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Abstract: The prediction of electrochemical performance is the basis for long-term service of all-solid-
state-battery (ASSB) regarding the time-aging of solid polymer electrolytes. To get insight into the
influence mechanism of electrolyte aging on cell fading, we have established a continuum model for
quantitatively analyzing the capacity evolution of the lithium battery during the time-aging process.
The simulations have unveiled the phenomenon of electrolyte-aging-induced capacity degradation.
The effects of discharge rate, operating temperature, and lithium-salt concentration in the electrolyte,
as well as the electrolyte thickness, have also been explored in detail. The results have shown that
capacity loss of ASSB is controlled by the decrease in the contact area of the electrolyte/electrode
interface at the initial aging stage and is subsequently dominated by the mobilities of lithium-ion
across the aging electrolyte. Moreover, reducing the discharge rate or increasing the operating
temperature can weaken this cell deterioration. Besides, the thinner electrolyte film with acceptable
lithium salt content benefits the durability of the ASSB. It has also been found that the negative effect
of the aging electrolytes can be relieved if the electrolyte conductivity is kept being above a critical
value under the storage and using conditions.

Keywords: solid polymer electrolyte; time-aging; capacity degradation; all-solid-state battery

1. Introduction

Solid polymer electrolytes (SPEs) are emerging as a promising solution to achieve
broad electrochemical stability window, excellent mechanical properties, and good safety
for developing high-performance all-solid-state batteries (ASSB) [1–4]. Due to the effects
of the preparation process and electrochemical operation, many SPEs are usually in a
non-equilibrium state, in which the free volume and microstructure would evolve with
time [5,6]. That is to say, the time-aging may occur in the amorphous polymer and can
significantly affect the migration of lithium-ion in the solid electrolyte [7,8]. Subsequently, it
would change the distribution of lithium concentration in the active material and lead to cell
capacity variation. Consequently, the evolution of ionic conduction of SPEs and relevance
to electrochemical behavior of ASSB during the aging process of polymer electrolyte are
crucial scientific problems to be solved.

Knowledge of the time-aging properties of SPEs is very pivotal to understand the
long-term performance of ASSB for reliable electrochemical device applications. As one of
the most critical parameters of SPE, the time-dependent conductivity of polymer electrolyte
materials has already attracted much attention. As early as 2003, Kumar et al. noticed that
storage time had greatly affected the ionic conductivity of poly(ethylene oxide) (PEO) based
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SPE with lithium perchlorate (LiClO4) in the application temperature (0 to 68 ◦C) [7]. They
show that due to a reduction in the size of the coordinating sphere around the lithium-ion,
physical aging enhances the conductive performance of such a composite electrolyte. Nev-
ertheless, in 2015, Lasinska et al. delved deeply into the evolution of physical properties of
SPE based on poly(acrylonitrile-co-butyl acrylate) with different lithium salt content and
storage time under argon atmosphere [8]. It was revealed that the conductivity of aged
electrolytes weakened remarkably during the physical aging process, which affected the
continuity of conductivity pathways ground on ion–ion interactions. Recently, Sengwa et al.
studied the dependence of time-aging on the electrical and structural properties of lithium
triflate (LiCF3SO3)-doped polymer blend matrix of PEO and poly(methyl methacrylate)
(PMMA) [5]. The ionic conductivity of the SPE film was found to initially increase signifi-
cantly, and then drop by more than one order of magnitude as the aging time rises from
the day first to the one-year. These different results indicate that the time-aging appears
to act upon a complicated role on the lithium-ion diffusion in solid electrolytes. It is still
an open question whether the ion transport in the aging SPE mainly depends upon the
relaxation of polymer cooperative chain segmental motion or not. However, one may
reach a consensus that adding a small number of inorganic nanofillers such as Al2O3 [7],
montmorillonite (MMT) clay [5,9], and LiAlO2 [10] into the polymer matrix can affect the
conductivity of aging electrolyte materials. Meanwhile, the aging rate would be influenced
by the nature and loading of ionic salt as well as different types of mixed salts. Moreover,
it also correlates with the processing parameter, storage temperature, and even mechanical
history of SPE.

In addition to the performance of the solid electrolyte itself, interfacial stability be-
tween solid electrolyte and electrode is also necessary for aging-resistant secondary lithium
polymer batteries [11,12]. It is highly significant to study the transport and interfacial prop-
erties of SPEs in lithium cells during calendar aging. The published works have focused
on suppressing the reactivity of lithium salts (LiX) in PEO-based SPE with a lithium metal
anode to control the increment of passivation layer resistance in the process of storage
period [10]. It was found that the addition of nano-size TiO2, Al2O3, or SiO2 particles could
substantially not only enhance the ionic conductivity of PEO with LiClO4 at ambient tem-
peratures but also boost the interfacial stability, which endowed the lithium batteries with
better resistance to physical aging. Besides, the dispersion of ferroelectric microparticles
(BaTiO3, LiNbO3, PbTiO3 [11] or g-LiAlO2 [13,14]) into the PEO-LiX electrolyte was verified
as a remarkably effective method to stabilize the impedance of the SPE/electrode interface.
Li3PO4 thin-film coating on LiCoO2 can act as the oxidation barrier for ethylene oxide-
based SPE, contributing to the improvement of the interface degradation between SPE and
the cathode [15]. Moreover, the SPE membrane with semi-interpenetrating polymer net-
works (s-IPN) structure exhibited eminent stability toward lithium metal [16]. Noticeably,
the interfacial resistance is related to not only the formation of the lithium passivation layer
but also the variation in the contact area of electrolyte and battery electrodes. Tian and
Qi have found that contact loss formed during cell fabrication resulted in degradation of
the battery performance [17]. The imperfect contact may be worsened during the physical
aging process, where excess free volumes progressively escape from the polymer-lithium
salt system due to a naturally occurring densification of the polymer structure [18–20].
Although the physical aging-induced SPE volume decrease may reduce the contact area
of electrolyte/electrode interface and correspond to the electrical properties, up to now,
no previous studies have paid close attention to the effect of time-aging on the interfacial
contact between the solid electrolyte and electrode.

