = Polymethyl Methacrylate, PP = Polypropylene.

Based on the above discussions, general guidelines can be developed which will help
with achieving high-quality lap-joints with superior mechanical properties and less defects
through friction stir welding of thermoplastic polymers and polymer composites. The
guidelines are:

• The submerged (underwater) FSW technique should be used as it provides better joint
strength than conventional FSW.

• The threaded cylindrical-conical pin and cone frustum pin profiles should be used as
they provide better weld joint strength.

The lap-joint FSW depends on many process parameters. However, as will be dis-
cussed in a later section, the most significant parameters that affect the joint strength are
traverse and rotational speeds. The optimal traverse and rotational speeds for achieving
maximum joint strength from Table 6 are plotted in Figure 4. For HDPE, the optimal
traverse speed is reported in the range of 20–45 mm/min, and rotational speed in the range
of 1300–1800 rpm: the average of the reported traverse speed is 32.5 mm/min, and of the
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rotational speed is 1550 rpm. For PP-CF20, the optimal traverse speed is in the range of
16–25 mm/min (20.5 mm/min average traverse speed), with optimal rotational speed in
the range of 1000–1250 rpm (1125 rpm average rotational speed). For PMMA, the reported
optimal traverse speed is 25 mm/min and rotational speed is 1600 rpm.

Figure 4. Optimal rotational and traverse speeds for achieving maximum joint strength for lap-joint
FSW of thermoplastic sheets. NS = Non-Submerged, S = Submerged.

The widespread use of the modern thermoplastic structures requires detailed investi-
gation not for only butt- and lap-joints, but also for other types of joints, like T-joint. Most
studies are available on butt-joints while few are on lap-joints, however, the studies on
other types of joints are lacking. This research gap needs to be filled as other types of joints
are also useful in automotive and other structural industries. Elyasi and Derazkola [154]
have studied the T-joint FSW of PMMA experimentally and through the thermomechanical
FE method. They have used a frustum pin profile tool and the tool was rotated in anti-
clockwise direction. The rotational speed was varied from 1000 to 1600 rpm and traverse
speed from 25 to 50 mm/min, with a constant tilt angle of 2◦ and plunge depth of 0.2 mm.
They have shown that the maximum tensile and flexural strengths are obtained at 1600 rpm
and 25 mm/min.

4. FSSW Parametric Studies

Several studies are available on FSSW of thermoplastic polymers and polymer compos-
ites. These studies investigate the parametric and tool geometry effects on the joint strength.
The joint strength for this category of weldments is assessed using lap-shear tensile force,
which is obtained through lap-shear tests. Some studies have not varied the tool pin profiles
to only investigate the parametric effects on the weld strength. Lambiase et al. [155,156]
have studied polycarbonate sheets using cylindrical pins. The tapered cylindrical tool pin
profile has been used to weld HDPE [13,157], PP [158,159], and HDPE-glass hollow spheres
composite [160] sheets. They have suggested that thin weld nuggets are produced using
short dwell times which have low joint strengths, while thick weld nuggets are produced
using longer dwell times which have high joint strengths [13]. They have also suggested
that the weld joint strength is negligibly affected by the plunge rate.

Several studies have varied pin profiles and materials to investigate their effects
and to determine the best pin profile and material which maximizes the joint strength.
Yan et al. [161] have studied ABS sheets using a triflute pin, and have shown that the
triflute pin provides better joint strength than a cylindrical pin. Lambiase et al. [162] have
studied PC sheets using cylindrical and tapered pin profiles, and have shown that the
cylindrical pin provides better joint strength. Bilici [163] have studied PP sheets using
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cylindrical (straight, tapered, threaded) and square pin profiles. They have shown that
the tapered cylindrical pin provides maximum joint strength. Bilici and Yükler [164] have
studied HDPE sheets using cylindrical (straight, tapered, threaded), hexagonal, square,
and triangular pin profiles. They have reported that the pin profile significantly affects
the joint strength, and that the maximum joint strength is obtained through the tapered
cylindrical pin. Also, they have suggested that a tapered threaded pin will provide the best
results. Bilici et al. [165] have studied HDPE sheets using tools made of several materials
(316 stainless-steel, aluminum 1050, pure copper, and SAE 1020 steel) to examine the effects
of heat transfer coefficient of tool material on weld strength. They have reported that the
pure copper tool provides the best results. The operating ranges of the process parameters
and the optimized process parameters of all the studies are summarized in Table 7.