It is crystal clear that the capacity fades of ASSB can be caused by many factors, in-
cluding the deterioration of the physical-chemical properties of the electrode, the relaxation
of solid electrolytes, as well as the increase in the interface impedance between the cell
components. Grillon et al. reported that the capacity loss of the all-solid-state thin-film
micro-battery (Li/LiPON/LiCoO2) was induced by the diminution of the inserted charges
number into the cathode due to some structural changes in LiCoO2 material [21] and the
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growth of cathode electrolyte interfacial layer [22]. Meanwhile, extensive studies have been
accomplished for illustrating the influence of electrochemical temperature, current rate,
state-of-charge (SOC), and depth-of-discharge (DOD) on the aging behavior of lithium-ion
batteries with inorganic solid electrolytes. Danilov et al. discovered that the capacity of
ASSB would decrease at a high discharge rate [23]. Grillon et al. found that the capacity
decay for a micro-battery system increased with the cycling temperature rising, and the
aging effect was dependent upon the DOD and discharge current [24]. However, owing to
the codependency of aging mechanisms, very few literature have documented the effect
of the electrochemical operation on the degradation of SPE based cell. The prediction
of the aging-dependent capacity for this kind of ASSB under various storage and usage
conditions is still a critical and challenging goal. The theoretical model and simulation for
deriving optimized designs on ASSB with aging SPE are still somewhat lacking.

In this manuscript, focusing on the polymer electrolyte during the physical aging
process, we will develop a continuum model consisting of electrochemistry, mechanics, and
thermodynamics for quantitatively describing the electrochemical performance of ASSB
in service. The capacity degradation induced by time-aging SPE will be unveiled for the
first time by a finite difference method. Meanwhile, we will also systematically explore the
aging trend of the cell with different operation conditions (temperature and discharge rate),
lithium salt concentration of the electrolyte, and the thickness ratio of electrolyte relative
to the electrode. The primary aim is to reveal the effect mechanism of aging SPE on the
long-term life of the secondary batteries and to provide theoretical support for the optimal
design and utilization of advanced ASSB.

2. Methodology
2.1. Basic Electro-Chemical Model

To demonstrate the method, here we consider a typical layered ASSB as illustrated in
Figure 1. It contains a Li metal negative electrode, a time-aging SPE, and a LiCoO2 positive
electrode. For this multi-field system, it is known that to establish the basic governing
equation, one can start from two aspects: the electrochemical reaction at the SPE/electrode
interface and the transports of cations and anions under the electric field in SPE and LiCoO2.
For the former, according to Qi et al. [17], it can be described by the Butler-Volmer equation
as follows:

Ii = I0
i

{
exp
(

αi
F

RT
ηover

i

)
− exp

[
−(1− αi)

F
RT

ηover
i

]}
, i = Li or LiCoO2 (1)
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Figure 1. Schematic of an all-solid-state battery with time-aging solid polymer electrolytes (SPE).

Here, Ii and I0
i are the partial anodic/cathodic current at the electrode surface and

the related exchange current, respectively. To simplify the description, I0
i is detailed in

Appendix A. αi, F, and ηover
i are the charge transfer coefficient, Faraday constant, and the

over potential, respectively. R is the molar gas constant, and T represents the temperature.
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For the latter, in terms of the Nernst-Planck theory, the migration of cations and anions
in SPE in response to the electric field induced by the above electrochemical reactions can
be expressed as follows [25]:

∂cj/∂t +∇ · hj = 0 (2)

where cj is the concentration of cations (j = Li+) or anions (j = X−), hj is the flux which is
derived from the generalized Nernst-Planck formula as

hj(x, t) = −Dj∇cj(x, t)−
ξ jF
RT

Djcj(x, t)∇φSPE(x, t)−
Ωj

RT
Djcj(x, t)∇p (3)

where Dj is the diffusivity coefficient of species j in the SPE, and ξ j is the valence (dimen-

sionless), Ωj is the related partial molar volume, and p = −Ktrε+K ∑j=Li+ ,X− Ωj

(
cj − c0

j

)
is the hydrostatic pressure, which can be obtained by solving a set of elastic mechanics
Equations as detailed in the Appendix B. It can be seen that there are three variables to be
determined in Equation (3). It can be seen that there are three variables to be defined in
Equation (2), i.e., cj and φSPE, but there are only two Equations. Therefore, to determine
the remaining quantity, the so-called neutral condition is also introduced according to
Grazioli et al. [26]:

∇ · I = 0 (4)

where I = F ∑j=Li+ ,X− ξ jhj(x, t) is the electric current density.
As for the solid migration of lithium in the active layer, the influence of the electric

field will be minimal, and the governing Equation can hence be written as [27]:

∂cLi(x, t)
∂t

+∇ · jLi = 0, jLi = −DLi∇CLi(x, t) (5)

where CLi(x, t) and DLi represent the concentration and diffusion coefficient of Li, respectively.

2.2. Discharging Capacity of a Cell with Time-Aging SPE

Usually, when discharging an ASSB at constant current, the lithium inserted in active
cathode materials would gradually increase, leading to the decreased cell voltage. The
related discharging capacity of this cell is then defined as the output when the discharge
voltage reaches the cutoff value, which is about 3.8 V for LiCoO2. Since the cell is under
constant-current operation upon this process, the discharging capacity Qout can then be
estimated by:

Qout = in × A× tc (6)

where in is the operation current, which is usually estimated by in = i1C × Crate, in which
i1C is the current at 1C rate, and Crate represents the operation C-rate. A and tc are the
effective contact area and cutoff time, respectively.

For an ASSB with time-aging SPE, as the essence of the time-aging of SPE is the process
of free volume escaping outward [18–20], it can be expected that the time-aging would
result in not only the decline of ion migration in the electrolyte but also the decrease in
bulk volume of SPE because of the polymer densification induced by the aging process.
As a result, changes in cutoff time and contact area caused by aging may affect the electro-
chemical performance of the ASSB. In this case, since the aging time is much longer than
the discharge time, as described in Section 2.3, Equation (6) still holds, but the cutoff time
tc and effective contact area A within it will be affected by aging.

To identify the decline of ion migration in the electrolyte caused by time-aging, the
electrochemical impedance spectrometer (EIS) can be adopted to test the impedance spectra
of SPE under the time-aging and analyze the changes of ionic conductivity (k). Then the
ionic mobility (u) is calculated on the basis of the Einstein relation [28]:

u =
k

nq
(7)
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where n is the number of ions per unit volume, and q is the charge carried by ions. There-
after, since the mean diffusion coefficient of ion (D) is a function of the ionic mobility
according to the Einstein relation, i.e., D = µkBT/q, the relationship between mean diffu-
sion coefficient D and ionic conductivity k can be obtained by:

D =
kBT
nq2 k (8)

were kB is the Boltzmann constant, and T is the absolute temperature. The magnitude of
D may be defined by the harmonic mean of the ionic diffusion coefficients of Li+ cation
(DLi+ ) and X− anions (DX− ), where a binary salt (LiX) is assumed to fully dissociate in the
polymer electrolyte in two ionic species [26].

To further estimate the effective contact area under the time-aging process, we assume
that SPE is a cuboid isotropic homogeneous material. The relative change in contact area
upon aging is mainly caused by the volume variation induced by the reduction of free
volume, and it can be acquired by:

A
A0

= (
V
V0

)

2
3
= (

λVf0 + Vs

Vf0 + Vs
)

2
3

=
[
1− (1− λ)v0

f

] 2
3 (9)

where A0 and V0 represent the contact area between electrolyte and electrode, and the bulk
volume at the initial aging time (ta = 0), respectively. A and V are the related area and
volume at the time ta. λ is a dimensionless aging-related coefficient. v f = Vf /V is the
volume content of the free volume Vf relative to the total volume V which is composed
of the solid volume Vs occupied by the polymer segment and the free volume Vf . 0 in the
subscript/superscript represents the aging time (ta = 0). Since the relationship between
ionic diffusion coefficient of SPE and free volume (v f ) can be written as [29] D = Me−α/v f ,
where M and α are the material constants, the volume content at time ta would be:

v f =
lnD0 − lnM
lnD− lnM

v0
f (10)

Then, the dimensionless coefficient λ can be obtained by the correlation between the
aforementioned volume parameters and written as:

λ =
1− v0

f

1− v f

v f

v0
f

(11)

To sum up, combining Equations (6) and (9), one can achieve the capacity of ASSB at
constant-current discharge during the time-aging SPE as follows.

Qout = (1− (1− λ)v0
f )

2
3 tc ×Q0

out (12)

where Q0
out = in A0t0

c is the discharge capacity at ta = 0, tc = tc/t0
c is the dimensionless

cutoff time.