Based on the above discussions, general guidelines can be developed which will help
with achieving high-quality joints with superior mechanical properties and less defects
through FSSW of thermoplastic materials. The guidelines are:

• The welding should be performed with longer dwell times as it improves joint strength.
• The effect of plunge rate should not be investigated in future studies, as it is not a

significant parameter and has negligible effect on the weld joint strength.
• Tapered cylindrical and tapered threaded pin profiles should be used as they provide

better weld joint strength.
• The tool should be made of pure copper material as it provides better results than

aluminum and steel alloys.

The FSSW of thermoplastic materials depends on many process parameters. However,
as will be discussed in the next section, the dwell time and rotational speed are the most
important parameters that affect the joint strength. The optimal dwell time and rotational
speeds for achieving maximum joint strength from the Table 7 are plotted in Figure 5. For
HDPE, the optimal dwell time is reported in the range of 45–60 s, and rotational speed
in the range of 700–710 rpm: the average of the reported dwell time is 50 s, and of the
rotational speed is 707.5 rpm. For PP, the optimal dwell time is in the range of 100–120 s
(108.3 s average dwell time), with optimal rotational speed of 900 rpm. For PC, the optimal
dwell time is 20 s and rotational speed is 1500 rpm.

Figure 5. Optimal dwell times and rotational speeds for maximum joint strength of FSSW of
thermoplastic sheets.
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Table 7. Friction stir spot welding of thermoplastic polymer and polymer composite sheets.

Reference Year Material Tool Type Range Optimum Conditions

Bilici et al. [157] 2011 HDPE Tapered cylindrical pin RS = 700–1100 rpm, DT = 20–60 s,
PlD = 5.7–6.7 mm

DT = 60 s, RS = 700 rpm, PlD = 6.2 mm for
maximum joint strength

Bilici [158] 2012 PP Tapered cylindrical pin DT = 50–150 s, PlD = 5.7–6.7 mm,
RS = 700–1100 rpm

DT = 100 s, PlD = 5.7 mm, RS = 900 rpm for
maximum joint strength

Bilici [163] 2012 PP Pin = straight cylindrical, threaded
cylindrical, tapered cylindrical, square

RS = 900 rpm, DT = 105 s, DeT = 50 s,
PR = 0.33 mm/s, PlD = 0.20 mm

Tapered cylindrical pin for maximum joint
strength

Bilici and
Yukler [13] 2012 HDPE Tapered cylindrical pin RS = 280–1400 rpm, PR = 3.3–20.8 mm/s,

PlD = 5.5–7.0 mm, DT = 8–90 s

RS = 710 rpm (conditions of DT = 50 s,
PR = 3.3 mm/s, PlD = 6 mm) for maximum

joint strength

Bilici and
Yükler [164] 2012 HDPE

Pin = straight cylindrical, tapered
cylindrical, threaded cylindrical,

triangular, square, hexagonal

RS = 560–1120 rpm, DT = 8–90 s,
DeT = 0–60 s, PlD = 0.2–1.2 mm

RS = 710 rpm, PlD = 5.7 mm, DT = 45 s,
DeT = 30 s for maximum joint strength

Kurtulmus [159] 2012 PP Tapered cylindrical pin
DT = 30–150 s, PlD = 5.6–7 mm,

RS = 560–1400 rpm,
PR = 0.25–3.55 mm/min

PR has negligible effect on joint strength;
RS = 900 rpm, PlD = 5.7 mm, DT = 120 s for

maximum joint strength

Lambiase et al. [155] 2015 PC Cylindrical pin
PR = 8–46 mm/min, RS = 1500–5400 rpm,