2.3. Solving Conditions and Model Parameters

Sections 2.1–2.3 describe the coupled multi-field Equations for the cell capacity degra-
dation induced by time-aging SPE. The model consists of a series of electrochemical and
mechanical PDEs. By applying proper initial and boundary conditions, these nonlin-
ear PDEs can be numerically solved using a finite difference method software COMSOL
Multiphysics®. Previously, Lasinska et al. [8] presented their excellent experimental work
on the evolution of ionic conductivity of the electrolyte based on LiTFSI and poly(AN-co-
BuA) against the aging time of nearly one year. The effects of time-aging and lithium salt
content on the conductivity of SPE are as shown in Figure 2. In this research, we have taken



Polymers 2021, 13, 1206 6 of 17

this reported LiTFSI/poly(AN-co-BuA) as the solid electrolyte to conduct the computa-
tional simulations and numerically optimize the capacity degradation of Li/SPE/LiCoO2
induced by the time-aging SPE according to the above-stated continuum model. Since the
governing equations as shown in Equations (4), (5) and (8) are fully coupled, analytical
solutions are difficult to obtain. Therefore, the numerical difference method is employed
here to solve the problem. Since the cell is composed of three parallel layers, as illustrated
in Figure 1, the problem is hence simplified to a 1D model. Table 1 summarizes the corre-
sponding initial conditions and boundary conditions for the problem. Other parameters
used in the simulations are listed in Table 2.
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Figure 2. Effect of aging time on ionic conductivity of SPE with different lithium salt contents (20 ◦C).

Table 1. State variables and initial and boundary conditions (BCs) for the electrochemical model.

Domains SPE Positive Electrode

State variables cLi+ , cX− , φSPE cLi

Initial conditions cLi+ = cX− = δcLi+ ,total , φSPE = 0 cLi = c0
Li

BCs at x = 0 hX− · n = 0, hLi+ · n = j · n = ILi/(FA)

BCs at x = LSPE hX− · n = 0, hLi+ · n = j · n = jLi · n = ILiCoO2 /(FA)

BCs at x = LSPE + LPos jLi · n = 0

Table 2. Sets of material parameters used in the simulation.

Symbol Description Value

δ Fraction of free Li ions in equilibrium 0.18 [17,23]

DLi Diffusion coefficient for Li, positive electrode 1.76 × 10−15 m2/s [17,23]

DLi+ , DX− Ionic diffusion coefficients of Li+ and TFSI− DLi+ = 0.2DX− [30]

cLi,max Selected maximal concentration of Li, positive electrode 2.33 × 104 mol/m3 [17,23]

kpos Rate constant charge transfer reaction, positive electrode 5.1 × 10−4 mol/
(
m2s

)
[17]

kneg Rate constant charge transfer reaction, negative electrode 1 × 10−2 mol/
(
m2s

)
[17,23]

αpos Charge transfer coefficient in positive electrode 0.6 [17,23]

αneg Charge transfer coefficient in negative electrode 0.5 [23]
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3. Results and Discussion
3.1. Dependency of Cell Discharging Capacity on Time-Aging SPE

First of all, the evolution of cell voltage with the discharge capacity for various time-
aging SPEs was tracked to demonstrate the dependency of aging on the cell capacity. Taking
the typical 65%LiTFSI/poly(AN-co-BuA) as an example, Figure 3 shows the discharge
curve (U−Qout) of ASSB concerning this SPE at the different aging times (0–320 days). For
other aging electrolytes with lithium salt loading of 75% and 91%, the cells exhibit a similar
degradation tendency.
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Figure 3. Effect of physical aging on the discharge curve (U −Qout) at 1C rate.

It can be observed from Figure 3 that the discharge curve at the initial time-aging stage
(ta = 0) almost coincides entirely with those of the following 10, 20, 40, 80, and 160 days,
and the values of Qout before 240 days are all around 68 Ahcm−2. Therefore, the ASSB with
65% LiTFSI/poly(AN-co-BuA) still has good resistance to the time-aging after storage of
more than half a year. In other words, the aging effect of the electrolyte on the discharge
capacity of the ASSB is slight during this period. As aging time (ta) increases, however, the
U −Qout curves drop steeply. When ta is 280 days and 320 days, the discharge capacities
are 36 Ahcm−2 and 20 Ahcm−2, respectively, which have been significantly reduced by
47% and 70% compared with its standard capacity (68 Ahcm−2). The main reason is that
the integrality of ion transport in the cell system has been damaged due to electrolyte aging.
To show this reason, the distribution of lithium-ion concentration in SPE discharged at the
cutoff time was extracted further, as shown in Figure 4.
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(1) As can be seen from the ASSB structure (see Figure 1) above, the left-side (anode)
and right-side (cathode) are corresponding to the outflow and insertion of Li+, respectively,
under the discharging, which means that ions move from left to right in the SPE. It can be
anticipated that the higher the ion mobility, the smaller the difference in concentration will
be observed between the two sides. Conversely, a tremendous difference in ion concentra-
tion between the two sides means worse ion mobility. Therefore, Figure 4 indicates that
the transport performance of ions continues to deteriorate with aging. When the aging
time is relatively short (200 days), though the mobile rate of the cation has decreased, it
still matches with the lithiation requirement of the cathode at the right-side of the elec-
trolyte, and thus, the discharge capacity has not changed significantly, as shown in Figure 3.
However, after 240 days of aging, when the diffusion coefficient of lithium-ion in SPE
declines to a threshold that the rate of Li+ passing through the SPE can no longer meet the
consumption of lithium embedding in the cathode, the Li+ concentration on the right-side
of SPE would rapidly reduce to 0. This will interrupt the electrochemical reaction of the
electrode, shorten the discharge time, and thereby decrease the discharge capacity of the
ASSB significantly.

(2) During the time-aging of SPE, the structural relaxation induced by the lattice
contraction [31] and free volume diffusion in the solid electrolyte also cause the reduction
of effective contact between the SPE and LiCoO2. The related influence can be obtained
by extracting the variation of the aging-related parameters λ and A/A0. These results are
shown in Figure 5.
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Figure 5. Effect of time-aging on free volume in SPE and its contact area with the electrode.

In Figure 5, it can be seen that the parameter λ reduces rapidly with the aging time,
indicating that free volume within SPE decreases upon aging. Affected by this, the effective
contact area A between SPE and electrode is also steadily decreasing. When the aging time
reaches 240 days, A is reduced by nearly 5%. This shows that in addition to the decline in
ion conductivity of time-aging SPE, the reduction in the effective contact area is also an
essential factor for the decrease of ASSB.

There are three aspects to explain the effect mechanism of electrolyte time-aging on
the electrochemical performance of ASSB, as shown in Figure 6. In the figure, the red line
presents how the capacity decay (Qta

out/Q0
out) caused by the decrease of the electrolyte-

cathode interface contact area evolves with the aging time. The black curve represents the
variation in Qta

out/Q0
out resulted from the weakening of ion diffusion through the electrolyte

material. Furthermore, the blue line is a consequence of the coupling of the former two.
It can be observed that there is an obvious inflection point in the blue curve, and the
corresponding critical aging time (tcr

a ) is 240 days. Before this, Qta
out/Q0

out falls off slowly,
controlled by the loss of contact area, and the discharge capacity can still be maintained at
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over 90%. The transport of Li+ relies on its interaction with the segmental movement of
macromolecules [32,33]. That is, ions penetrate through the electrolyte via the interaction
of complexation and dissociation of the polar groups on the side chains. Thus, with the
increase of aging time (>240 days ), a large amount of free volume in the electrolyte diffuses
outward; the rotation of the C–C bond in structural elements of the electrolyte is limited,
and the migration of Li+ would be dramatically diminished. Then, in this stage, ion
diffusion degradation is the primary cause of cell discharge failure. It can be verified that
the blue curve and the black curve in Figure 6, almost overlap with each other after their
inflection points. Importantly, Figure 6 clearly shows that such SPE-based ASSB has a
service life of less than one year (≤240 days) as the cell capacity experiences a sharp drop.
That is to say, the engineering applications of the ASSB with Li/65% LiTFSI/poly(AN-co-
BuA)/LiCoO2 will confront severe challenges in this situation. Therefore, it is an urgent
task to delay the aging progress of ASSB and increase its cycle life through the optimal
design of service conditions and electrolyte materials. To this end, the following three
sections will illustrate the influence of discharge rate, operating temperature, the lithium
salt concentration, and relative thickness of the electrolyte on the capacity loss of ASSB
during the time-aging of SPE.

Polymers 2021, 13, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 6. Effect of electrolyte time-aging on discharge capacity degradation. 

3.2. Effect of Discharge Rate and Operation Temperature 

Figure 7 shows the influence of lithiation rate on the electrolyte-aging induced capac-

ity degradation (EICD). In the simulations, the 𝐶𝑟𝑎𝑡𝑒 range is 1C to 5C. The temperature 

is considered to be 20 °C, and the temperature rise caused by the high current is not taken 

into account. This is because an ASSB composed of Li/65% LiTFSI/poly(AN-co-

BuA)/LiCoO2 usually discharges at the constant current with the different rate from 1C to 

5C under room-temperature (20 °C) environment. There is evidence that thin-film ASSB 

with the nickel-based current collect for the cathode and a lithium metal anode has good 

heat dissipation, which exhibits a thermal conductivity as high as 90.9 W/(m K) and 84.8 

W/(m K), respectively[34]. 

 

Figure 7. Effect of discharge rate on electrolyte-aging induced capacity degradation. 

As seen in Figure 7, for the electrolyte aged in the initial stage (𝑡𝑎 ≤ 40days), despite 

the higher discharge rate, the capacity degradation vs. aging time curve (𝑄𝑜𝑢𝑡
𝑡𝑎 /𝑄𝑜𝑢𝑡

0 -𝑡𝑎) of 

the ASSB discharged at 5C is nearly consistent with those at 1C and 2C, and the loss of 

discharge capacity is less than 2%. With the increase of aging time, the EICD effect grad-

ually emerges during the high-rate discharge (5C). When 𝑡𝑎 = 180 days, the cell capacity 

decreases by 18%, and there is a drop inflection point of the 𝑄𝑜𝑢𝑡
𝑡𝑎 /𝑄𝑜𝑢𝑡

0 -𝑡𝑎 curve. Follow-

ing that, the electrochemical performance would deeply fall for the ASSB at a discharge 

rate of 5C. Also, the variation tendency of capacity with the aging time remains almost the 

  

0 40 80 120 160 200 240 280 320
0.2

0.4

0.6

0.8

1.0

 Decrease in Li+ diffusion

 Contact area reduction

 Dual mechanismC
a
p
a
c
it
y
 d

e
g
ra

d
a
ti
o
n
，

Q
t a o
u
t/Q

0 o
u
t

Aging time，ta(day)

 

0 40 80 120 160 200 240 280 320
0.2

0.4

0.6

0.8

1.0

65% LiTFSI/poly(AN-co-BuA)

5C

2C

1C

C
a

p
a
c
it
y
 d

e
g

ra
d

a
ti
o

n
，

Q
t a o
u
t/Q

0 o
u
t

Aging time，ta(day)

Figure 6. Effect of electrolyte time-aging on discharge capacity degradation.