DT = 0–20 s, WT = 20 s, PHT = 20 s,
PlD = 4.4 mm

PR = 8 mm/min, DT = 20 s, RS = 1500 rpm for
maximum joint strength

Tasdemir et al. [160] 2016 HDPE-glass hollow
spheres Tapered cylindrical pin

Glass sphere = 0–20 wt.%,
RS = 560–1400 rpm, DT = 15–75 s,

Det = 0–60 s, PR = 0.33 mm/s, PlD = 0.2 mm

Joint strength is maximum at GS = 10 wt.%
and RS = 1120 rpm, at GS = 20 wt.% and

DT = 60 s, and at GS = 20 wt.% and DeT = 30 s

Lambiase et al. [156] 2017 PC Cylindrical pin
SD = 10–20 mm, PlP = 0.8–1.6 MPa,

PR = 8 mm/min, SrT = 15 s, CT = 15 s,
RS = 1260 rpm

SD = 10 mm, PlP = 1.2 MPa for maximum
joint strength

Bilici et al. [165] 2018 HDPE Tool material = copper, aluminum
1050, SAE 1020 steel, 316 stainless-steel

RS = 560–1120 rpm, DT = 30–75 s,
PlD = 0.1–0.4 mm, HTC = 16–385 W/m.K

RS = 710 rpm, tool material = copper
(HTC = 385 W/m.K), DT = 45 s, PlD = 0.2 mm

for maximum joint strength

Yan et al. [161] 2018 ABS Triflute pin RS = 400–1000 rpm, PlD = 0–0.6 mm,
DT = 1–51 s, PR = 15 mm/min, WT = 25 s

Triflute pin provides better joint strength than
a cylindrical pin

CT = Cooling Time, DeT = Delay Time, DT = Dwell Time, HTC = Heat Transfer Coefficient, PHT = Pre-Heating Time, PlD = Plunge Depth, PlP = Plunging Pressure, PR = Plunge Rate, RS = Rotational Speed,
SD = Shoulder Diameter, SrT = Stirring Time, WT = Waiting Time. ABS = Acrylonitrile Butadiene Styrene, GS = Glass Spheres, HDPE = High-Density Polyethylene, PC = Polycarbonate, PP = Polypropylene.
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5. Statistical-Based Studies

Several studies have conducted statistical analysis, like analysis of variance (ANOVA),
for determining the most significant parameters that affect the weld joint mechanical prop-
erties. As different studies have conducted investigations on different sets of parameters in
different operation ranges, there is expected variation in the results. This is because one of
the parameters might be significant in a specified set of parameters and operation ranges,
and it might be insignificant in another set of parameters and operation ranges. Apart
from mechanical property optimization-based studies [166], the statistical-based models
can also be used for weld quality assessment [167] and monitoring, and early prediction of
weld defects.

The ANOVA results of all the studies are summarized in Table 8. Several thermoplastic
materials have been investigated for butt-joint FSW, which include HDPE [1], Nylon-66 [99],
glass-filled Nylon 6 (30 wt.%) [104], HMWPE (Teflon stationary shoulder tool with threaded
pin) [168], polyamide-6,6 (tapered cylindrical pin) [113], and ABS (3D-printed, wooden
stationary shoulder) [43]. All these studies have suggested that rotational speed is the
first and traverse speed is the second most influential parameters that affect joint strength.
The total contribution of these two parameters on joint strength have been reported from
61.50% to 94.03%, with the contribution of rotational speed from 40.10% to 79.60% and
traverse speed from 10.77% to 35.03%. Also, it has been reported that rotational speed is the
most significant parameter, followed by traverse speed for impact strength [99] and percent
elongation [104]. Adibeig et al. [122] have studied PMMA using a double-step shoulder
tool with threaded pin. They have identified that the combination of rotational and
traverse speeds most significantly affects joint tensile strength, followed by traverse speed,
combination of rotational speed and pin diameter, and rotational speed as other significant
factors. Saeedy and Givi [95] have studied MDPE. For tensile strength, they have reported
that the tilt angle is the most significant parameter followed by the rotational speed; while
for percent elongation, they have reported the rotational speed as the most significant
parameter followed by tilt angle. Moochani et al. [129] have studied polypropylene using a
heat-assisted stationary shoulder tool. For tensile strength, they have reported that the tool
temperature is the most significant parameter followed by traverse and rotational speeds;
while for percent elongation, rotational speed is the most significant parameter followed
by traverse speed and tool temperature. Azarsa and Mostafapour [11] have studied HDPE
sheets using a heat-assisted and PTFE-coated stationary shoulder tool with threaded pin.
The reported ranking order for the flexural strength is: traverse speed, rotational speed,
and combination of sheet temperature and traverse speed. Most of the above butt-joint
configuration studies have also been summarized in columns 1 to 8 of Figure 6, which
shows that most of the studies suggest that rotational and traverse speeds are the most
important parameters that affect joint tensile strength and other mechanical properties.
Some other parameters which have been identified to significantly affect (>5% contribution)
the joint tensile strength are: axial force, tool diameter, tilt angle, and tool temperature.
Apart from sheets, Mosavvar et al. [127] have studied butt-joint FSW of HDPE pipes using
the threaded cylindrical pin. The reported ranking order for the yield strength is: rotational
speed, tool offset (used as tilt angle in FSW of sheets), and traverse speed.
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Table 8. Analysis of variance (ANOVA)-based studies of friction stir welding of thermoplastic polymer and polymer composite sheets.