3.2. Effect of Discharge Rate and Operation Temperature

Figure 7 shows the influence of lithiation rate on the electrolyte-aging induced capacity
degradation (EICD). In the simulations, the Crate range is 1C to 5C. The temperature
is considered to be 20 ◦C, and the temperature rise caused by the high current is not
taken into account. This is because an ASSB composed of Li/65% LiTFSI/poly(AN-co-
BuA)/LiCoO2 usually discharges at the constant current with the different rate from 1C
to 5C under room-temperature (20 ◦C) environment. There is evidence that thin-film
ASSB with the nickel-based current collect for the cathode and a lithium metal anode has
good heat dissipation, which exhibits a thermal conductivity as high as 90.9 W/(m K) and
84.8 W/(m K), respectively [34].
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Figure 7. Effect of discharge rate on electrolyte-aging induced capacity degradation.

As seen in Figure 7, for the electrolyte aged in the initial stage (ta ≤ 40 days), despite
the higher discharge rate, the capacity degradation vs. aging time curve (Qta

out/Q0
out-ta)

of the ASSB discharged at 5C is nearly consistent with those at 1C and 2C, and the loss
of discharge capacity is less than 2%. With the increase of aging time, the EICD effect
gradually emerges during the high-rate discharge (5C). When ta = 180 days, the cell
capacity decreases by 18%, and there is a drop inflection point of the Qta

out/Q0
out-ta curve.

Following that, the electrochemical performance would deeply fall for the ASSB at a
discharge rate of 5C. Also, the variation tendency of capacity with the aging time remains
almost the same between the discharge rates of 1C and 2C before the aging time reaches
200 days. After that, it is found that the capacity of the ASBB discharged at the rate of 2C
degrades rapidly. In contrast, the capacity of the ASSB with a lower lithiation rate of 1C is
not subjected to an abrupt decline until the aging time reaches 240 days. Therefore, the
discharge rate is a crucial factor to control EICD, and a high-speed C-rate will lead to a
dramatic shortening of the cycle life of the ASSB. The reason behind it is that the cathode
would consume lithium ions rapidly at a higher rate, which requires a faster ion-diffusion
across the solid electrolyte. In contrast, the time-aging process of the SPE runs counter
to this goal. Figure 8 is prepared to show this, which demonstrates the effect of different
discharge rates (1-5C) on the distributions of Li+ concentration in the time-aging SPE
(160 days, 200 days, and 240 days) for the cell at cutoff time.

According to the kinetic electrochemical equations of the electrode, as shown in
Equation (1) and Appendix A, it can be achieved that the Li+ input (the left side that is
adjacent to the lithium foil) and consumption (the right side that is adjacent to the LiCoO2)
at the cathode increases with the rise of discharge rate. Focusing on the consuming side on
the right, which directly affects the cutoff time, it can be found in Figure 8a that when the
aging time of SPE is 160 days, the Li+ concentration declines with increasing the discharge
rate due to the rapid consumption. Specifically, the Li+ concentration is 4700 mol/m3,
2491 mol/m3, and 1993 mol/m3 for 1C, 2C, and 5C at cutoff time, respectively. It is known
that lithium concentration at the electrolyte/cathode interface required to maintain the
normal lithiation reaction is about 2000 mol/m3. As such, at the discharge rate of 1C and
2C, the ion transport in the SPE can still guarantee the regular migration amount of Li+, and
the discharge capacities of ASSB have not shown apparent changes at this time, as shown in
Figure 7. Under the rate condition of 5C, however, the cell capacity has already presented
a decline. When ta = 200 days, the ion concentration at the right-end of the electrolyte
approaches 0 at the higher discharge rates (2C and 5C). In other words, the transport rate of
lithium ions in the electrolyte has been unlikely to satisfy the requirements of the lithiation
reaction of a positive electrode. Therefore, the cell capacity at the 2C discharge rate drops
sharply at this point (ta = 200), while that of 5C is even worse, with the value of Qta

out/Q0
out
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having decreased by nearly 50%, as in Figure 7. Moreover, when the aging time reaches
240 days, the values of Li+ concentration in the electrolyte side close to the cathode for
three discharge rates decrease to 0. It means that the electrochemical performance at a
low discharge rate (1C) is also about to deteriorate promptly. Furthermore, discharging
at a relatively high rate will further intensify the negative influence of solid electrolyte
time-aging, resulting in the long-term service performance of ASSB prematurely degraded.

Generally, the ion transport inside the SPE depends on the thermal movement of the
main and side chains [35,36], meaning that the operating temperature is a critical envi-
ronmental factor influencing the ion diffusion rate and conductivity. Thus it is inevitably
related to the aforesaid EICD effect. Under the different environmental temperatures, in-
cluding 20 ◦C, 30 ◦C, and 40 ◦C, the calculated curves of Qta

out/Q0
out-ta for ASSB discharged

at 1C rate are as shown in Figure 9.
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By observing the curves of Qta
out/Q0

out-ta in the above Figure 9, it is clear that with the
increase of the discharge temperature, the critical aging time (tcr

a ) corresponding to the
slump in discharge capacity tends to be significantly extended. Surprisingly, after being
stored at 40 ◦C for 360 days, the cell can display over 90% discharge capacity retention,
which is much larger than that at 20 ◦C and 30 ◦C. This can be attributed to the fact that
higher operating temperature increases the vibration of the polar segment near the main
chain and augment the free volume fraction of the polymer system [5,37]. Furthermore, it
promotes Li+ to move from the original coordination region to the other end of the chain
through complexation and dissociation. The published experimental results also verified
that the temperature-dependent diffusion coefficient of lithium-ion in 65%LiTFSI/poly(AN-
co-BuA) electrolyte conforms to the VTF equation [8]. To sum up, appropriately increasing
the service temperature may visibly inhibit the capacity degradation caused by the time-
aging of SPE and substantially improve the long-term electrochemical performance of
the ASSB.



Polymers 2021, 13, 1206 13 of 17

3.3. Effect of Lithium Salt Content of SPE

As the carrier of ionic conduction, lithium salt is also of great importance because its
content directly determines the number of mobile ions in the SPE. As discussed above, the
essence of the cell capacity loss induced by electrolyte aging is that the number of lithium
ions flowing into the electrode cannot meet the kinetics of the electrochemical reaction at
the electrode surface. This makes lithium salt concentration also a major internal cause of
the EICD effect. Based on the experimental ionic conductivity of LiTFSI/poly(AN-co-BuA)
by Lasinska et al. [8] (see Figure 2), the following paragraphs will discuss the discharge
capacity of the ASSB based on aging electrolyte and compare the corresponding critical
aging time when the LiTFSI concentration is set at 65%, 75%, and 91%, respectively. The
discharging is at 20 ◦C and 1C, and the simulation results are shown in Figure 10.
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Figure 10. Effect of lithium salt content of SPE on electrolyte-aging induced capacity degradation.

Previously, many studies demonstrate that when the valid ligand is formed between
the lithium salt and polymer segment, the ionic migration can be realized through the
process of complexation-decomplexation [7,36,38,39]. In addition, lithium salt also affects
the regularity of the polymer molecular chain, which reduces the degree of crystallinity
and melting point of the electrolyte material, enhances the thermal motion ability of the
side segments, and thus improves the ionic conductivity of the SPE. Therefore, a high
lithium salt content is supposed to be more able to inhibit the EICD effect. However, for the
ASSB discharged at 1C rate and 20 ◦C, it can be seen in Figure 10 that the critical aging time
(tcr

a ) when the Qta
out/Q0

out curves steeply drop does not rise monotonously with increasing
LiTFSI loading from 65% to 91%. Instead, it has decreased first and then increased as
seen in Figure 10. What is the reason behind this phenomenon? Usually, the high-content
lithium salt is more likely to form ion clusters or ion pairs, which may reduce the valid
ion-carrier concentration and result in a fast decline in ionic conductivity of the electrolyte.
By comparing those as mentioned above aging time-dependent ionic conductivity (κ)
of LiTFSI/poly(AN-co-BuA) electrolyte with different lithium salt concentrations (see
Figure 2), it can be found that the κ value of the electrolyte with 75% LiTFSI is lower
than that of the electrolyte with 65% LiTFSI. This is due to the fact that the electrolytes
with lithium salt concentrations of both 65% and 75% belong to a metastable system,
where the high-content salt produces a larger amorphous salt domain, increasing the
distance between polymer chains and reducing the migration probability of lithium ions
among polar segments [8]. Besides, the relaxation of side-chain movement in the time-
aging process further retards the Li+ diffusion leading to an untimely attenuation in the
discharge capacity of the ASSB. When the lithium salt content is increased up to 91%,
the electrolyte material transforms from “salt soluble in polymer” to “polymer soluble
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in salt.” The extremely high ion-carrier concentration greatly enlarges the initial ionic
conductivity of the electrolyte (as shown in Figure 2). However, the higher free volume
fraction makes the thermodynamic state of 91% LiTFSI/poly(AN-co-BuA) electrolyte to be
of highly non-equilibrium. Therefore, in the process of time-aging, the decline in κ value of
the SPE with 91% LiTFSI is more than those with the other lithium salt concentrations. The
discharge capacity of the ASSB with 91% LiTFSI/poly(AN-co-BuA) electrolyte experiences
a relatively slow degradation compared with the cell composed of 75% LiTFSI/poly(AN-
co-BuA). However, its failure may occur significantly earlier than the ASSB with 65%
LiTFSI/poly(AN-co-BuA), and the critical aging time (tcr

a = 110 days) is less than half of
the latter.