Reference Year Material Technique/Tool Type Range ANOVA Results

Saeedy and Givi [95] 2010 MDPE Butt-joint FSW RS = 1400–2000 rpm, TA = 1–2◦, TS = 15 mm/min RS (63.98%) > TA (32.88%) for % elongation; TA
(55.92%) > RS (34.60%) for tensile strength

Bozkurt [1] 2012 HDPE Butt-joint FSW RS = 1500–3000 rpm, TS = 45–115 mm/min,
TA = 1–3◦

RS (73.85%) > TS (20.18%) > TA (5.96%) for
tensile strength

Azarsa and
Mostafapour [11] 2014 HDPE

Butt-joint FSW, heat-assisted and
PTFE-coated stationary shoulder tool with

threaded pin

RS = 710–1400 rpm, TS = 25–100 mm/min,
TT = 70–150 ◦C TS > RS > TS + TT for flexural strength

Husain et al. [99] 2015 PA66 Butt-joint FSW RS = 780–2000 rpm, TS = 27–62 mm/min RS (41.04%) > TS (35.03%) for tensile strength; RS
(55.98%) > TS (31.75%) for impact strength

Adibeig et al. [122] 2018 PMMA Butt-joint FSW, double-step shoulder tool
with threaded pin

RS = 250–500 rpm, TS = 16–20 mm/min,
PlD = 3–3.5 mm/min

RS × TS (40%), TS (25%), RS × PlD (21%), RS (9%),
TS × PlD (1%), PlD (1%) for tensile strength

Eslami et al. [168] 2018 HMWPE Butt-joint FSW, Teflon stationary shoulder
tool with threaded pin

RS = 1500–2500 rpm, TS = 30–70 mm/min,
AF = 800–1100 N, TD = 3–5 mm

RS (40.10%) > TS (21.4%) > TD (11.90%) > AF (6.20%)
for joint strength

Kumar et al. [104] 2019 Glass-filled PA6
(30 wt.%) Butt-joint FSW RS = 400–600 rpm, TS = 0.2–0.4 mm/s, TA = 0–2◦,

StD = 0.2 mm

RS (50.80%) > TS (31.05%) > TA (7.92%) for tensile
strength; RS (71.15%) > TS (26.27%) > TA (2.30%) for

% elongation

Moochani et al. [129] 2019 PP Butt-joint FSW, heat-assisted
stationary shoulder

TT = 130–170 ◦C, RS = 360–950 rpm,
TS = 24–60 mm/min

TT > TS > RS for tensile strength; RS > TS > TT for
% elongation

Nandhini et al. [113] 2019 PA6,6 Butt-joint FSW, tapered cylindrical pin RS = 1100–1500 rpm, TS = 10–20 mm/min,
TA = 0–2◦

RS (69.21%) > TS = 21.65% > TA = 4.72% for
tensile strength

Mosavvar et al. [127] 2019 HDPE pipes Butt-joint FSW, threaded cylindrical pin RS = 1500–2500 rpm, TS = 110–150 mm/min,
TO = 2.5–4.5 mm

RS (43.6%) > TO (30.3%) > TS (26.1%) for
yield strength

Singh et al. [43] 2020 ABS (3D Printed) Butt-joint FSW, wooden stationary shoulder RS = 900–1100 rpm, TS = 5–9 mm/min,
PlD = 1.5–2.5 mm