Moreover, the above analysis may be utilized further to estimate the critical ionic
conductivity of the solid electrolyte when the EICD takes place. By comparing the inflection
points of Qta

out/Q0
out-ta, curve is shown in Figure 10 and the κ − ta curve in Figure 2, it may

be concluded that when the ionic conductivity of the LiTFSI/poly(AN-co-BuA) electrolyte
is reduced to about 10−5 S/cm during aging, the Li+ flow that transports across the
electrolyte will be insufficient to maintain the lithiation reaction of active material. Thence,
to eliminate the EICD effect, it is suggested that the electrolyte conduction should be
larger than a critical value within the service life of the ASSB. Some possible methods
may be tailoring the electrolyte composition, optimizing the initial ionic conductance, and
adjusting the forming process to adapt a proper time-aging rate of the SPE.

3.4. Effect of Electrolyte Thickness

Based on the calculated Qta
out/Q0

out-ta curves for the ASSB with the SPE films of
different relative thickness compared to the cathode, Figure 11 depicts the impact of the
thickness ratio (LSPE = LSPE/LPos) of electrolyte to the electrode on the critical aging time
(tcr

a ). Clearly, with regard to the Li/65%LiTFSI/poly(AN-co-BuA)/LiCoO2, it can be found
that the magnitude of tcr

a drops sharply as the relative thickness of electrolyte increases,
reaches to an inflection point L

cr
SPE (nearly 1.0) at which dtcr

a /dLSPE approaches zero and
tends to a platform indicating that decreasing the electrolyte thickness helps to relieve the
EICD effect. Importantly, the cell of Li/65%LiTFSI/poly(AN-co-BuA)/LiCoO2 with the
thinner electrolyte film (LSPE ≤ 0.2) can keep the stability of discharging capacity during
one and a half years, which may meet the demanding requirements for some engineering
applications. As the lithium salt concentration of SPE increases from 65% to 91%, raising
electrolyte thickness would cause a similar evolution of critical aging time. Further, it is
found that the L

cr
SPE of SPE is ranked as follows: 65%LiTFSI > 91%LiTFSI > 75%LiTFSI.
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4. Conclusions

Accounting for the SPE time-aging during the storage condition, a full-field coupling
model of thermodynamics-electrochemistry-mechanics has been established for the ASSB.
The cell capacity degradation induced by electrolyte aging is computationally simulated
and numerically optimized in detail. Beyond that, the influences of discharge rate, operat-
ing temperature, and lithium salt concentration, as well as the electrolyte thickness on this
aging effect, are systematically investigated. The main conclusions are as follows.

(1) The time-aging of SPE may fade the electrochemical performance of the ASSB,
and there is a critical aging time (tcr

a ) for the slump of discharge capacity. The contact area
of the solid electrolyte/electrode interface and the diffusion of Li+ inside the electrolyte
materials are considered as two pivotal factors controlling the cell decay. In the early stage
of aging (≤tcr

a ), the electrolyte-aging induced capacity degradation (EICD) is dominated by
the loss of interfacial contact area. Subsequently, it is controlled by the rate of Li+ migration
through the SPE.

(2) The essence of the occurrence of EICD is whether the lithium ions flow across the
electrolyte and move to the interface with the cathode can satisfy the lithiation reaction of
the active materials. The cell service conditions are closely associated with this effect. To
be specific, increasing the working temperature may improve the durability of the ASSB,
while high-rate discharges would lead to earlier failure.

(3) The impact of lithium salt concentration in the electrolyte on EICD is complicated.
In general, increasing the addition of lithium salt may contribute to the extension of the
cycle life of the ASSB, while adding excessive lithium salt would accelerate the time-aging
process of the SPE and result in the premature deterioration of the cell discharge capacity.

(4) During the service of the ASSB, it is vital to find that the negative effect of electrolyte
aging can be restrained by maintaining the ionic conductivity of the SPE above a critical
value. Also, a thinner electrolyte film is a benefit for the durability of the ASSB with
time-aging SPE.
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Appendix A

The exchange current I0
Li and I0

LiCoO2
in Equation (1) are given by

I0
Li = FAks

Li
(
cLi+/cLi+ ,total

)αLi (A1)

I0
LiCoO2

= FAks
LiCoO2

[
(cLi,max − cLi )cLi+

(cLi,max − cLi,min)cLi+ ,total

]αLiCoO2
(

cLi − cLi,max

cLi,max − cLi,min

)1−αLiCoO2
(A2)

where ks
i (i = Li, LiCoO2), αi(i = Li, LiCoO2), and cLi+ are the reaction rate constant, the

charge transfer coefficient, and the concentration of mobile Li-ions, respectively. Meanwhile,
cLi+ ,total , cLi,max, and cLi,min are the total concentration of Li ions in the solid electrolyte, the
maximum and minimum lithium concentration in the positive electrode, respectively.
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Appendix B

The hydrostatic pressure p is determined by the following governing Equations of
elastic mechanics, which include the equilibrium equation, i.e.,

∇ · σ = 0, (A3)

the strain-displacement equation, i.e.,

ε =
1
2
(∇u + u∇), (A4)

and the constitutive equation, i.e.,

σ = 2Gdevε− pI, (A5)

where σ, ε, and u are the stress, the strain, and the displacement tensor, respectively.
Besides, the volume modulus and the shear modulus are represented by the symbols K
and G.
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