RS (79.60%) > TS (10.77%) > PlD (7.57%) for
tensile strength

Ahmadi et al. [148] 2014 PP-CF (20 wt.%) Lap-joint FSW, grooved
cylindrical-conical pin

RS = 800–1250 rpm, TS = 16–25 mm/min,
TA = 0–2◦

TS (79.06%) > RS (12.29%) > TA (5.41%) for tensile
shear strength

Yan et al. [151] 2017 HDPE Lap-joint Submerged FSW, double-pin tool RS = 700–1300 rpm, TS = 20–40 mm/min,
PlD = 0–0.2 mm

TS (75.37%) > RS (20.49%) > PlD (2.19%) for
joint strength

Bilici et al. [157] 2011 HDPE FSSW, Tapered cylindrical pin RS = 700–100 rpm, DT = 20–60 s,
PlD = 5.7–6.7 mm

DT (69.56%) > RS (23.53%) > PlD (3.37%) for
joint strength
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Table 8. Cont.

Reference Year Material Technique/Tool Type Range ANOVA Results

Bilici [158] 2012 PP FSSW, Tapered cylindrical pin DT = 50–150 s, PlD = 5.7–6.7 mm,
RS = 700–1100 rpm DT (71.3%) > PlD (15.8%) > RS (8.1%) for joint strength

Lambiase et al. [155] 2015 PC FSSW, Cylindrical pin
PR = 8–46 mm/min, RS = 1500–5400 rpm,
PHT = 0–20 s, DT = 0–20 s, WT = 0–20 s,

PlD = 4.4 mm
DT > PR > WT > PR × DT for joint strength

Bilici et al. [165] 2018 HDPE FSSW, tool material = copper, aluminum
1050, SAE 1020 steel, 316 stainless steel

RS = 560–1120 rpm, DT = 30–75 s,
PlD = 0.1–0.4 mm, HTC = 16–385 W/m.K

RS (33.48%) > HTC (27.74%) > DT (18.18%) > PlD
(16.25%) for joint strength

AF = Axial Force, DT = Dwell Time, HTC = Heat Transfer Coefficient, PHT = Pre-Heating Time, PlD = Plunge Depth, PR = Plunge Rate, RS = Rotational Speed, StD = Standoff Distance, TA = Tilt Angle, TD = Tool
Diameter, TO = Tool Offset, TS = Traverse Speed, TT = Tool Temperature, WT = Waiting Time. ABS = Acrylonitrile Butadiene Styrene, CF = Carbon Fiber, HDPE = High-Density Polyethylene, HMWPE = High
Molecular Weight Polyethylene, MDPE = Medium-Density Polyethylene, PA = Polyamide (Nylon), PC = Polycarbonate, PMMA = Polymethyl Methacrylate, PP = Polypropylene.
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Figure 6. Percentage contribution of parameters for joint strength (tensile) of butt-joint FSW (MDPE [95], HDPE [1],
PA66 [99], PMMA [122], HMWPE [168], Glass-filled PA6 (30 wt.%) [104], PA6,6 [113], ABS [43]), lap-joint FSW (HDPE [151],
PP-CF20 [148]), and FSSW (HDPE [157,165], PP [158]). AF = Axial Force, DT = Dwell Time, HTC = Heat Transfer
Coefficient, PlD = Plunge Depth, RS = Rotational Speed, TA = Tilt Angle, TD = Tool Diameter, TS = Traverse Speed.
(B) = Butt-Joint Configuration, (L) = Lap-Joint Configuration. ABS = Acrylonitrile Butadiene Styrene, CF = Carbon
Fiber, HDPE = High-Density Polyethylene, HMWPE = High Molecular Weight Polyethylene, MDPE = Medium-Density
Polyethylene, PA = Polyamide (Nylon), PMMA = Polymethyl Methacrylate, PP = Polypropylene.

Very limited statistical studies are available on the FSW of thermoplastic sheets in
lap-joint configuration. Ahmadi et al. [148] have investigated PP-carbon fiber (20 wt.%)
composite with grooved cylindrical-conical pin. Yan et al. [151] have studied underwater
FSW of HDPE using a double-pin tool. Regardless of the type of thermoplastic material,
tool geometry, and medium configurations, both studies have reported traverse speed
as the most significant parameter, and rotational speed as the second most significant
parameter. The contribution of these two parameters on joint strength is reported to be
around 91.35–95.86%, as can be seen in columns 9 and 10 of Figure 6. This means that
optimizing mainly just these two parameters can help with achieving the maximum joint
strength for given tooling and medium configurations. Also, optimizing just these two
variables along with variations of tooling and medium configurations can help with the
selection of best possible conditions for achieving maximum joint strength.

Limited statistical studies are available on the FSSW of thermoplastic sheets.
Bilici et al. [157] have studied HDPE, and have reported dwell time as the most signif-
icant parameter for joint strength, followed by rotational speed and plunge depth. In
another study, Bilici [158] have studied polypropylene, and have suggested dwell time as
the most significant parameter for joint strength, followed by plunge depth and rotational
speed. Lambiase et al. [155] have studied polycarbonate, and have shown dwell time as
the most significant parameter for joint strength, followed by plunge rate, waiting time,
and combination of plunge rate and dwell time. Bilici et al. [165] have studied HDPE with
varying tool materials to investigate the effects of different tool materials and their heat
transfer coefficients on the joint strength. They have reported rotational speed as the most
significant parameter for joint strength, followed by heat transfer coefficient of tool material,
dwell time, and plunge depth. Stan et al. [169] have studied the FSSW of HDPE-MWCNT
(Multi-Walled Carbon Nanotubes) composite, and for joint quality, they have suggested the
ranking order: dwell time > rotational speed > plunge depth > MNWCT wt.%. Most of the
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studies suggest that dwell time is the most significant parameter for joint strength, while
other significant parameters (>5% contribution) that have been reported are rotational
speed, plunge depth, and heat transfer coefficient of the tool material. These results are
also summarized in the form of columns 11 to 13 of Figure 6.

For optimization of FSSW of thermoplastics polymers, the machine learning tech-
niques like artificial neural networks (ANN) have also been utilized. Kurtulmuş and
Kiraz [170] have developed the ANN model for HDPE sheets (dataset of 64 welding cases).
The input dataset included the rotational speed, stirring time, and plunge depth, while
the output of the model was lap-shear fracture load of the weld joint. Also, Chavan and
Shete [171] have developed the ANN model for parametric analysis of HDPE sheets. The
ANN models have also been developed for polycarbonate sheets [155,172], to optimize
the welding conditions. The ANN-based models can also be used for mechanical be-
havior modeling [173], prediction of mechanical properties [174], and early prediction of
weld defects.

6. Techno-Economic Aspects

FSW is a greener welding technique because of its low power consumption with no
harmful welding byproducts, like greenhouse gases and toxic fumes. This technique can
help automotive and other industries to cut down on their carbon footprint from their
manufacturing chains. Apart from automotive industries, it has broad applications in other
structural industries, like aerospace and marine industries. It is a unique welding technique
that is widely popular among both metallic-based and polymeric-based industries. It has
not only successfully joined similar and dissimilar metal and polymer parts but has also
successfully developed polymer-metallic hybrid joints. FSW has the potential to compete
and excel other metallic-based and polymeric-based welding techniques. It requires no
preparation of parts, less processing time, no consumables, low-cost equipment, ability to
join difficult to weld materials, and simple processing steps which can be easily automated
for mass manufacturing. The technique is already in use in major car industries like Mazda
and aerospace industries like Boeing. However, the large-scale, cost-effective, robotic
FSW could be the answer to the next generation of flexible manufacturing in automotive,
shipbuilding, and aerospace industries.

For thermoplastic polymers and their composites, the FSW technique is still in the
development phase because most of the research is focused on butt- and lap-joint configu-
rations. There is a serious need to transfer knowledge to other types of joints (like T-joint),
and especially pipe and tube welding, which will create widespread applications and can
also greatly help to cater to the already established piping, tubing, and tank construction
industries. Also, apart from a few studies which have been focused on the development of
specialized automated and robotic platforms to perform FSW of thermoplastics, most of
them are focused towards using milling machines with fixtures. Further research into the
development of low-cost, lightweight, and specialized platforms can also create extensive
applications for the process because of the portability to use in field areas.

7. Concluding Remarks

The literature available on the FSW and FSSW of thermoplastic polymers and polymer
composites is vast and has been classified into several classes in this study. The main
classifications include the thermoplastic materials used (similar and dissimilar thermo-
plastic polymers and polymer composites), joint configuration (butt-, lap-, T-joint, etc.),
tooling conditions (machine, tool type, tool material), medium conditions (submerged,
non-submerged), and study types (parametric, phenomenological, tool design). Further, a
detailed review focusing on the FSW and FSSW between similar thermoplastic polymers
and polymer composites has been carried out. The effect of different process parame-
ters, tooling, and medium conditions on the mechanical properties of the weld joint were
covered in detail.
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For the butt-joint, general guidelines have been developed that suggest that the double-
side cooling-assisted (weld nugget cooling) FSW technique should be carried out using
PTFE-coated and heat-assisted stationary shoulder tool. The welding sheets should be
pre-heated, and the tool pin should be either a square pin, convex pin, tapered pin with
groove, or threaded-tapered pin with a chamfer. These guidelines ensure a butt-joint weld
with superior mechanical properties and less defects.

There are few studies available on the FSW of thermoplastics in lap configuration.
However, the developed guidelines suggest that the better joint mechanical properties are
achieved under submerged conditions. Also, the threaded cylindrical-conical pin and cone
frustum pin profiles should be used for better weld joint strength.

There are also limited studies available on FSSW of thermoplastic polymers and
polymer composites. The general guidelines suggest that welding should be performed
with longer dwell times using tools made of pure copper material with tapered cylindrical
and tapered threaded pin profiles. The available studies have also suggested that the
plunge rate does not affect the weld joint strength, so it should not be investigated further
in future parametric-based studies.

The statistical-based studies like ANOVA have helped with the determination of sig-
nificant parameters for FSW and FSSW of thermoplastic polymers and polymer composites.
For butt-joint configuration FSW, the most influential parameters are the rotational and
traverse speeds that affect joint tensile strength and other mechanical properties. Other in-
fluential parameters are axial force, tool diameter, tilt angle, and tool temperature. For FSW
of lap-joints, the most influential parameters are the traverse and rotational speeds, as their
contribution on joint strength is reported to be around 91.35–95.86%. For FSSW, the most
influential parameter for weld joint strength is the dwell time. Other influential parameters
are rotational speed, plunge depth, and heat transfer coefficient of the tool material.

In a nutshell, the optimum welding conditions for FSW and FSSW of thermoplastic
materials need to be determined for achieving high-quality joints with superior mechanical
properties. The optimization of these welding conditions is a challenging task, as FSW
and FSSW of thermoplastics depends on many factors. The available studies have only
determined the local optimum conditions for the FSW of thermoplastics. There is a lack of
detailed study for establishing the global optimal welding conditions. The developed gen-
eral guidelines and the most influential parameters determined, and their operating ranges
established from previous studies, can help with the development of a smart and extensive
experimentation plan for future studies to determine the global optimum conditions.

There are two main areas related to FSW of thermoplastics with very few available
studies. These two areas need to be studied in detail in the future to close the research
gaps. Firstly, there are very few studies available on the FSW of thermoplastic pipes. In
the future, the existing knowledge for thermoplastic sheets needs to be transferred for
piping, tubing, and tank construction, as the thermoplastic-based materials have huge
applications in these industrial areas. Secondly, there are also very few studies available
that have focused on the development of a FE-based model for FSW of thermoplastic
materials. Nowadays, the availability of low-cost yet powerful computational resources is
paving the way for simulation and optimization of physical phenomena. The FE-based
models are becoming widely popular as the cost is greatly reduced by performing less
experimentations, required only for model verification purposes. The future studies should
be focused on the development of comprehensive FE-based models of FSW that can help
with maximizing the weld strength by the consideration of a greater number of process
parameters along wide operating ranges. Such a model can lower the cost burden of large
numbers of experimentations, as the model can be validated using a few experimental
cases of the FSW of thermoplastics.
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